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An Approach to Double Hoist Scheduling in the
Chemical Processes

Joon-Mook Lim* and Hark Hwang*

Absiract

This paper deals with scheduling problem of tk: chemical process system where aircraft parts go
through a given sequence of tanks filled with chemical solutions. The system has two hoists which
move carriers holding the parts between tanks. \ mixed integer programming model is developed
from which a maximum throughput schedule can ke found for the hoist movements. To show the val-
idity of the model, a real world problem is solved and the results are compared with those with an

existing approach.

1. Introduction

During their manufacture, certain aircraft parts go through a given sequence of chemical
treatments. Treatments are applied by immersing the parts sequentially into a series of tanks
filled with chemical solutions. The parts are held in carriers which are moved by one or more
hoists, Hoists are programmed to handle the inter —tank moves of the parts, where each move
consists of three simple hoist operations : (1) lit a carrier from a tank ; (2) move to the next
tank : and(3) submerge the parts in that tank. Upon completion of a move, a hoist travels to
another tank for the next scheduled move. Bot}: the hoist traveling times and times to perform
each move are given constants. The parts must proceed from tank 0O(loading tank) to tank 1, to
tank 2, -+, to tank # and finally to tank »+1 (.inloading tank). There is a minimum amount of
time the parts have to remain within each tank and, in most cases there is also a maximum al-
lowed time. Many settings of such lines also re:uire the hoists to travel along a common track,
where avoidance of hoist collisions must be ccnsidered. Figure 1 shows an arrangement of a

double hoist system.
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Figure 1. Huist setup

The amount of time between successive loadings of carriers into the system (departures from
tank 0)will be taken to be a cycle. Each cycle mui st be identical, which means the configuration
of carriers in tanks at the end of a cycle must e the same as that of at the beginning. The
configuration includes (a) the location of the wists, (b) the number and locations of the
carriers in the system, and (c) the elapsed proccssing time of each carrier in its current pro
cess. It follows that during each cycle, each tank has one carrier dropped in, and one removed,
not necessarily in that order. That is, at the beg nning of a cycle, a tank may have a carrier in
it. During the cycle, that carrier is removed, arc some time later, another carrier is dropped
into the tank. For the case when a tank is empty at the beginning of the cycle, a carrier will
eventually be enterd into the tank, and removed ater in the cycle.

The fixed sequence of moves that hoists perfo:m in each cycle is defined by a cyclic sched-
ule. Cycles may be distinguished by the number of carriers which are introduced into the sys
tem in a period. In an n—cycle, n(z=1) carriers are introduced each period. In this paper, we
limit our study to 1—cycle schedule(simple cyclic schedule) following Phillips and Ungeri4] and
Shapiro and Nuttle[5].

The number of carriers which can be served simultaneously by the hoists depends on the
relative magnitudes of the minimum and maximum allowed time in each tank and the hoist
travel times. In the hoist scheduling problem, tie objective is to maximize the throughput of
carriers per hour which is equivalent to mimmuzirz the cycle length,

A few studies on the cyclic scheduling problen with a single hoist have been reported in the
literature. Phillips and Unger[4] developed a m xed integer programming model to determine
the minimal cyclic time. Shapiro and Nuttlel5] »roposed a branch and bound procedure based
on linear programming. Lei and Wang[1] introdu:ad an interval —cutting algorithm that is able
to find the optimal cyclic schedule of Q—degree.

For the cyclic scheduling problem with two or more hoists, Thesen and Leil 6. asserted that
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different decision rules should be used to coitrol hoist movements responding to various
situations, However, the approach has the disac vantage in that decision rules for all possible
situations must be developed in advance. Recent'y, Lei and Wang[2] proposed a Minimum Com
mon Cycle(MCC) algorithm. According to MCZ algotithm, a given double hoist system is
partitioned into two single hoist systems of cont/guous tanks ie., single hoist system with the
first £(<n+1) tanks and another with remaininz tanks. The two systems are solved indepen-
dently with an existing solution procedure "¢ an optimal solution and then (minimal)
common—cycle time that is acceptable to both subsystems is determined through an iterative
process. It can be recognized that MCC algorith n contains the following shortcomings : (1) the
movements of each hoist are confined to each corresponding set of tanks in which two
neighboring tanks of a tank must belong to the same set of tanks except the right most tank.
(2) the effects on the throughput of the second hoist position at the beginning of cycle is not
considered.,

