고출력 색소 레이저의 다단 증폭 시스템의
최적설계에 관한 수치해석

고도경·김성호·이병철·김중복*·이종민
한국원자력연구소 원자분광학연구실

임 권·조재홍·장 수
한남대학교 물리학과

(1993년 6월 3일 발행)

고출력 Rhodamine 6G 색소 레이저의 다단 증폭 시스템의 출력 특성 및 최적조건을 수치해석을 통하여 조사하였다. 용 방정식과 전송 방정식에서 람프공의 에너지가 주어진 경우에는 레이저 광의 직경, 색소의 크기, 색소의 농도, 증폭단의 갯수 및 각 증폭단의 람프 에너지의 비율 등을 변수로 하였다. 그 결과 캐퍼의 에너지는 25mJ이고 색소 레이저의 입력에너지가 0.01mJ일 때, 2단 증폭 시스템의 최적조건에서 출력 에너지 10mJ와 변환 효율 40%를 얻을 수 있음을 알 수 있었다.

I. 서 론

색소레이저는 발전광장을 가변시킬 수 있는 빈관한 특성을 가지고 있기 때문에 원자 분광, 추적자 분석(Trace element analysis), 미량원소 검출, 반도체 연구 및 의료용 등 많은 분야에 이용되고 있다.1) 고분해능의 레이저를 얻기 위해서는 광기 내에 회절각자와 에칭온 등을 사용하는데, 이들에 의한 에칭손실이 커져 광기의 변환효율을 매우 떨게 한다. 따라서 광기로부터 얻어진 고분해능의 레이저를 고출력의 에너지로 높은 변환효율을 갖는 레이저를 얻기 위해서는 증폭기 시스템을 부착한다. 본 연구는 증폭기 시스템에서 람프광이 주어졌을 때, 색소 vej의 크기, 색소 농도, 증폭단에 입력되는 레이저 광의 직경, 그리고 각 증폭단으로의 람프에너지 배분과 증폭단 갯수 등에 변수로 고려하여 컴퓨터 시뮬레이션하므로 고출력 색소레이저 제작에 앞서 실험적 시행조건을 줄이고 에너지 변환효율에 있어서 최적조건을 예측할 수 있었다.

색소레이저 시스템은 그림1과 같다. 색소 레이저를 재해하는 광원은 flashlamp, Nd:YAG 레이저의 제2고 조파, 질소 레이저, 엑시버 레이저 등 여러 종류가 있지만 고출력의 레이저를 얻기 위하여는 가시광영역에서 고효율, 고출력, 고반복(10kHz) 발광 특성을 지닌 구리증기 레이저(Cu-vapor laser)가 많이 사용한다.2) 본 연구에서는 10 kHz의 반복주파를 가진 구리증기 레이저를 람프광원으로 하고 두 개의 발진 광장 중 510 nm 광장의 출력광을 사용하는 경우에 대하여 조사하였다. 광기기는 구면렌즈를 이용하여 색소 vej에 집중시키는 쥐드먼 Littman 광기로서 캐터그래픽 회절각자, trining mirror, 알코 프리즘형 wedge 등으로 구성되어 있으며 단일 종 모드로 발전한다.3) 이 색소레이저는 형광제되는 증폭 시스템을 통하여 증폭된다.

각 증폭단의 색소 vej의 모형은 그림2와 같다. 원통형

* 현주소 : 한국교원대학교 물리교육과, 총록 363-791

![Diagram](image_url)
표 1. Rhodamine 6G의 흡수 및 방출단면적과 전이시간

<table>
<thead>
<tr>
<th></th>
<th>σ_p</th>
<th>σ_i</th>
<th>σ_f</th>
<th>k_f</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_p</td>
<td>1.6×10^{-16} cm2</td>
<td>4.0×10^{-17} cm2</td>
<td>2.0×10^{-16} cm2</td>
<td>0.33 $\times 10^{-6}$ s</td>
<td>3.5 $\times 10^{-9}$ s</td>
</tr>
<tr>
<td>σ_i</td>
<td>1.92×10^{-16} cm2</td>
<td>1.2×10^{-16} cm2</td>
<td>3.05 $\times 10^{-17}$ cm2</td>
<td>5.0 $\times 10^{-17}$ cm2</td>
<td>2.67 $\times 10^{-7}$ s</td>
</tr>
</tbody>
</table>

(Excited state absorption, ESA) 역시 수치로 쓰두리 2에서 3으로 이동함에 따라 분자간의 비율을 통한 전이반응을 줄여야 한다. 반응분자의 각 전위에 대하여 과장에 따른 흡수 및 방출 단면적은 표 1에 정리하였다. 이 값들은 Aris-tov, Hammond, Magde 등의 여러 실험자들에 의한 M. Maeda의 값에 대체하였다.

