Journal of the Korean
OR/ MS Society
Vol. 18, No. 3, December 1993 129

A Modular Decomposition Model for
Software Project Scheduling

Kiseog Kim* and Barin N. Nag*

Abstract

The high level of activity in the development and maintenance of computer software makes the
scheduling of software projects an important {actor in reducing operating costs and increasing
competitiveness. Software activity is labor intensive. Scheduling management of hours of software
work is complicated by the interdependencies between the segments of work, and the uncertainties of
the work itself. This paper discusses issues of s heduling in software engineering management, and
presents a modular decomposition model for softv.are project scheduling, taking advantage of the fa-
cility for decomposition of a software project nto relatively independent work segment modules.
Modular decomposition makes it possible to treat scheduling as clustering and sequencing in the con-
text of integer programming. A heuristic algorithm for the model is presented with some

computational experiments.

1. Introduction

Software engineering has become a major an critical segment of business activity, and at the
same time an area in which costs are rapidly icreasing. As in other areas of managing business
operations, cost reductions can be achieved by efficient scheduling. However, software engineer-
ing has some special characteristics which maks it difficult to apply established project manage-
ment methods.

A well-known characteristic of software dev:opment is that the work is labor intensive, and
the cost of man-hours far exceeds the cost of computer equipment, most of which can be con-

sidered as sunk costs. As a labor scheduling 't roblem, the objectives of scheduling software ac-

* Department of Management, Pusan National Univers ty
= Department of Management, Towson State Universi'y, U.S.A.

130 Kiseog Kim and Barin N. Nag B P

tivity i1s to: (a) reduce the man hours required cn a software project: and (b) bring project
completion dates as close as possible to given rue-dates, Both objectives can be reduced to
monetary values of cost or penalty.

Project management in software development aid maintenance is largely a problem of optimal
assignment of hours from software engineers tc jobs in hand. Equipment resources, such as
computer time and primary developmental software, are typically unlimited. Thus, software
scheduling 1s a class of labor scheduling problem. a problem that has been extensively studied,
and for which several algorithms exist (see [5] f1 a discussion). In general. labor scheduling is
an optimal allocation of resources, where the orimary resource is labor hours in various
categories,

Software scheduling, like most labor scheduling problems, present: (1) a set of constraints for
available time, including both job hours, and a c.lendar of prior engagements: and (2) a set of
constraints for qualifications for the task, sone of which may be extendable, or “soft”,
constraints. In addition, software scheduling briras in considerations of: (3) interdependencies
between activities, affecting the activity durations: and (4) the possihility of “part-completion”,
Le. the case where a project is delivered a little short of completion. Further. software projects
are well-known for the extreme variability, and = ncertainty of activity durations. These special
characteristics of software scheduling call for scheduling methods beyond established labor
scheduling methods.

A special feature of turnkey projects in softw re engincering is small initial investments, so
that software organizations tend to undertake sevzral projects that run concurrently. Significant
economies can be gained by efficient utilization of expertise and experience gained from pre
vious projects, or work alrcady completed on concurrent projects. Thus, software modules
already developed for one project may be used ¢ sewhere, directly or with minor modifications,
with considerable savings in time and cost. l'urther, experience gathered by a particular
software enginecr on one project may enhance th: work on another project having some similar
characteristics. Thesc aspects of software activit suggest a decomposition of software projects
into modules. Scheduling can be done as an :ssignment of modules to individual software
engineers, considering previous experience on sirilar modules. A classification of modules by
their usability in multiple projects ensures thz completion of key modules, In case the
uncertainties of development force the project te extend beyond due dates, it will be the least
important modules that are set aside.

In summary, this paper proposes a modular decomposition scheduling technique for software
engineering, based upon a prior segmentation of the project activity into small modules, The

problem outlined in this paper arises from the s:cond author's own experiences in industry, in

BI8% H3E A Modular Decomposition Model for Software Project Scheduling 131

particular at the Research & Test Division (R¢:T) of the Association of American Railroads
(AAR). The R&T group of the AAR is contim ally faced with the problem of scheduling ac-
tivity on several concurrent projects, with a limited number of software engineering staff, and
still meeting all due dates.