In this regard, we are going to find a double 1 oist system schedule which relaxes the restric-
tion on the hoist movement and also treats the second hoist position as a decision variable. In
the following, a Mixed Integer Programming fo1 mulation is described for the double hoist sys-
tem. Computational experiences with data from : real world system are presented to verify the

formulation developed.

2. Mathematical Programming Formulation

In this section, a mathematical programming 11del is developed for finding an optimal cycle
for the double hoidt system as shown in Figue 1. The system is operated by two hoists,
HOIST(1) and HOIST(2). Unlike single hoist sy tem, the type of hoist must be determined for
each tank in addition to the time at which a car ier is removed from the tank, We assume that
two subcycles, cyvcle' and cycle’. can be generatec by each hoist’s movement and the length of
each subcycle is the same. Note that these subcycles are imbedded in the system cycle whose
length 1s the time interval between two successive departure times of carriers into tank 0.

For the simplicity of modeling, the following nctations and assumptions are introduced.

Notation
(a) ST :set of tank numbers, ST ={0.1.2.--m.1+1.
(b) Bz} @)=k if HOIST (&) removes carrier from tank i.
(c} Glh) :set of tank numbers associated with 4(7), and G(A)={i|i) =h. i€ ST\,
(d) T? - time at which HOIST(k) removes a arrier from tank i.
With ¢ given, either 7! or 77 is defired but not both.
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(e} Tha STt = MaxT! for h=12.

e Can

N X . zero —one integer variable defined only for ). 1j&€ST.
X,;=1iff TYT! and 0, otherwie:

(g) Z} - zero—one integer variable and Z! =1 iff Ti= Th..

() Leycle  length of the system cycle.

(1) Leyeld" - length of cyclé’.

(j) C4 - travel time of the empty HOIST( %) from tank 7 to tank ;.
C!,=0 and C!.=C,

(k) CM%  :travel time of HOST(k) moving : carrier from tank 7 to tank j.

(1) A - minimum required processing time in tank .
(m) B; - maximum allowed processing time 'n tank 7.
(n) M : very large real number,

Assumption

(1) Indentical parts are introduced into the sy tem.

(2) Tanks are indexed by their order in the g ven process sequence.

(3) At no time can two carriers occupy the s:me tank.

(4) Two hoists cannot change their relative positions, i.e., HOIST(1) is always located n
front of HOIST(2],

(5) Carriers are introduced into the system oy by HOIST(1) and removed from the system
only by HOIST(2). It is defined that T7=7 and Ti,,= .

() HOIST(2) is located at tank K(2<K <mn) at the moment a system cycle begins.

A cycle is feasible if the associated sequerce of hoist movements is executable and the
associated processing time in each tank is withi1 the allowed range. In other words, any sched-
ule is feasible if and only if the following condit ons are satisfied{Shapiro and Nuttle! 5 1),

(F1) No two carriers occupies the same proc:ss tank at the same time.
{F2) No two moves must be made simultane usly for individual hoist,
(F3) There is sufficient time between move: for each hoist to travel from where 1t was last
used to where it is next needed.
(F4) The processing time in the tank ¢ (7=1Z.---mx) must lie within [ A4, B,
The constraints representing the above feas hility conditions and the cycle that has to he

minimized can be described as follows,
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Objective function

Minimize Lecycle (N

Constraints

(a) The constraints setting the cycle time.

(1) to define the subcycle length.

For each h,
LCyCleh = Tiimr + Z\;CM?HI_{_Cf»I.A‘LZf (2)
7 G
0 for h=1
where k=
K for h=2.