II. 중복기의 이론

레이저 광이 이들 매질에 입사할 경우 중복특성은 1차원 광자전송방정식(Photon transport equation)과 용의 방정식(rate equation)을 이용하여 구할 수 있으며 레이저 광의 전해 방향이 2 방향으로 중복기에 영향을 미치는 경우 중복기 내부에서 다음과 같은 방정식이 성립한다.

$$\frac{dl}{dz} = \frac{c}{\sigma_t} \frac{dI}{dz} + \frac{\sigma_t}{\sigma_p} (\sigma_i n_1 - \sigma_o n_0 - \sigma_i n_1 - \sigma_o n_0) I,$$ \hspace{1cm} (1)

$$\frac{dn_1}{dt} = \frac{\sigma_p}{\hbar v} I - \frac{\sigma_i}{\hbar v} n_0 I - k_{dr} n_1 + n_2,$$ \hspace{1cm} (2)

$$\frac{dn_2}{dt} = k_{dr} n_1 - \frac{n_3}{\tau_3},$$ \hspace{1cm} (3)

$$\frac{dl_0}{dt} = W(t) - (\sigma_p n_0 + \sigma_i n_1) I,$$ \hspace{1cm} (4)

$$N = n_0 + n_1 + n_2.$$ \hspace{1cm} (5)

식 (1)~(5)에서 $I(z, t), I_0(z, t), W(t)$는 각각 레이저와 퍼포트의 강도 및 퍼포트 power이다. $N, n_0(z, t), n_1(z, t), n_2(z, t)$는 각각 분자분자의 밀도, 각각 전위의 분자밀도, 여기일명 광선의 분자밀도, 여기산중광선의 분자밀도이다. $\sigma_\text{p}, \sigma_\text{i}, \sigma_\text{o}, \sigma_\text{i}, \sigma_\text{f}$는 각각 분자분자의 유도방출, 일명 방출수, 퍼포트에 대한 흡수, 레이저 광에
대한 여기일중량흡수, 원형광에 대한 여기일중량흡수, 삼중량흡수 단면적 나타낸다. 또한 각각의 원형광의 준위에서 삼중광으로 전어되는 비율이며, 각각의 여기일중량의 흡수율 수명임지이다.

(1) 식은 단일 종모드 광섬기로부터 얻어진 색소레이저가 증폭기 셀을 통과하면서 시간과 공간적으로 변화하는 용을 나타낸 것으로 유도방출에 의해서 증폭된 광자수를 나타내는 이득률에 의하여 레이저에 의한 기저, 여기일중량, 여기삼중량의 흡수율, 각각의 값은 선설량들을 계산한 것이다. (2) 식은 여기일중량의 색소분자 밀도의 시간에 대한 변화를 나타내며 원형광에 의하여 증가하고, 유도방출과 삼중광으로의 전이, 그리고 자발방출에 의해 감소한다. (3) 식은 여기삼중량에서 색소분자밀도의 시간에 대한 변화를 나타내며, 여기일중량으로부터 교차의 증가율을 가지고 증가하며 삼중광의 자발 방출량 만큼 감소한다. (4) 식은 원형광의 시간에 따른 변화를 보여주며 원형광 자체의 시간에 대한 변화와 기저준위의 색소분자의 흡수와 여기일중량 상대 분자의 여기상태 흡수(excitated state absorption, ESA)에 의하여 감소하게 된다. (5) 식은 각각의 시간식에서 허당 편차 상대와 여기일중량 및 삼중광의 색소 분자 밀도의 값이 보존됨을 나타내는데 이는 여기상태 흡수에 의하여 더 높은 준위로 옮겨가게 되어 이것은 picosecond 정도로 매우 짧기 때문에 우리가 고려하는 시간대에서는 여기상태의 분자밀도가 변하지 않기 때문이다.