Software scheduling has similarities with PERT techniques. Typically, in software work, there
are specific projects to be accomplished within re spective due-dates, with a scheduling objective
to complete these tasks successfully given thit activity durations are uncertain. However,
PERT methods focus more upon the activities tian upon the agents performing the activities.
In the case of software development, varying jualifications of software engineers makes the
task assignment problem critical to timely ccropletion. Further, the usability of software
segments in other areas makes the durations of -levelopmental activity interdependent. As a re-
sult, difficulties arise in using PERT for sof ware scheduling problem. Hence, this paper
presents a mathematical model for the problem,

Optimization techniques in software scheduling are extremely difficult to validate. Computer
systems maintain logs of user activity. The lig lists user identification, hours of use, and
specific activity, such as files and programs accessed. Thus, the software scheduling problem is
one in which vast quantities of data coulc have been available from computer logs.
Unfortunately, little data exists, if any. The fexible nature of the work and flexible hours
discourages software engineers from maintainir 3 rigorous work sheets. For this reason, the
proposed decision support model had to be valid ted with hypothetical data. The paper explains
the conceptual framework, and illustrates the working of the model with a hypothetical

example,

2. Issues of Software Project Scheduling

2.1 Software Engineering Management and Software Scheduling

Software engineering management may be de ined as the management of expectations, com-
puter technology, human skills, time, and money to create a software product that meets the
expectations of the client with a satisfactory re urn to the producer [14]. Issues in the manage-

ment follow from the definition. The developmes t activity can be characterized as follows :

1. The program development activities are grouped into projects, each having a known

desired outcome of building a new system, or with making changes to an existing system.

132 Kiseog Kim and Barin N. Nag

In either case, the outcome 1s referred to a- the product.

2. The project cannot be done by one person, and is usually done by a group of persons with
a variety of specialized skills.

3. The project must meet the expectations of he client, and must be continued until the out
come 1s satisfactory.

4. Resources must be committed to the proje.t, and to achieve a satisfactory return to the
producer, the resources must be managed -72ll. The major portion of committed resources
consist of software engineering hours.

5. Conflicts between achieved objectives anc expectations create uncertainties, and uncer

tainty management and adaptability i1s central to project management.

In a typical software development group, the 1ianager’s objective i1s to complete a project sat-
isfactorily in the allotted time, using the availare group of software engineers. each of whom
has a certain number of hours available, and ce:tain known qualifications regarding expertise in
specific types of software, It is also typical for several projects to run concurrently, some small,
some larger. As the resource cost is largely man hours from software engineers, the project cost
can be reduced by optimal scheduling of these hours, The scheduling problem has dual

interpretations as follows :

1. Develop a scheduling calendar for each ind:vidual software engincer, over a single planning
period, such as a week, in which he /she is to accomplish K out of N pending jobs, subject
to the availability of T working hours in th:s period.

2. Develop a scheduling calendar to sequence individual jobs, and distribute them among the

engineers, subject to due-dates for the comletion of each project.

These conditions appear to be quite reason ble at first glance. The special character of
software work 15 the dependance of activity durations on the sequence in which the activities
are performed,

In most cases, the completion and delivery «{ a project results m a henefit, which can be
taken as a “payoff” quantity in monetary terms A project needs to be partitioned into a4 num-
ber of activity segments for assignment to indiv dual engincers, Although there is no real mean
ing to a payoff for an activity segment, for moceling purposes an equivalent payoff can he con
sidered such that the payoff for the whole project is the sum of the segment pavoffs. Some
segments can become especially important, or ¢ ven critical, when parts of these have impacts
on other projects. The real benefits of such s gments become enhanced. in part by urgency,
and in part by a portion of the revenue from oti er projects,

Thus, software engineering management presents the classic problem of maximizing payoff at

HE18% 3R A Modular Decomposition Model for Software Project Scheduling 133

minimum cost. A solution to this problem ca be obtained by optimal resource scheduling,
where the resources are man-hours, and pavoffs result from project completion. Although this is

similar to labor scheduling, the case of software scheduling shows some differences, as follows :

1. The time available to complete a project is short, and all work may not be completed.

0o

In view of the training time required to biing a software engineer “up to speed” with the
type of programs used, hiring temporary pe -sonnel to increase available hours is not a feas-

ible proposition.

Lo

In software development, there is often ar association between jobs, 1.e. job A is ineffec
tive unless job B is also accomplished. T12 practical situation is that some elements of
software can work only if some other elem:nts are in place. In return-on-investment terms,
the payoff from one piece of software is re uized only if the other piece is also in place,

4. The assumption of independence of activ-ues, critical to traditional PERT systems, does
not hold. For a software engineer, experie e on other jobs, that work on similar modules
using the same software material, has a 1ijor impact on reducing the development time.
In fact, the use of segments from the prwious task on the same system can greatly re-

duce the development time of the new seg rent.