Cycle length 1s the sum of the following thr e components : (i) 7%, (the last time HOIST (k)
departs from a tank with a carrier), (ii) the oist travel time to the next tank to drop off the

carrier, (iii) the travel time for the hoist to re urn to the position where it was at time (.

(ii) to define 7%,

For each A.

Tihe = T (3)
Thee < TV — (Z'=DM for i€Gh) (4)
YN Zi =1 (5)
o

The relationships in (i) force Th, fo be eque to the maximum T* and force Z' to be 1 for i

which satisfies 7% = 7%, and Z" to be () for a. the other 7.

(11) to satisty assumption(t)

T! = Ci, for i€G(2) (6)

Due to the assumption that HOIST(2) staits at tank K. 2<K <n. at the beginning of a
cycle, T equals or larger than Ci ; which is tl 2 time for the empty hoist to move from tank K

to tank z. Note that if i=K then C% ;=0 and #) also holds,
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(b) to provide hoists with sufficient travel time bet seen the tanks of the same group.

For each % and 7, € G(h),

T]h - Tfl 2 CMzh_1+I + C:Z'I,v - M ij l>] (7)
T — T'> CM!'., + A, + MX,,—D i=j+1 (8)
TH = T) = CMLy + Cloi + MIX,;- D) >j+1 )

Case 1. T'>T! (A carrier is removed from tank j efore a carrier is removed from tank 7).
The left hand side(LHS) of (7) is negative, whil¢ the first two terms in the right hand side
(RHS) of (7) are positive. therefore the last term on the RHS of (7) must be negative,
implying X, ,=1.

Case 1—-1. i=j+1
Constraint (8) says that the time between remov rg a carrier from tank j and removing a car-
rier from tank j+7 must be at least time enough 1 take a carrier from tank j to tank j+1

(CM!,.) plus the minimum time required in tank j4 (A4

Case 1—-2. i>j+1

Constraint (9) says that the time between remov ng a carrier from tank j and removing a car-
rier from tank 7 must be at least large enough to tike a carrier from tank j to tank JHHCM: L)
plus the time for the empty HOIST(Z) to move from tank j+1 to tank ACH ) to pick up

another carrier.

Case 2. T">T* (A carrier is removed from tank i tefore a carrier is removed from tank 7.

The LHS of (8) or (9) is negative, while the frst two terms in the RHS of (8) or {(9) are
positive. Hence the last term of (8) or (9) must be negative, implving X;,=0. Constraint (7)
then says that the time between removing a carr er from tank ¢ and removing a carrier from
tank j must be at least large enough to take a cirrier from tank 7 to rank :+21 (CM!,)) plus

the time for the empty HOIST(k) to get from tan: :+17 to tank 7 (Cr.,)).

(c) to satisfy assumption (4),

Let / € G(I) and m € G(2).

For m+1<]
T, —Th > CMiy ey + Coery — MUI-X,,) (10)
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T: — T, =CMi,., +Cl.,, — M-X, (1D
For m+1=1]

T! —T: = CM.,., + A — MI-X,,) (12)

T, - T =CM,,, + Cl..,, — M- X, (13)
For m=/+1

T/ - T) = —-M-X,, (14)

T = Th= CMi + An, — MU-X,) (15)

Case 1. (Tank m is located to the left side of ta ik /.)

Case 1—1. T/=T,,
The LHS of (11) or (13) is negative ,while th: first two terms on RHS of (11) and (13) are
positive. This implies that X, =1

Cace 1-1—-1. m+1I</

Constraint (10) says that the time between emoving a carrier from tank m by HOIST(2)
and removing a carrier from tank / by HOIST( ) must be at least large enough for HOIST(2)
to to take a carrier from tank m to tank m-+  plus the time for empty HOIST(2) to move
from tank me+1 to tank / because at the instan when HOIST(1) removes a carrier from tank

/. HOIST(2) must be located to the right of HO'ST(1).