III. Computer Simulation

레이저가 증폭되는 과정에서 원형광은 존재하는 시간 즉, 원형광(FWHM)이 매질의 완화시간(relaxation time)보다 충분히 짧은 경우에 원형광이 매질의 완화시간보다 충분히 긴 시간에 정상상태로 근사가 성립하는 경우로 나타낼 수 있다. 본 연구에서는 원형광과 색소레이저의 원형광이 50 ns인 경우가 가장하였으며 색소분자와 여기일중량의 형광수명은 3.5 ns이고 여기삼중량의 형광수명은 267 ns이며 여기일중량에서 여기삼중량으로의 교차시간은 $T_{ij} = 1/\kappa_{ij} = 300$ ns이라서, 레이저 주파수에 이용되는 여기일중량의 완화시간이 원형광에 비하여 비교적 짧으므로 정상상태로 근사시킬 수 있다. 그러나 여기삼중량으로 전이되기 때문에 사상광의 수명이 레이저 원형광에 비해 크기 때문에 사상광의 상태는 준 안정상태(metastable state)라 할 수 있으며 증폭과정에서 순실작용으로 정상광선의 오차가 커질 수 있으며, 정상상태를 가정할 수 없는 경우도 발생하므로 식(1)~(5)에 대하여 수치계산을 통해서 증폭기의 특성을 분석하였으며 정상상태의 경우와 비교하여 보았다.

수치계산의 알고리즘은 그림 4와 같으며 다음과 같은 가정을 하였다. 즉 레이저와 원형광의 원형광은 50 ns이고 시간에 대한 강도분포는 가우시안형 함수로서 가정하였으며 원형광의 원형광과의 에너지도 증폭되는 것을 고려하기 위하여 원형광의 에너지가 존재하는 시간범위를 원형광의 6배, 즉 300 ns까지 고려하였다. 원형광의 미소 시간에 대한 변화를 보기 위하여 입사광과 원형광을 800000분할하였으며 세의 길이가 2 cm인 경우 미소 원형

그림 4. 증폭기 수치해석 방법.
IV. Steady state solution

색소해이지의 꼬마액의 밀도에 의해서 색소분자의 각각 에너지 준위에서 단위 체적당 분자밀도가 폐스 존재 시간동안에 시간에 대하여 변화하지 않고, 여기에중량과 여기상장향의 흐름주어는 있는 것(α₀; 0, α₁; 0)으로 가정하면 정상상태(steady state)가 되어 앞으로 올 방정식과 전원 방정식이 해석적으로 풀릴게 된다.^[8] 수치해석적

인 방법에 의한 결과를 정상상태에 의한 결과와 비교하기 위하여 정상해를 구하여 보았다. 이 경우 꼬마전응방정

식은 다음과 같다.

\[
\frac{1}{I_i} \frac{dl_i}{dz} = \frac{\alpha_0}{1+I_i/I_c},
\]

(6)

여기서, 이득계수 G₀와 색소해이지의 화학적 강도

I_c는 다음과 같다.

\[
\frac{\sigma_0}{\sigma_1} = \frac{N_0 \left[\sigma_2 \tau_1 I_p - \frac{\sigma_0}{\sigma_1} (1+k_2 \tau_1) \right]}{(1+k_2 \tau_1) + \sigma_2 \tau_1 I_p (1+k_2 \tau_1)},
\]

(7)

\[
I_c = \frac{(1+k_2 \tau_1) + (1+k_2 \tau_1) \sigma_2 \tau_1 I_p}{\sigma_1 \left[1 + (1+k_2 \tau_1) \frac{\sigma_0}{\sigma_1} \right]}.
\]

(8)

식 (7)과 식 (8)은 꼬마광이 주어진 상수와 되므로 식 (6)에 대입하고 경계조건을 사용하면 광족차를 동과한 후의 꼬마광의 세기 및 효율, 이득 등을 모두 계산할 수 있다.

V. 수치해석 결과 및 분석

그림 5는 꼬마광이 16 mJ, 셈의 길이 2 cm, 농도 2.5× 10⁻⁴ mol/l에서 해이지 임력에너지의 변화에 따른 중독된 출력에너지의 그래프이며 정상해와 수치해석적 방법에 의하여 계산한 값이다. 두 그래프는 비슷한 중독특성을 보여주고 있으나 해이지 임력에너지가 낮을 경우 정상

해에 의한 출력은 수치해석적인 방법에 의한 출력보다 높고 높은 임력에너지에 대하여 두 강이 거의 일치하고 있다.

