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The temporal differential equation describing the build-up of the space-charge field in the presence of square
and sinusoidal alternating field in photorefractive materials is solved analytically. We also measured the average
two-wave mixing gain and the full temopral gain variations in a Bi;;SiOs crystal with applied fields of up to
7 KV/cm amplitude and 1 KHz repetition rate. It has been found that the experimental measurements agree

well with the theoretical results.

I. INTRODUCTION

Nonlinear optical interaction of two coherent waves
giving the interference pattern in photorefractive ma-
terials results in versatile interesting phenomena such
as optical amplifications,!"* phase conjugation,”! dyna-
mic volume holography,'*® and recently observed spa-
tial subharmonic generations.”'* Nonlinear energy
coupling in photorefractive materials has a wide range
of applications because photorefractive media provide
unique features like real time operation, high optical
gain, storage, nonlinear operation and correlation.
These include image amplification,’>*] vibrational anal-
ysis,™) laser gyros,!'®! nonreciprocal transmission,'!
neural network,''”) parallel half-adder circuit,!®! opical
correlator,""® novelty filter,’®) pattern recognition,'2!)
opitical interconnections'®! and photonic switchings.[?!

Two wave mixing (TWM) gain is one of the most
fundamental and attractive aspects of the photorefrac-
tive effect. It is used as a tool for understanding and
studying material parameters and processes and as a
building block for more complex optical systems. Seve-
ral techniques for the enhancement of TWM gain have
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been developed and analysed by many researchers;
applied d.c. field technique,!®” d.c. field and moving
grating technique®?! intensity- and temperature-de-
pendent technique,?”’ and applied a.c. field technique.
128291 1t was shown some time ago by Stepanov et al.[#
that TWM gain can be considerably increased by appl-
ying an a.c. electric field instead of a d.c. field. Under
the ideal conditions the optimum gain achievable with
an a.c. field is equal to that with a d.c. field accompa-
nied by frequency detuning, i.e., moving grating.
Our work in this paper has been very detailed mea-
suring not only the average (steady state) TWM gain
but the full temporal variation of the gain as well inc-
luding transient phenomena for the square and sinu-
soidal applied fields in a photorefractive BizSiOx crys-
tal. We also developed, for the first time, the correspo-

nding theory based on Kukhtarev’s materials equations.
[30]

II. PROBLEM FORMULATION

1. Two Wave Mixing Gain.
Considerable effort has been devoted to measure
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TWM gain experimentally and describe mathematically
the transient energy transfer in a two wave mixing
experiment.*¥ The case when ac field is applied is
a special interest, which to our knowledge has not been
mathematically modelled.

In a photorefractive crystal the effective gain in a

two mixing configuration defined as follows.l**]

_ I{with pump beam and AC field)
_Is(without pump beam and AC field)

_ (1+p)exp(I'd)

1
1+ Bexp(Id)

where S=I1,0)/1z(0) is the incident intensity beam ra-
tio, I, (I} is the intensity of the probe (pump) beam
emerging from the crystal, and d is the interaction
length in the crystal. The exponential gain coefficient
I, which in our case is a time function, is defined

in the following form!*3:

T(t): 2777137,}'7 lIm{Es(;(t)}l (2)
Acosf m

where A is the wavelength, » is the refractive index,
7 is the effective linear electro-optic coefficient (a fun-
ction of the crystal orientation and incident beam pola-
rization), @ is the Bragg angle in the crystal, m is the
fringe modulation and E.(f) is the transient complex
amplitude of the space-charge field. In order to investi-
gate the transients of two wave mixing in photorefrac-
tive materials, we need the temporal solution of the
space-charge field E.(f).