Case 1-1—2. m+1=/

Constraint (12) says that the time between emoving a carrier from tank m by HOIST(\Z)
and removing a carrier from tank /{=m+I1) by HOIST(1) must be at least large enough for
HOIST(2) to take a carrier from tank m to tak m+1 plus the minimum requried processing
time A; m tank / because the carrier which is ¢ aced into tank / by HOIST(2) at T2 + CM:...;

will be removed from tank / by HOIST(1) durin; the same cycle,

Case 1 -2 TI<T;,

The LHS of (10) or (12) 1s negative, while tk=> first two terms on RHS of (10) and (12) are
positive, This implies X, = 0.

Case 1-2—1. m+1</

Constraint (11) now says that the time betwee¢r removing a carrier from tank / by HOIST(1)
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and removing a carrier from tank m by HOIST{(:) must be at least large enough for HOIST(1)
to take a carrier from tank / to tank /-+1 plus the time for empty HOIST(1} to move from
tank /41 to tank m because at the time, 75, waien HOIST(2) removes a carvier from tank me.

HOIST(1) must be located to the left of HOIST 1),

Case 1 =22 m+1=]

Constraint (13) has the same interpretation as case 1—2—1.

Case 2. (Tank m is located to the right side of t nk /)

Case 2—1. Ti=T,

Case 2—1—1. m=[+1
The LHS of (13) is ncgative, while the first two terms on RIIS of (15} are positive, This
implies X,;, = 0. Constraint (14) says that the time between removing a carrier from tank m

by HOIST(2) and removing a carrier from tank . by HOIST(1) has no restriction.

Case 2-1--2. m>I+1 No restricuon,

Case 2—2. TI<<T;

Case 2—2—1. m~=/+1

The LHS of (14) 1s negative, This mmpiies .7,,~~1. Constraint (15) says that the tme he
tween removing a carrier from tank / by HOIS (1) and removing a carrier from tank m by
HOIST(2) must be at least large enough for HIIST(1) to take a carrner from tauk 7 to tank
!/+1 plus the minimum time required 1n tank /-+ 1 because the carrier which is placed into tank
I+1 by HOIST(1) at Ti+CM; .., will be remove | from tank /-1 by HOIST(2) during the same

cycle.

Case 2—2-2. m>[+1

No retriction.

(d) to guarantee that carriers are kept in tank 7 cr an amount of time lying between A, and B.
For each £ and 1 € Glh),
Ti—(T!,+ CM! ) < BAM(1-X,. ) ()
A—M - X, <(Ti+Leyeld)—(TH +CM) ) (1o
(T!+Leyele') — (Tl +CM! ,, ) <B+M-X,, 118
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Case 1. (Thers 15 a carrier in tank 7 at time ()
The carrier in tank ¢ must be removed befie any other carrier can be removed from tank

i—1. This is so because once a carrier is remyved from tank 7-1 and taken to tank 7, tank 7

must be empty. Therefore T/ < TV ,, and by tl = type(b) and{c) constraints, X,,., = 0.
Constraint(16) 1s now satisfied automatically Constraints (17) and (18) now force (7% +
Leyeled Y— (T, + CM! . ) to lie between A, :nd B, But (T!+ Leyele®) is just the time(during
the following cycle} when a carrier is removec from tank 7, and this carrier is placed into tank
{ at time (7Y, + CM!,, )(during the present cycle). It is clear then that what is being con-

strained to lie between A; and B; is the time ¢ carrier remains in tank 7,

Case 2. (Therc s no carrier in tank 7 at time ().
In this case, a carrier{not necessarily in tank 7/—1 at time 0) must be removed from tank 7— 1
and placed mnto tank 7 before 1t can be remov «d from tank 7. That is. 7%, T',, which implies

(by the type (b) and (¢} constraints) that X, ,=1. (17) and (18) are then automatically satis-

-
I
!

tied, Constramt {16) then savs that the time ¢ carrier spends in tank 7 [the time it leaves, T,
less the time it arrives, (T), -+ CM! ;)] must be no greater than B, The fact that the time a

carrier spends in tank £ must be at least A is overed in constraints (8), (12) and (15).