2.2 Modular Decomposition of a Sof:ware Project

In view of the associative and interdependen characteristics of software projects, the concept
of modular decomposition may be introduced. A characteristic of a software project is that it
can be decomposed into modules | 12] and the usual experience in software development is that
frequently used modules of software are mainta ned in software libraries to facilitate their use in
multiple projects. The sequence of module d:velopment becomes an important parameter of
scheduling with time advantages for projects 1 key modules are developed first. Re-use of key
modules also affects the expertise level of a so tware engineer in the scheduling process.

A similarity may be found here with the ob ectives of the PERT model of a project, with a
definite sequence of precedence relationship: between activities (see 11 for a review of
PERT). While traditional PERT cannot be used when activities are interdependent, some
techniques may be borrowed from modified P IRT, especially from a network decomposition of
PERT [11]. This method decomposes the project network into several subnetworks by removing
some linking activities, schedules each sumetwork of independent activities, and then,
re-introduces the interlinks between subnetwor. s,

Modularity may be defined as segmentation into logical groups of computer code, where each

134 Kiseog Kim and Barin N. “lag RS PR

group performs a single specified task, Following a standard Top-Down approach to system de-
sign, a desired system performance can be brok:a down into a set of interacting sub-system
performances, which in turn consist of a set of irteracting modules. A description of Top-Down
systems design, resulting in a breakdown into system modules can be found in a textbook on
systems development [13]. The breakup of a system design into modules has immediate

advantages as follows (from [8]) :

1. An improved understanding of the logical orzanization of the system is found by reducing
complexity.

2. Maintainability and flexibility, in system upd:tes, is improved.

3. Modules can be made independent of one another, thus reducing complexity of design and
implementation,

4. Modules can be made sharable and reusable, -hus reducing overall development effort.

It may be seen that modularization in software cevelopment, is a way to break down the sys-
tem design into the design of a set of modules The entire project can be decomposed into
modules, and a set of seed modules, consisting " the critical segments, can be derived. The
scheduling process can then be thought of as scheduling a system of modules. As found in [12],

the criteria for decomposing systems into modules are found as follows :

1. A module relates to a data structure, its internal linking, accessing procedures and
modifying procedures.

2. The sequence of instructions necessary to c(gll a given routine and the routine itself are
part of the same module.

3. The formats of control blocks, used in queues in operating systems and similar programs,
are hidden within “control block modules”, which conventionally form interfaces between
program modules.

4. For high flexibility, character codes, alphabetic orderings, and similar data types, within a
module, should be hidden.

5. The sequence with which items are processcd within the module, should be hidden within

the module.

A logical analysis of the above criteria stow that they are derived from the usual
requirements of systems development, i.e. a systemn should be transparent to the user, efficient
in operation, and allow for flexibility in modificatiin and update.

In addition, decomposition of the system develcpment project according to the above criteria,

facilitates the development work hy a group, or team, of systems specialists. Systems engineers

FiRE: HidE A Modular Decomposition 11lodel for Software Project Scheduling 135

often work on difficult and tight schedules, A eed to work closely together in developing a
system project can actually slow down the proje =i, because of conflicts in scheduling software
engineers to work together., Modular decomposit on sets engineers free to work individually on
segments of a system. There is only the need t¢ interface the developed segments periodically.
The decomposition criteria presented above are applicable from the viewpoint of division of
work, For example, consider the condition tha data structures and linkages are contained
within a module. In terms of work managemert, this means that an engineer need only be
given a standard technical specification of data :nd program interface to other modules, and al-
lowed to work independently on his or her assig 1ment. Thus, modular decomposition alters the

needs and techniques of scheduling systems deve cpment.

3. Models for Software Project Scheduling

Models of software project scheduling, using tie modular decomposition philosophy, are based
upon the identification of clusters of software ac .ivity modules. The activity components are el-
emental, and consist of small tasks, such as th: development of a single routine. The central
theme of cluster formation is the existence of some similarity characteristic of the elemental
components, as for example, the need for expwtise of a particular type. Thus, clusters are
assigned to software engineers, and any sequenciiz needed can be done within clusters,

The process of decomposition and cluster form ition are subject to some assumptions, made as

follows :

1. A project has a certain duc-date, so thit the total time available for each available
software engineer, within the time perod, 1s known, When several projects run
concurrently, the engineer's available time nust be allocated hetween projects in the most
productive manner,

2. The returns resulting from the completed project is known, so that when the project is
decomposed into modules, the modules can e assigned proportional return values,

3. The qualifications of each software engine:r is known, so that estimates can be made of
the production time required by an individ 1al engineer on an individual module, given its
characteristics, and the engineer’s capability Qualifications vary, and so do module develop-
ment times, Further, experience on a simil o module reduces the development time for an

engineer, and the extent of reduction can b: estimated.