2. Space-Charge Field with Applied A.C. Electric
Field

Starting with the Kukhtarev's material equationst™
and using the first order perturbation theory, we can
obtain, after some algebra, the temporal differential
equation describing the build-up of the space-charge
field E.(f) with external applied field E,(¢) in the follo-
wing form™J;

FEsc
; +gEsc=hm (3a)

Here, the coefficients are as follows:

E,
1—:
= E, P 3b)
ST
B _
T4 EM Td lEM

where 1; is the Maxwell relaxation time, Ey=1/ut K
and E,;=eNs/g €K, K is the magnitude of the grating
wave vector, 7, is the lifetime of the photoelectrons,
N, is the acceptor density, u is the mobility and & ¢
is the dielectric constant. For simplicity, in deriving
Eq.(3) we neglect the diffusion field, which is small
in Bi;zSiOy crystal compared with E, and E,. It is noted
that although Eq.(3) is derived for a d.c. applied field
(i.e, E,=const.), it is still valid for a.c. applied field
when the period T (=27/82) of a.c. applied field is
much longer than the lifetime of the photoelectrons,
ie, T>>r. In that case, each photoelectron essentially
sees a constant applied field during its lifetime. In ad-
dition, when the period of the a.c. field is much shorter
than the grating build-up time t, (approximately equal
to Re{l/g}), one may use the time averaging method
over the period T to solve Eq.(3)*®). Then the space-
charge field cannot follow the a.c. applied field and
the solution becomes independent of the time period
T. When, however, the period T is comparable with
%, the usual time averaging method will not hold, so
we require to have the full temporal solution for E.(f),
applicable to the whole frequency range of the a.c.
field.

ITII. TRANSIENT SOLUTION FOR SPACE-
CHARGE FIELD

1. Square Wave Field

Consider the square ac. field E,(f) with the time
period T(=2n/0) as shown in Fig. 1. Then, the time
varying coefficients g(¢) and £(t) in Eq.(3) become cons-
tants g* and A" for each positive half-period of E,{)
=E, and g~ and %~ for each negative half-period of
E ()= —E,, respectively, where E, is the amplitude of
square applied field. In order to solve Eq.(3), we apply
the step-by-step integration in each successive half-pe-
riod of E,(). Then the general solution of Eq.(3) is
given by
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Fig. 1 Experimental setup for measuring two wave
mixing gain in photorefractive Bi;;SiO crystal.
Alternating electric field of square and sinusoi-
dal field is applied on the crystal.

Eo(H=exp( —gz)M exp(gt’) h(t')m dt’+C(to)] @)

where C(¢,) is an integration constant to be determined
from the boundary condition at ¢t={,. Considering the
nth period of the applied field E, () (e, (m—1)T<¢
<nuT) and using Eq.(4) we get the space-charge field
E, () for the positive and the negative half-period as

h+
E, (t):Em{l-—exp[——g*(t—(n—l)T)]H—E: {e—1T)
Xexpl —g*(t—(»n—1T)]

for m—1)T<t<(n— %)T (ba)

h™ 1 1
E, 0= g—_m{l-—exp[ —g ¢—— ?T)]HE; [n— ?T]

1
Xexpl—g (¢t—(n— Z—)T)]

1
for (n— ?TS t<nT (5b)

From Eq.(3b) we have the following relations: g*"=g~
and h*"=—h".
covenient to introduce the steady state values of E,(f).

Before proceeding any further, it is

Since the steady state of E,(t) corresponds to the va-
lues for sufficiently large n, we may take the boundary
conditions as

E+[(n ——)T] [(n ——)T] =E, (6a)
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Eln+VDT]=E,nT)=E_ (6b)

where EZ are the steady state values of the space-cha-
rge field for the positive and negative half-period, res-
pectively. Substituting now Eq.(6) into Eq.(5) and we
get the steady state values of spacecharge field in the

following form:

1 h + g+
Er= m[1— -
“  1—exp(—g,T) {g+ [1=expl 2 2
b
1 h- g
E = m[1— —_—
" 1-exp(—gaT) {g- Hexp(=5D]

ht + -
+2ml-exp(-EDl e~ £} )
g 2 2

(g*+g7)/2. By using the relations g*'=g~

and h*"=—4", it may easily be seen that E_=—E_.

where g,,=

For convenience, we introduce the following notations;

E=<+a_tib,, (8a)
gE=m+ig, (8b)
hi:ih1+l.h2, (SC)

After simple calculations, we have the frequency-depe-
ndent (steady state) space-charge fields as

&T
aw(ﬂ=%& m[coth(%) (g2 )] (9a)
s £
b(T)= giho—goh + glh1+g2h2 (g—Z )
T grg s &
s £,
(9b)

In the limiting case of T/2<<1/gy,. (i.e., for high fre-
quency limit) Eq.(9) reduces to:

a,~0 (10a)

(10b)
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which gives the same expression derived by using time
averaging method proposed by Stepanov and Petrov.[?]
Note that the absolute value of the imaginary part of
space-charge field is equal to the value derived from
the optimized moving grating technique.l””) Having the
expressions for steady state space-charge field E%, it
may be possible to express E,(f) for an arbitrary nth
period of square wave in terms of a(7T) and b (D).