이것은 식 (2)로부터 정상적으로 설명할 수 있는데 임력 에너지 I_i의 큰 경우에는 식 (2)의 첫째항과 둘째

항의 크기가 비슷하려고 밀도의 변화가 작아져서 정상 상태로 근사가 성립하게 되지만 임력에너지가 작은 경

우에는 여기 일정량 상태로 분자가 충분히 여기되지 않으므로

그림 6은 임력에너지의 에너지변화에 대한 중독특성 분석.

임력에너지와 임력에너지의 차이가 커서 둘째항이 첫째

항보다 빠르기므로 밀도 변화가 없는 정상상태로 근사시킬 수 없다. 결국 낮은 임력에너지에서는 정상

상태의 근사가 성립하지 않음을 알 수 있고 낮은 임력

에너지에서는 중독특성도 설명할 수 있는 수치해석적

방법이 더욱 정확한 결과를 나타내는 알 수 있다. 다름의

결과들은 수치해석적 방법에 의한 중독특성 분석 결과

들과는. 또한, 색소해이자 공기로부터 얻어지는 해이

자는 낮은 출력을 가지므로 그래프에서 해이자의 임력

에너지와 범위가 수십 mJ 이상에서는 중독 특성이 의

미를 갖지 않는다.

그림 6은 그림 5와 같은 중독조건하에서 임력에너지의 증가시킴에 따른 중독특성의 경로로 임력에너지가 증가

함에 따라 변환효율과 출력은 증가하였고 이득율은 감

소하였다. 여기서, 임력에 대한 출력의 효율 \(\eta \) 이득율

G와 extraction 강도는 다음과 같다.

\[
\text{Efficiency: } \eta = \frac{I_{\text{out}} - I_{\text{in}}}{I_p} \times 100\%.
\]

(9)
Gain: \(G = 10 \times 10^{-\frac{I_{\text{out}}}{I_{\text{in}}}} \) (dB).

Extraction intensity: \(L_{\text{ex}} = I_{\text{out}} - I_{\text{in}} \) (W/cm²).

그림 7은 증폭기에 입사되는 레이저 광의 세기에 따른 에너지 흐름의 변화를 보여주고 있다. 색소레이저의 입력에너지가 증가함에 따라 색소레이저에 의한 색소분자의 여기일중량과 여기상중량에서 빛 준위로의 흡수에너지는 증가하고, 펌프광에 의한 여기일중량의 흡수에너지는 감소하여 여기일중량과 여기상중량의 자발발출 에너지는 감소함을 알 수 있다. 여기일중량의 자발발출에너지는 여기상중량에 비해 크며 여기 일중량에 의한 에너지의 흡수가 레이저 증폭에 상당한 손실을 주게 됨을 알 수 있다. 특히 레이저의 입력에너지가 낮을 때 더욱 크기 때문에 정상근사법에 의한 출력에너지가 추계해석에 의한 출력에너지보다 크게 제각된다.

그림 8은 레이저의 입력에너지가 2.6㎫일 때 펌프광에 의한 색소분자의 각 에너지 준위에서 흡수와 방출하는 에너지의 흐름을 나타낸다. 16㎫의 펌프 에너지 중에서 손실을 고려하면 90%가 실제 증폭하는데 기여한다면 14.4㎫가 제거된다. 이에 유도방출에 의한 결정된 레이저의 에너지는 10.1㎫이며 여기 일중량의 자발발출에너지도 2.46㎫로서 여기 삼중량의 자발발출에너지는 0.005㎫에 비해 미미하네 큰 비중을 차지한다. 또한, 여기 일중량의 펌프광과 레이저에 의한 흡수에너지는 0.13㎫과 1.8㎫이다. 이처럼 레이저 자체의 흡수로 인한 손실도 대략 출력에너지는 1/5를 차지한다. 여기 삼중량에 의한 레이저의 흡수는 0.40㎫로서 손실에는 크게 영향을 미치지 않는다.