136 Kiseog Kim and Barin N. Nag

These assumptions are reasonable for a pra:ical operation with a continuity of projects,
where a specific project 1s given certain priorities, and where a known set of software engineers
are available to work on the project.

Knowledge about the project defines the development methodology flow., The scquence and
flow of activities in a project can be identified relatively early 1n the project, along with the
qualifications required for each activity, and the expected durations and returns, Thus, tables
can be worked out to represent (a) the breakdowwn of a project into its constituent modules, (b)
the return associated with each module, as a friction of the return from the entire project, and
(¢) estimated times for each engineer to compl:ie each module. The last table would consider
individual engineer’s qualifications, as well as tiie time advantage in re-using a module already
developed for another project.

Clusters of activities in modules are similar 1. the semantic sense, as well as the operational
sense, to the cells used in Flexible Manufacturiig Systems (FMS). Techniques similar to FMS
cell formation methods {15] could be used in module formation in software engineering, if there
was no overlap between adjacent cells, Once azain, the interdependencies between projects, a
character peculiar to software modules, prevent the partitioning of activity clusters for assign-

ment to engineering teams.

3.1 Definitions

Let 1,j = 1,--- .M, indicate software activity segments, l.e. program modules to be devel-
oped, whose number is M. Let k =], K, ‘ndicate the software engineers to perform the
development task, and let t = 1,----- .T, indicale the time periods within the planning horizon,

Variables and parameters are defined as follows

1, if activity 1 is selected for enginezr k in period t
e {0, otherwise

1, if sequence 1j is selected for engineer k in period t
e { 0, otherwise

T« = total time available for engineer k in pe-od t

ti. = expected development time of module i, 5y engineer k, in period t
s; = a setup time for module j, when j is preceded by 1
v, = value of activity i

87, 6w, O, 0.7 = deviational variables

A8 B3R A Modular Decomposition Model for Software Project Scheduling 137

3.2 Fixed Time Model

One ordinary objective in the software schedu ing problem is to complete all jobs satisfactorily
with the minimum cost in man-hours. When 11e total time available for each worker(T.) is
fixed, however. some jobs may not be comyleted due to insufficient time. In this case,

similarities with FMS technology[15] enables th: identification of the following two goals :

Goal 1: minimize the total value of the unfini hed modules
Goal 2: minimize the sum of total setup time and development time

(or maximize the total unused time a railable)

The assumption is that the partial completic1 of work is acceptable, although the full com-

pletion is more desirable. Then the fixed time riodel is formulated with two competing goals.

Model : FIX PC

Min P, i \: v &+ — P YT ; Siy | (1)
subject to
; ; Sy X T ; to Vg T+ 050 = T ¥V B, ¢ (2)
; ‘; yvw o =1 Vi (3)
; X = Y V7, Rt (4)
:, X = Y V0 K (5)
U x <ISI-L Yk twher s s Sl MY 2 < (ST < M) (6)
v = 0orl, Vi j kI (7)
Ve = 0 or 1, ¥V i, k¢ (8)
6 =20,V ¢ (9)
do 20,V R T (10)

The model is an Integer Goal Program, ith 6~ and &, as deviational variables, and
priorities P1 and P2 assigned to the two goals where P1 ») P2, Constraint set (2) ensures that
time availability conditions are satisfied and r easures the total unused time available(Goal 2).
Constraint set (3) determines the deviations fom the first goal. Constraint sets (4)—(7) relate
to work assignments for software engineers. 11 particular, constraint (6) develops the schedule
sequence of jobs. The structure of the const aint avoids subtours, i.e. returning to the initial

state before completing all jobs in the cluster c¢r a single time period.

138 Kiseog Kim and Barin N. Nag

3.3 Flexible Time Mcedels

An alternate situation in project management 5 that project due-dates are cxtendable (with
associated penalty costs), but a project cannot he delivered unless it is complete. The impact of
this condition is to modify the assumptions made in the FIX_PC model to: (1) flexibility for
Tw, or extension to available times, and (2) a constraint that all jobs must be completed, It is
reasonable to suppose that the extension to avai.able time comes from overtime work at a far
greater hourly cost, as well as other costs. Trus, an objective may he taken to be the
minimization of maximum overtime usage. In ar alternate situation, the wage cost structure
may not distinguish between regular hours and ¢vertime hours, and software engineers need to
put in extra hours at personal cost when needed. The objective can then be defined as a direct
minimization of the total hours used. Models are derived as given below for these two

objectives, labeled respectively FLEX FC 1 and FLEX_FC. 2.