1
By using the boundary condition of E;[(n—E)T:I=
1
E,’:[(n—E)T] and Eq.(7), we get the expression for

E,*[(n—1/2)T] and E,(nT) in the following form:

E:[(n—%)T]=E2—E;eXP(—£2—T) +Efn—1)

-+

+exp(— gTT) (11a)
E, nD=E_[—exp(—g, T]+En—1)T]
Xexp(—guT) (11b)

Since E,*[(n—1)T]=E; -1L(n—1)T], we have the
following relations from Eq.(11b) by using succes-
sive iterations;

E.nT)=E_[1—exp(—ng, T)] (12a)
where E,(0)=0 is taken the initial condition. Subs-
tituting now Eq.(12a) into Eq.(11a) we have

1
Eflon—)TI=EL~E ;exp[—(ngw—g?m

(12b)
The imaginary part of Eq.(12) gives the overall te-
mporal behavior of the square wave field at the
beginning of each half-period.
On substituting Eq.(12) into Eq.(5) we may have
the transient solution for each half-period of applied
field in the following form.

EZ(t)=§jm[1—exp(—g+t)] +E {1—exp[—(n—1)

3

XgonTllexp(—g*£) for 0Lt<—

2 (13a)

E;(t)=Z—: {1~ expl—gB]— B~ Ezexpl—ta—1)

T
XgwTllexp(—g™t) for OStS—z— (13b)

where the origin of time is taken to be the begin-
ning of each half-period. This periodic oscillatory
behavior is caused by the transient changes in the
applied field. Taking the imaginary parts of Eq.(13),
after some algebra, we get
Im{E;®)}=Im{E (O} —expl —git+ (n — D)D) ]
T
X (a,,sin(g:)+b,,cos(g,t)) for 0<¢ S§

(14a)
Im{E,;®}=Im{E (O} + exp{ —gilt+m— %)T]}
X {[a © 005( gz—zT) —b, sin( é;—zTﬂ sin(gzf)
_ [awsin(é;—2T> + bwcos( —A;Z—T)] cos(gz t)}

T
for 0L¢ S—z— (14b)

where

Im{EZ O =Im{E_(t)=

b+ 2.

1—2exp(— g2_1T) cos(gz—zT) +exp(—g 1)

X { [1—exp(— gZ—lT) cos(é;—zT)] exp(—g1 ) sin(gy £)

—[1—exp(—g:1) cos(g:t)Jexp(— %T)sin( gz—zﬂ}

for ogsg (14c)
Here, Im{EL(¥)] is the change in the space-charge field
after its average value reached the steady state (ie., for
n>>1). Note that Im[EL(t)]=Im[E_(t)] for each half-
period, implying frequency doubling in two wave mi-
xing gain as we shall see later.

2. Sinusoidally Varying Field

In this section we will solve Eq.(3) for sinusoidal
field applied to the crystal. Now we assume the solu-
tion in the following form:
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E()=E,sinQ2t (15a)

Esct)y=A.0+ E A, sin(n2t— @) (15b)
1

where ¢, is the phase of the nth harmonics and 2=2
/T is the frequency of the applied field. It is also
assumed that the Fourier series of the space-charge
field rapidly converges, therefore only the first few
terms give a significant contribution to the solution
Gee., |A,]>>|A,+:|for V n). At first, we choose an ap-

proximate solution in the form
Esc()=A,{)+A() sin(2{— 1) (16)

Substituting Eq.(16) in Eq.(3) and equating the coeffi-
cients of cos{2f, sinf2¢ and constant terms on both

sides of the equation, we have

oA A
.(ZAlcosd)l—<——l +— )sina:O (17a)
(9! Ta
A, A, E, A, E, A,
)t ot sinanmi B P B )
<at o S s Y
E,
—m (17b)
17
( E, oA, E, Al) ¢1+"QE"A .
1 I — ——]CO0S 11—
2By & 2B, )iy,
A, A,
:8 + 17¢)
ot T

Rewriting Eq.(17a) for dA,/dt and inserting this into
Eq.(17b) and (17c), we have

A

i EO Aﬂ o 0
_SneE A B A

Ea
>—m ] (18a)
a \E, o "E =

T

A, A [E | N
Al

oS¢y E, cos¢y
_oe),
8t T ZEM

ZEq 174
(18b)

. 1
Singy 17}

For steady state case, Eq.(17a) gives the following rela-
tions

b 1

CSNE AT

where b=£27, is the dimensionless frequency of a.c.