1

Suppose (GO =np and 1G22 ne i, wceluding the loading and unleading tanks, Then
the model involves w1 continuous variables, e, the n TFs, 2 T8 and 2 Leveld®, and at

1V L . . s f v e
most — 5 rere one mteger variables, that s, the # Z%s and the ¥ number of X5 where «

depends on my,, n and the type (¢} constraint . There are (2u +r.+4) constramts of tvpelal,

(sf3;— 1) +n.(n,—1) constraints of type(h), # v amber of constraints of tvpe (¢} where i depends
on G2} and 3n constraints of type(d!. with the total heing not more than (7"t s+ n.t4).

Now, we have the following double hoist sche duling model,

Minmmize Leyele
Subject to
Leyele® = Leyele  for h=1.2
Constraint(2) through (18)
T'. T, =0 for each b and 7 € G
X ZF € D Ll for cach hoand i € Glh)
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Once G(1) and G(2) known, the ahove formulition, constructed by zero one integer and
non—negative real variables, can be transformed into Mixed Integer Programming(MIP).

We can schedule the double hoist system by int rpreting the solution, Ti'’s and X,,’s of the
MIP as the following: At time T, HOIST(#) raises the carrier in tank 7 and moves the carrier
to tank i+1 and lowers it into the tank at time T) —CM?;.,. If T is less than or equal to T}, ,
then X,.,; is forced to be 1. This means that the :arrier, in the tank 7 has to be removed by
HOIST(h) before(or at least at the same time) the carrier in tank ¢ +1 is removed. Therefore
tank 7+1 does not have a carrier at time O (init al state). On the contrary. if T} is greater
than T}, . then X,.,, is equal to zero. This impli & that tank 7+1 has a carrier at the imtial
state because the removing time of a carrier in tenk 7+1 is less than the entering time of its
carrier,

In each tank, the actual processing time is det:mined by the time difference between the
time when a carrier is removed from the tank 7 ar 1 the time for a carrier to be entered. Thus,
with TF <TY., . the actual processing time become: T, — (T} +CM!-; ) and with 77> T}, . the
processing time becomes Leycle+T., — (T} +CM!, ).

HOIST(1) starts to lift a new carrier from ank 0 (loading tank) at time zero. After
performing a sequence of operation given by 77 ¢ € G(1), it terminates the works of one
cycle and returns to tank (. Likewise, HOIST(2) moves from tank K at time zero, and then

returns to the same tank at the end of the cycle.

3. Computational Experiences

We have applied the proposed formulation to a set of data from an actual hoist set up at an
aircraft parts manufacturing company(we are requested not to reveal the company’s name). This
setup has 7 tanks with maximum and minimum ;rocessing times listed in table 1 in seconds.
Table 2 and 3 show the empty hoist travel times and the carrier moving times in seconds be-
tween tanks, respectively.

The example was formulated by MIP and solved by LINDO on Personal Computer (436 DXZ2),
The results are summarized in Table 4 and 5. Not: that according to MCC algorithm the mini-
mum cycle time becomes 1158 seconds while the p oposed model generates the cycle time of 932
seconds, resulting in 20% of improvement. Suppose the system is operated by a single hoist, then
the minimum cycle‘ time is found to be 1414 seconcs Figure 2 illustrates the movements schedule

of each hoist on time horizon. It can be read as tle following : At the beginning of cycle, HOIST
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(1) moves a carrier to tank 1 with the allowed time of 73 seconds and then goes to tank 3 to
pick up a carrier. At tank 5 the hoist lifts a carrier, moves it to tank 6 and lowers it into the
tank with the allowed time of 81 seconds and :c¢ on. Figure 3 shows the locations of carriers,
the status of tanks and the movements of hoists at the time when placement of a carrier into
some tank is completed.

For the problem with |G(D)|=%n and |G(2)|:=n,=n—n,, the formulation presented involves
-%—(n2+5n+12) number of decision variables anc (#'+4n-+n,+4) constraints. This implies that

the problem size becomes larger quite rapidly as » increases. For a moderate size problem, an
optimal solution can be found within a reasoiable computing time. Note that in Table 4,
approximately 40 seconds of CPU time was requ red to solve each problem with #==7. We found
that our approach becomes computationally infe:sible on personal computer if #, the number of

tanks, is much more than 10.