Model : FLEX_FC.1

Min | Mffx 0t} (1
subject to
; ‘_: Si Xu b va + 00 = b= Tu Yokt (2)
Sl =1LV (3)
A A A (4)
; Yo = Yury V 1, B, 1 {5)
; :_ Yo <|S|—1, V k, t where : <i1,-- M2 < IS« M1 (6)
Xow = Oor 1, ¥ i, j, k1 {7)
Y = 0or 1, Y 1, Bt (8)
O, 0F, > 0, Y k, ¢ (9)

Model : FLEX _FC 2

Mln S Z ; Z Sij Xijue + Z E S Lot Vik (1)
i 7 i H i k {
subject to
; ; S:/ xrﬂ«l + : tzkl y:k{ < aTkh \K k. / (Z)
T v =1V {3)

x:,'bl = yzk.‘y \7/ j, k. t (4)

-]

TI8E 3% A Modular Decomposition Model for Software Project Scheduling 139

:, Xiw — Vit v i, k.t (5)
Y ww <ISI—1. ¥V k t where <{1,-- M 12 < |S| < M-1 6)
xx//m‘ - 0 or 1, v Z., j, k, t (7)
Yy = 0o0r 1, VY i, &k ¢ (8)

The constraint structure of model FLEX_FC.2 is similar to FLEX_FC_1, but the objective is
to minimize the total hours used. To simplify th: formulation, the available time parameter Ty

is modified by a flexihility coefficient x, where « > 1. Note that deviation variables are not
includeded in model FLEX FC.2.

3.4 Discussions

The models described above are (-1 integer p ograms(IP), and can be solved as such by any
standard available mathematical programming m:thod with appropriate weights applied to the
goals, The limitation is on the size of the problem. An IP does not have a polynomial bounded
solution time, and the time required grows expo entially with the size of the problem. Further,
as the model objective is already approximate ard heuristically defined, it is preferable to solve
the problem by a heuristic algorithm.

As the assignment groups are built up around he seeds, the selection of good seeds is critical
to the successful performance of the heuristic. n the software assignment problem, the seeds
are suggested by the nature of the work. These are the modules critical to the tasks on hand.
Further, once a module is selected as a seed, there is a preference towards selecting other
modules within the same project subgroup, until that particular subgroup is completely assigned.
Thus, we would have a tendency towards compl:ting a project subgroup, once it is begun, The
benefits of this tendency, in the application to s ftware scheduling is self-evident. The result is
a complete assignment of program module deve opment tasks to each software engineer, such
that the development costs are minimized.

In some situations, there might be compatibiliiy problems between the software engineers and
the activities. Such situations are found when a subset of the engineers have the qualifications
needed to accomplish a particular task. Conver:ely, some engineers have preferences for some
types of software activity. The above models can accomodate these compatibilities and /or
preferences by simply adjusting the input param ters. A low preference for an activity increases

the time cost by a predetermined factor, while an incompatibility increases the time cost by a

140 Kiseog Kim and Barin N. Nag el R

large amount. The dynamism of the data i1s reflective of the real-world condition, i.e. the acqui-
sition of experience on a similar program activity can in the future remove an incompatibility.
The primary constraints in the assignment pr.cess are the time constraints of the individual
engineer over the period in question. These tim: schedules can be derived from a prior knowl-
edge of leave schedules and other assignments clready made. An individual software engineer
has certain preferences for his /her work schectles, and it is relatively simple to incorporate
such preferences into an individual scheduling friumework. Thus, after the stages of modular de-
composition and assignment have been performec, the schedule generated is a complete one, in

cluding both activity schedules and individual enjrneer schedules,

4. Heuristic Solutions for Software Scheduling Models

This section describes some heuristic solution methods for the three software scheduling
models given above, one heuristic for each mocel. Solution time is reduced by solving part of
the IP model optimally and using the partial solitions. The heuristics are two-phase, with clus-
ter formation and sequencing phases, similar n some ways to the Generalized Assignment
heuristics described in Fisher & Jaikumar, 1981].

The working of the heuristic solutions is illustrated through an example problem in software
scheduling. It has been mentioned previously that data is rarely collected on the activity
schedules of software engineers. Such data is h ghly confidential in a competitive environment,
and would not be published if it had been avalable, However, it is not difficult to construct
data for a hypothetical software development project. Constructed data can have activity
patterns very similar to real project data, altliough it does not resemble any given project,

Tables 1 and 2 show data for a constructed exarle of software project activity.

A Modular Decomposition viodel for Software Project Scheduling

141

Table 1.