그림 9는 셀 길이 2 cm, 여기광의 에너지 16㎫, 입력에너지 3㎫의 조건에서 레이저 광의 직경을 변화시켜 각각의 직경에서 색소노도에 따른 효율을 조사한 결과이다. 색소의 노도를 변화시켰을 때 노도의 최적조건은 빛 직경이 0.1 cm인 경우와 같이 매우 작은 때에는 색소철의 표면에서 빛의 강도가 너무 높아서 샐의 원도우에 가까이 있는 색소분자의 역할이 분명히 보일 수 있으며 빛 직경에 의한 효율을 높이는 방법에는 한계가 있음을 주의해야 한다. 한편 입력에너지 3㎫, 셀 길이 2 cm, 빛 직경 0.15 cm로 고정하고 펌프광의 에너지를 변화시키면서 각각의 펌프 에너지에서 색소의 노도에 따른 출력특성을 조사한 결과 노도의 최적조건은 거의 변함이 없었으며 10㎫의 펌프 에너지 이상에서는 최적조건에서 40%의 효율을 얻을 수 있는 것으로 나타났다. 그러므로 입력에너지 3㎫, 노도 2.5 × 10⁻⁴ mol/l, 빛 직경
표 2. 다단증폭기 시스템에서 각 시스템의 최적조건

(1) One Amplifier System

<table>
<thead>
<tr>
<th>Optimize Condition</th>
<th>Amp A</th>
<th>Amp A</th>
<th>Amp B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Size (L×a, mm)</td>
<td>20×1.5</td>
<td>10×1.5</td>
<td>20×1.5</td>
</tr>
<tr>
<td>Concentration (mol/l)</td>
<td>2.5×10^{-4}</td>
<td>1.2×10^{-4}</td>
<td>2.5×10^{-4}</td>
</tr>
<tr>
<td>Pump Energy (mJ)</td>
<td>25</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Input Energy (mJ)</td>
<td>0.01</td>
<td>0.01</td>
<td>1.27</td>
</tr>
<tr>
<td>Output energy(mJ)</td>
<td>6.91</td>
<td>1.27</td>
<td>10.23</td>
</tr>
<tr>
<td>Maximum Gain (dB)</td>
<td>28.4</td>
<td>21.1</td>
<td>9.0</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>27.61</td>
<td>25.28</td>
<td>44.76</td>
</tr>
<tr>
<td>Overall Efficiency (%)</td>
<td>27.61</td>
<td></td>
<td>40.80</td>
</tr>
<tr>
<td>Total Gain (dB)</td>
<td>28.4</td>
<td></td>
<td>30.10</td>
</tr>
</tbody>
</table>

(3) Three Amplifier System

<table>
<thead>
<tr>
<th>Optimize Condition</th>
<th>Amp A</th>
<th>Amp B</th>
<th>Amp C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Size (L×a, mm)</td>
<td>10×0.5</td>
<td>10×1.0</td>
<td>20×1.5</td>
</tr>
<tr>
<td>Concentration (mol/l)</td>
<td>2.0×10^{-3}</td>
<td>0.7×10^{-3}</td>
<td>2.5×10^{-4}</td>
</tr>
<tr>
<td>Pump Energy (mJ)</td>
<td>1.5</td>
<td>6.5</td>
<td>17.0</td>
</tr>
<tr>
<td>Input Energy (mJ)</td>
<td>0.01</td>
<td>0.33</td>
<td>2.91</td>
</tr>
<tr>
<td>Output energy(mJ)</td>
<td>0.33</td>
<td>2.91</td>
<td>10.78</td>
</tr>
<tr>
<td>Maximum Gain (dB)</td>
<td>15.2</td>
<td>9.45</td>
<td>5.69</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>21.16</td>
<td>39.75</td>
<td>46.33</td>
</tr>
<tr>
<td>Overall Efficiency (%)</td>
<td>43.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gain (dB)</td>
<td>30.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) Four Amplifier System

