Effects of Imidisation for Poly(Amic Acid) Films on Gas Transport

Polyamic Acid막의 Imide화가 산소, 질소투과에 미치는 영향

  • Published : 1993.08.01

Abstract

The polyamic acid (PAA) based on 3,3', 4,4'-benzophenonetetracarboxylic dianhydride(BTDA)-3,3', 4,4'-dipheylsulfonetetracarboxylic dianhydride(BAPP), 2,2-bis(4-[4-aminophenoxyl]phenyl) propane(DSDA)-3,3', 4,4'-dipheylsulfonetetracarboxylic dianhydride(BAPP), and 3,3',4,4'-benzophenonetetracarboxylic dianhydride(BTDA)-4,4'-oxydianiline(4,4'-ODA) was synthesised. The casted PAA films were partially imidised and the permeation properties of these PAA films for $O_2$ and $N_2$ were investigated according to the degree of imidisation. When the degree of imidisation was increased by curing, the permeabilities of the PAA films were increased for a while and then decreased. These results show that the increase of gas permeation by the disappearence of strong hydrogen bond is larger than the decrease of gas permeation by the dense effect. The decrease of hydrogen bond between molecular chains of PAA suddenly increases the vibration of the chain to make holes but the compaction in polymer chain gradually decreases the gas permeation. The largest values of permeability of BTDA-BAPP, DSDA-BAPP and BTDA-4,4'-ODA film was 8.3, 0.3 and 0.8 barrer respectively, and the imidisation content corresponding to the values of the largest permeability was 37, 47 and 55% each. But the permselctivities of the PAA films were not changed by the variation of the degree of imidisation.

BTDA-BAPP, DSDA-BAPP, BTDA-4,4'ODA의 폴리아믹산(PAA)으로 막을 주조하고 부분이미드화하여 산소와 질소의 투과특성을 조사하였다. 가열이미드화로 이미드화가 증가할수록 투과속도는 초기에 증가하여 최고점을 나타내고 감소하였다. 가열이미드화할 때 ?에는 PAA 수소결합의 소실로 기체투과가 증가하나 이미드화가 증가하면 치밀화로 인하여 기체투과 감소효과가 커지는 것으로 추정되었다. BTDA-BAPP, DSDA-BAPP, BTDA-4,4'-ODA는 각각 이미드화율 37%, 47%, 55%일때 최고투과계수 8.3, 0.3, 0.8 barrer을 나타내었다. 그러나 투과선택도는 이미드화와 무관하게 거의 일정하였다.

Keywords

References

  1. J. Polym. Sci.: Polym. Phy. v.28 H.Yamamoto;Y.Mi;S.A.Stern
  2. Polym. Eng. Sci. v.13 J.K.Gillham;H.C.Gillham
  3. J. Polym. Sci. Macromol. Rev. v.11 C.E.Sroog
  4. Ind. Eng. Chem. Process Des. Dev. v.11 F.P.McCandless
  5. J. Appl. Polym. Sci. v.20 D.G.Pye;H.H.Hoehn;M.Panar
  6. ACS Symp. Ser. v.269 H.H.Hoehn
  7. Kobunshi v.35 A.Nakamura
  8. Proceedings of the 1987 International Congress on Membranes and Membrane Processes K.Okomoto;K.Tanaka;O.Yokoshi;H.Kita;A.Nakamura
  9. Proceedings of the 1987 International Congress on Membranes and Membrane Processes A.Nakamura;Y.Kusuki;T.Harada;K.Nakagawa;M.Kinouchi
  10. Proceedings of the 1987 International Congress on Membranes and Membrane Processes T.Hakuta;K.Haraya;K.Obata;Y.Shindo;N.Itoh;H.Yoshitome
  11. Maku v.11 K.Haraya;K.Obata;T.Hakuta;Yoshitome
  12. J. Appl. Polym. Sci. v.32 G.F.Sykes;A.K.St.Clair
  13. Polym. Eng. Sci. v.27 K.C.O.Brien;W.J.Koros;G.R.Husk
  14. U.S. Patent 4,705,540 R.A.Hayaes
  15. U.S. Patent 4, 717, 393 R.A.Hayaes
  16. U.S. Patent 4, 717, 394 R.A.Hayaes
  17. J. Appl. Polym. Sci. v.34 T.H.Kim;W.J.Koros;G.R.Husk;K.C.O.Brien
  18. J. Membrane. Sci. v.35 K.C.O'Brien;W.J.Koros;G.R.Husk
  19. J. Membrane. Sci. v.34 T.H.Kim;W.J.Koros;G.R.Husk;K.C.O'Brien
  20. Polym. J. v.21 no.2 K.Tanaka;H.Kita;K.Okamoto;A.Nakamura;Y.Kuski
  21. J. Polym. Sci.: Part B: Polym. Phys. v.27 S.A.Stern;Y.Mi.H.Yamomoto;A.K.St.Clair
  22. J. Polym. Sci.: Part B: Polym. Phys. v.27 K.I.Okamoto;K.Tanaka;O.Yokoshi;H.Kita
  23. J. Polym. Sci.: Part B: Polym. Phys. v.27 K.I.Okamoto;K.Tanaka;O.Yokoshi;H.Kita;Y.Kuski
  24. Polym. Preprints v.38 K.I.Okamoto;K.Tanaka;H.Kita
  25. Philos. Mag. v.32 T.Graham.
  26. The Chemistry of Nitro and Nitroso Groups H.Feuer
  27. Polyimides v.1 K.L.Mittal
  28. Infrared Spectroscopy: Its Use in the Coating Industry Chicago Society for Paint technology
  29. Membrane v.6 T.Nakagawa