INPUT DATA : Activity durations by software engineers(t..) ; Values for individual jobs{V.) ; Availabie time(T.)

r (k.0)

; (LD (2,1) (3,1 (1.2) (2.2 (3,2) V.
1 12 9 13 8 5 7 3
2 10 13 9 10 7 5 4
3 6 3 3 13 15 14 2
4 9 9 12 4 4 4 2
5 8 5 6 10 11 10 2
6 9 7 5 11 11 13 1
7 11 14 10 9 6 9 2
8 13 11 14 3 10 6 3
9 9 7 8 13 11 12
10 15 14 13 3 10 11 4
11 14 15 14 11 3 10 3
12 15 15 15 10 10 9 2
Tu 20 20 20 20 20 20

Table 2. INPUT DATA : Setup time(S,) for module j when j is preceded by 7
to] ,

from] 1 2 3 4) b 7 3 9 10 11 12
1 0 3 1 2 1 0 1 1 1 3 1 2
2 2 0 2 1 0 0 2 1 1 2 2 1
3 1 4 0 2 2 1 1 2 1 3 1 2
4 3 3 2 0 1 1 1 3 2 4 3 1
5 2 2 2 1 0 0 2 2 2 4 3 1
6 2 3 2 2 1 0 2 2 2 4 3 2
7 2 4 1 1 2 1 0 2 1 4 2 2
8 1 2 1 2 1 0 1 0 1 3 2 2
9 2 3 1 2 2 1 1 2 0 3 2 2
10 2 2 1 2 2 1 2 2 1 0 1 1
11 1 3 0 2 2 1 1 1 1 2 0 2
12 3 3 2 1 1 1 2 3 2 3 3 0 J

142 Kiseog Kim and Barin N. Nag LB PR

4.1 Heuristic for FIX_PC

(Input Data: ty, v, T, s, for all i,j.k,t)

I. Select a seed in each cluster (k,t) :
1. Compute opportunity cost (OC) for each undeleted (k,t)
Let (k,t)* = (k.t) Imax [OC (k,t)]}

and t]*(ky]* = min 1 t,4kn* '

2. Assign seed i* to (k,t)* and delete row i* and column (k,t)*

3. If all columns have been deleted, GO TO | . otherwise GO TO .1

II. Assign remaining jobs into clusters :
1. Let IT be the index set of seeds.
Reset Ty == Ty — ty foralli € IL
2. Compute dy, = min | s, s, | + ty, for all k,xand 1 & 1T,
where * 1s the seed of (k,t) cluster.

3. Solve Goal Program :

Mz'nPl’lfI;vléf} - P;{‘_];:o ;
subject to

; dw Yo + 00 = T Y &

; SI_ Viw T 0 =1 Y oi&il

Y = 0 or 1 Vo, kot

o =0 \val)

v = 0 v ok o

4. If y,.* = 1, assign activity 1 to cluster (k,t),

. Schedule the job sequence in each cluster (ty any Traveling Salesman algorithm, or by In

spection in small clusters)

Ilustrative Example (FIX _PC)
—Input data: Tables 1 and 2

8% HIK

A Modular Decomposition Model for Software Project Scheduling

143

1.1-1.3:

I 1—-1.2z:

Assign seeds to clusters:
3—(1,1): 5—~(21); 6—~(3,1): 4— 1,2); 1=(22): 2—(3,2)

Index set of seeds IT = {3,5,6,4,1,2}

Reset T\ and compute dy (TABLE .

Table 3. Values of ¢ and Tu
(k,t)

L& (LD (2,1) (3, (1,2) (2,2) (3,2)
7 12 16 1 10 7 11
8 14 12 1 10 11 7
9 10 9 ‘ 15 12 13
10 16 16 1 10 12 13
11 14 17 1 13 9 12
12 17 16 1 11 12 10

20 20 2 20 20 20
T ! |] ! { |
14 15 1 16 15 15

. 3— 1.4 Solve goal program and assign activ ties to clusters:
7-—(1,1); 8—(2,1): 9—(3,1); 10--(1.2):
11— (2,2): 12— (3.2)

. Schedule sequence over clusters formed.