Table 1. A, anc B; in seconds

Z 0 1 2 3 4 5 6 7 3
0 240 720 180 540 420 180 600 0
B, oo 1500 780 300 600 960 240 720 o0

Table 2. Empty hoist 11oving time(C},;=C5))

iN g 0 1 2 3 4 5 6 7 8
0 0 45 53 58 63 83 98 111 137
1 45 0 46 51 56 76 91 104 111
2 a3 46 0 43 48 68 83 96 123
3 58 ol 43 0 43 63 78 91 118
4 63 56 48 43 0 a8 73 86 113
5 83 76 68 63 58 0 53 66 93
6 98 91 83 78 73 83 0 51 78
7 111 104 96 91 86 66 51 0 65
3 137 111 123 118 113 93 78 65 .0

Table 3. Carrier moving tim: of hoist(CM! ., =CM:..)

l 0 1 2 x 4 5 6

~3J

CM; i 73 74 71 il 86 81 79 93
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Table 4. Result summary for given example data
Cycle CPU
Model time G(1) G(2) time
(sec) (sec)
Single
Hoist 1414 i€ 1,2,3,4,5,6,7,8} ¢ 272.0
System
1332 10, 1t 12,3,4,5,6,7, 8 32.6
1138 10, 1, 2 13, 4,5, 6,7, 8 39.7
1158 " " 36.4
1158 " " 40.5
1158 " " 41.7
1158 " " 32.0
Double MCC 1172 0,1, 2,3 14, 5,6,7, 8 29.5
Hoist algorithm
s S 9 4 oo T l 29 (
System 11/1 x(), L .2, 3, 4} t)y b, iy 35 5.2)
1172 10,1, 2,3,45 6,7, 8 44.0
1236 1,2, 3,4,5, 6 17, 81 54.0
932 0, 1, 2, 51 13,4, 05,6, 7, 81 37.5
932 " 34.5
Proposed 932 " " 38.0)
formula- 932 " " 439
tion 947 " " 29.8
Y32 " " 52.0
Table 5. Results for example data
(for G(1)=10, 1, 2, 5}, G(2)=1{3, 4, 3. 7, 8 and K=4, Cycle time=932)
tank 0 4 5 6 7 3
entering
time * 879 1833 874 443 742 4673
removing
time 0 63: 789 362 623 370 *
elapsed
time * 736 600 420 180 600 *
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0-1) {(1-9) (5-6) (6-2) 2-3) (3-1)(1 =2) (2~0)
73 289 g1 240 71 511 74 53
HOIST(1) | 73 { ; { 362 { 443 i i s§3¥ 754 éos 879I 932 i
0 500 1000 fime
4-3 (3-4 (=7 (78 8-6) B~7) (7-4) {4-5) (5--4)
117 71 182 93 1 160 [79 1 86 [ 86 1 58
HOIST(2) | to——n] ] |-= el | -
117 1 g2 i T Bl
5 88 370 450 b23 702 788 874 932 vo0o  tme

Figure 2. The cyclic sche dule for double hoist system

(i—j1 :empty or lvadec hoist movement from tank 7 to/
M1 loaded hoist mo rement
MY s empty hoist mo ement

M ume allowed
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Figure 3. Configurations of tanks and carriers
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4. Conclusion

In double hoist system, the requirement of avoiding hoist interference causes much
complexities in formulating an optimum hoists :chedule compared to single hoist system. In an
effort to eliminate some shortcomings of an exi:ting mathematical programming approach, this
paper presented another formulation for the dou!le hoist schedule problem. Even though the for-
mulation was shown to generate a better schedile in terms of the system throughput with a
case problem, we observe that for the prblem with #>10, the formulation becdmes
computationally infeasible on personal computer. The problems remained for further studies in-
clude finding an efficient way to partition tanks into two disjoint subsets of tanks and determi-

nation of K.
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