<table>
<thead>
<tr>
<th>Optimize Condition</th>
<th>Amp A</th>
<th>Amp B</th>
<th>Amp C</th>
<th>Amp D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Size (L×a, mm)</td>
<td>10×0.5</td>
<td>10×0.8</td>
<td>10×1.0</td>
<td>20×1.5</td>
</tr>
<tr>
<td>Concentration (mol/l)</td>
<td>2.0×10^{-3}</td>
<td>1.0×10^{-3}</td>
<td>0.5×10^{-3}</td>
<td>2.5×10^{-4}</td>
</tr>
<tr>
<td>Pump Energy (mJ)</td>
<td>1.0</td>
<td>2.0</td>
<td>5.0</td>
<td>17.0</td>
</tr>
<tr>
<td>Input Energy (mJ)</td>
<td>0.01</td>
<td>0.15</td>
<td>0.67</td>
<td>2.77</td>
</tr>
<tr>
<td>Output energy(mJ)</td>
<td>0.15</td>
<td>0.67</td>
<td>2.77</td>
<td>10.62</td>
</tr>
<tr>
<td>Maximum Gain (dB)</td>
<td>11.8</td>
<td>6.50</td>
<td>6.16</td>
<td>5.84</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>13.76</td>
<td>26.20</td>
<td>42.00</td>
<td>46.20</td>
</tr>
<tr>
<td>Overall Efficiency (%)</td>
<td></td>
<td></td>
<td>42.48</td>
<td></td>
</tr>
<tr>
<td>Total Gain (dB)</td>
<td></td>
<td></td>
<td>30.26</td>
<td></td>
</tr>
</tbody>
</table>

0.15 cm, 여기서 16 mJ에서 셀 질이에 따른 변환효율도 조사하였는데 2~3 cm 정도에서 최적값을 보이지만 셀의 질이에 따라 변환효율에는 큰 영향을 주지 않는 것으로 나타났다. 이상의 수치분석 결과에서 변환효율을 높이 는데는 석소의 농도와 링프의 에너지와 증폭기로 입력되는 레이저 광의 각도가 큰 변화로 작용하며, 셀의 질이는 최적조건이 있으나 큰 영향을 주지는 않는다. 위의 결과들은 증폭단이 하나인 경우에 대하여 변환 효율이 최적인 조건을 구한 것이다. 그러나 더욱 높은 변환효율을 얻기 위해서는 다단 증폭기 시스템이 필요 하며 본 연구에서는 증폭단이 1단, 2단, 3단, 4단 시스템들에 대하여 각각의 최적조건과 변환효율을 제시하였 다. 다단 증폭기 시스템에서 최적조건을 찾아내는 방법은 앞에서 조사된 1단 증폭기 시스템의 최적조건을 구하는
IV. 결 론

이상과 같이 광자전송방정식과 올 방정식에 의하여 Rhodamine 6G 색소레이저 단단중폭 시스템의 출력과 변환효율을 높이기 위해 여러 변수를 변화시키면서 수치해석의 결과, 반복을 10 kHz, 에너지 25 mJ의 출력 250 W의 구리 증기 레이저로 편광시킨 경우 출력과 변환효율 및 경계점을 고려할 때 3단 중폭시스템을 설계 하므로써 에너지 10 mJ에서 약 100 W의 출력을 얻을 수 있는 40% 효율의 고출력, 고효율의 색소레이저를 개발할 수 있는 것으로 분석되었다. 그리고 펨프광과 레이저광의 공간 기하학적인 강도 분포도 고려하면 더욱 정확한 중폭특성을 얻을 수 있을 것이다.

참 고 문 헌

A Numerical Analysis for Optimum Design of Multi-Stage Amplifier System of High Power Dye Laser

Do-Kyeong Ko, Sung Ho Kim, Byung Cheol Lee, Jung Bog Kim and Jongmin Lee

Atomic Spectroscopy Dept. Korea Atomic Energy Research Institute, Taejon 305-606, Korea

Gwon Lim, Jae Heung Jo and Soo Chang

Dept. of Physics, Hannam University, Taejon 300-791, Korea

(Received: June 3, 1993)

We have investigated the output characteristics and optimal conditions of a multi-stage amplifier system of Rhodamine 6G dye laser. The parameters in this simulation work were the beam diameter of the dye laser oscillator, the size of dye cell, the dye concentration, the number of stages in the amplifier system, and the pumping energy ratio of each amplifier at given pump energy. As a result, the output energy 10 mJ and the conversion efficiency of 40% in the two stage amplifier system were obtained with the pumping energy of 25 mJ and the oscillator energy of 0.01 mJ.