Figure 1 shows the results.
(LY

Note : Numbers in small circles are activity indexes aumbers next to circles are activity durations (ti),
and numbers next to arcs are setup times (S;)

Figure 1. Cluster Assignments from FIX_PC

144 Kiseog Kim and Barin N. Nag WS AR

4.2 Heuristic for FLEX FC_1

(Input Data: ty., v, T., s, for all 1,jk,t}

(Note : Steps 1, M. 1,24 and I are the sam2 as FIX_PC. They are repeated here for the

reader’s convenience, |

1. Select a seed in each cluster (k,t) :
1. Compute opportunity cost (OC) for each undeleted (k,t)
Let (l,t)* = { (k,t) | max [OC (k,t)]}

and t.*nkt)* = min { t;(,nr* }

2. Assign seed i* to (k,t)* and delete row i* and column (k,t)*

3. If all columns have been deleted, GO TO II, otherwise GO TO 1.1

II. Assign remaining jobs into clusters :
1. Let IT be the index set of seeds.
Reset Ty, = Ty — tyw forall1 € 11

2. Compute dy. = min { s, s, } + t, for all k,t andi1 & II,
where * is the seed of (k,t) cluster.

3. Solve Goal Program :

Min | M,f,lx On §

subject to
; A Y + 04y — 0, = Ty Y okt
; V“T y{kt = 1 V i
Yw = Qor 1 o1, kO
Ocr, Or, = 0 V k.t

4. If yu* = 1, assign activity i to cluster (k.t).

. Schedule the job sequence in each cluster (by any Traveling Salesman algorithm, or by in-

spection in small clusters)

A8 I A Modular Decomposition }lodel for Software Project Scheduling 145

Ilustrative Example (FLEX_FC.1)

—Input data: Tables 1 and 2
~ An example solution by FLEX_FC.1 1s showr in Figure 2.

GEHED

D
7
9
(1.2) 2.2} (3.2)

3.1

Figure 2. Cluster Assignmen:s from FLEX_FC.1

4.3 Heuristic for FLEX FC 2

(Input Data: ty, v, T, s, for all i,j,k,t)

1. Select a seed in each cluster (k,t) :
(As for FLEX.FC 1)

[I. Assign remaining jobs into clusters :
1. & 2. (As for FLEX_FC_1)

3. Solve Integer Program :

Min £ 5 Y d v

subject to
Yoduw v < Tw YV okt
‘Yk" \; Y = 1 AVl
i = Qor 1l Y i, k ¢

4, If yvie* = 1, assign activity i to cluster (k).

. Schedule the job sequence in each cluster by any Traveling Salesman algorithm, or by in-

spection in small clusters)

146 Kiseog Kim and Barin N. Nag HEEEMNEER

INustrative Example (FLEX FC_2)

—Input data: Tables 1 and 2
—An example solution by FLEX_FC_2 is shown n Figure 3.

(1,1) 1) (3,1)

6 D@ D

(1,2) (2.2) (3,2)

4 8
O=®
2

Figure 3. Cluster Assignments from FLEX_FC_2

4.4 Summary of Experiments

A number of experiments were performed wth different parameter values, and objective
variations. The results are shown in Table 4. It ¢ seen that when a large number of hours are
available, as when T,=20 or even 17, FIX_.PC dominates. The total hours used are less and
there is no overtime usage. The situation is reversed when available hours are decreased. Under
these conditions, FIX PC leaves work incompletr, which is possibly in practice an undesirable
solution. Flexibility of hours and overtime enables the heuristic to find feasible solutions. A
preference of FLEX FC 1 over FLEX.FC.2, o vice versa, is determined by the practical
dimensions of work contracts and overtime rat: structure, A high cost of overtime might
suggest FLEX FC_1.

It may be noted that the problem data used i+ typical of practical industry problems, but is
still a hypothetical problem. Further, it is well known that heuristic results and performance
often depend upon the problem structure. Thus it is entirely possible that on some problems

FLEX .FC_1 will be superior to FLEX_FC .2, whilc the opposite will be true in other cases.

F18% HIK A Modular Decomposition !lodel for Software Project Scheduling 147

Table 4. Summar s of Experiments
model T, AV?ilable over-| Incomplete Total Hours Ma?dmum Over-
time Hours Jobs Used time Usage
FIX_PC 20 0 ¢ g2~ 0
FLEX FC.1 20 £e ¢ 7 94 o
FLEX FC.2 20 4 ¢’ 82* 3
FIX PC 17 0 ¢ 92* 0"
FLEX.FC.1 17 *® ¢’ 98 1
FLEX FC 2 17 3 ¢ 92 1
FIX PC 16 0 Al2¥ 76* 0
FLEX.FC 1 16 x ¢’ 98 1*
FLEX FC.2 16 3 ¢ g2 1
FI1X.PC 15 0 A7 & ALZ™ 6o* 0
FLEX.FC.1 15 50 ¢’ 94 2
FLEX FC.2 15 3 ¢ 92* 3

Note : # : due to constraints
* - due to objective function

= - due to objective function (higher priority

5. Conclusions

The purpose of this paper is to discuss the is:Les involved in scheduling activities in software
engineering, and to present a scheduling model sased upon these issues. Software projects con-
sist of interdependent activities, and the concept of modular decomposition is presented as a
method to overcome the effects of interdepende ace. Knowledge about a project, and experience
on similar projects, are used to decompose a p oject into elemental activities. At this level of
decomposition, interdependencies between segm:nts can be explicitly stated as preferences for
some job clusters. A clustering system is projosed, as an integer goal program, to form job
clusters for assignment to individual software e1gineers, with heuristic solution mechanisms for
problems of practical size. The method provides for individual sequencing and scheduling, and

simplifies the scheduling task of software engineering managers in planning for project due

148 Kiseog Kim and Barin N Nag R AR

dates,

Considerable research work is possible in extending the concepts and constraints used in the
decomposition-based scheduling model described to conditions more realistic in industry prac-
tice. Two areas of model enhancement can be directly seen. The first concerns the variances
associated with activity times in software enginzering. The accuracy of the schedule should be
improved by explicit inclusion of some measure of the variance in the scheduling model. The
second possibility arises from the dynamic nature of the software environment. Schedules need
to be adjusted, modified, or updated frequently. Model management is a possible answer. Re-

search is needed to make an efficient scheduling method usable by a systems manager in an in-

dustry environment.

Acknowledgments.

This paper is based on the work done in 1991-1992 while the first author was at the Towson
State University as an exchange professor. The authors express their gratitude to Tom Warfield
and Tom Guins of the Research & Test Division, Association of American Railroads,
Washington, D.C., for their contributions in systems management issues and problems. We also
thank the referees and the Departmental Editor for suggesting several improvements in the

paper.

References

[1] Adlakha, V. and V.G. Kulkarni, “A Classified Bibliography Of Research On Stochastic
PERT Networks: 1966-1987,” INFOR, Vol. 27(1989), pp.272-296.

[2] Bell, C.E., “Maintaining Project Networks in Automated Artificial Intelligence Planning,”
Management Science, Vol. 35(1989), pp. 1102-1214.

[3] Cusumano, M.A. and C.F. Kemerer, “A (uantitative Analysis of U.S. and Japanese Prac-
tice and Performance in Software Development,” Management Science, Vol. 36(1990), pp.
1384-1406.

[4] Fisher, M. and R. Jaikumar, “A Generalized Assignment Heuristic for Vehicle Routing,”
Networks, Vol. 11(1981), pp. 109-124.

F1gE FIR A Modular Decomposition viodel for Software Project Scheduling 149

[51 Glover, F., C. McMillan, and R. Glover, “A Heuristic Programming Approach to the Em-
ployee Scheduling Problem And Some “oughts on Managerial Robots”, Journal of
Operations Management, Vol. 4(1984), pp. [13-128.

6] Granot, D.G. and D. Zuckerman, “Optimri Sequencing And Resource Allocation In Re-

search And Development Projects,” Manag :ment Science, Vol. 37(1991), pp. 140-156.

(7] Khan, M.B. and M.P. Martin, “Managi iz The Systems Project,” Journal of Systems
Management, Vol. 40(1989), pp. 31-36.

/8] Karimi, J. and B.R. Konsynski, “An _iitomated Software Design Assistant,” /EEE
Transactions on Software Engineering. Vil 14(1988), pp. 194-210.

|97 Mannino, M.V., B.S. Greenberg, and S. M. Hong, “Model Libraries: Knowledge Represen-
tation and Reasoning,” ORSA Journal on Zomputing. Vol. 2(1990), pp. 287-301.

110] Nag, B., B.L. Golden, and A.A. Assad, “\chicle Routing with Site Dependencies, " Vehicle
Routing:. Methods and Studies, Eds. F .. Golden and A, A Assad, North-Holland,
Amsterdam /New york, 1988.

[11] Parikh, S.C. and W.S. Jewell, “Decomposi ion of Project Networks,” Management Science,
Vol. 11(1965), pp. 444-459.

(12] Parnas, D.. “On the Criteria To Be Used in Decomposing Systems into Modules,”

Communications of the ACM, Vol. 15(197¢), pp. 1053-1058.

[13] Powers, M.J., P.H. Cheney, and G. Crov, Structured Systems Development (2nd. Ed),
Boyd & Fraser Publishing, Boston, MA, 1390.

|14] Steward, D.V., Software Engineering: uith Systems Analysis and Design, Brooks/Cole
Publishing Company, Monterey, CA, 1987.

1151 Wei, J.C. and N. Gaither, “An Optimal Model for Cell Formation Decisions,” Decision
Sciences. Vol. 21(1990), pp. 416-433.