(19)

field. After eliminating A; from Eq.(8) and substituting
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Eq.(19) we get the first order differential equation for
A, in the following form.

a4,
+ g5 As=hgm (20a)
o
where
=L (1+ y E_ 1 & ) (20b)
B D\ 10 2E,Ey 140 2B
i i(b2 EZ 1 Es) 200
== o c
T Du \1+8 2E, 1+8 2E,
b? E? 1 E?
D=1+ + (20d)
1+0* 2Ef  1+8 2EEy
The solution of Eq.(20) is given by
A=Al 1—exp(—gst)] @1

where A,(c0)=mh/g4 It may be noted that g4 is real,
so ther is no overshoot or damping in space-charge
field. A, () is also pure imaginary, which means that
the space-charge field, at least A,, is spatially n/2 out
of phase with respect to the intensity fringe distribu-
tion. This represents the optimum phase shift for ene-
rgy exchange in two wave mixing. For the limit of
b>>1, we get

Eo

2E,
Alc)== -z'———M—Z-mEa (22)

1+

0

2, Ey

It may be note that Eq.(22) for sinusoidal field is com-
parable with Eq.(10) for square wave field. By inserting
Eq.21) into Eq.(182) we may have the first harmonic
amplitude A.(#) which is rather complicated. However,
if one may assume that Eg>>E,>>Ey; we have a simple
solution in the form;

— ME“ ’
A=~ " B X[1-exp(—g;t)]

1t— ——

1-+6% 2EyE,
(23)

where
b  E: L
g =| 1+ ——— ) D'ty and D'=1+

£ ( 1+ ZEME,,/ W an 1+ 2E
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For Ai(t) real, it does not contribute to the two wave
mixing gain. Furthermore, A,(f) gradually disappears
as b grows (i.e, in the high frequency range A(f) may
be negligible). So, we need to have the second harmo-
nic amplitude A,(f) for explaining the periodic transient
changes of the space-charge field. Considering the se-
cond harmonic component A,() in the assumed solu-
tion, Eq.(16), and equating the coefficients of cos2$2%
and sin2% terms on both sides of the equation we

have

A Az .
2.{2A2cos¢z-—<——67 +—)sm¢>2

W

. E,
-1
2Ey

(%1 cosh + 24, sin¢1) (242)

h, A
(a_z + —z)cosq>z+2mgsin¢z
3! T

E, (z?Al )
=—1 —— sing, — £24, cos (24b)
2B\ g T HCosh
It is obvious from Eq.(24) that A,(¢) is pure imaginary
for real A, values. For steady state case, Eq.(24) gives
the relations

o » 1w
SN A T A At o)
(25)

Multiplying Eq.(24a) by cos¢» and Eq.(24b) by sing,

and adding them together we have
ayity=—iEe 1 (aAl
’ &

“YoEy 20,/it4R

For E,>>Ey, Eq.26) simply reduces to

E?
A= —im 2Eu b
: o OE A+ 4D
1+b% 2EyE,
X[1—exp(—g'##)] @n

Hence, the total space-charge field, which contributes
to two wave mixing gain may be expressed as

Im{Esc®}=Im{A, )+ Axt) sin(292t— )} 28)

L 3
1-2p°
Equation(28) describes the full temporal behavior of

where ¢»=tan"

the two wave mixing gain at least to the second order
approximation, and also depicts the doubling of the
applied frequency £ in the temporal solution. Since
the amplitudes of the Fourier series for the space-
charge field rapidly converges, one may expects that
the higher order components in Eq.(28) do a little affe-

cts to the higher harmonics in frequencies.

IV. EXPERIMENTS AND DISCUSSION

The full temporal variation of the two wave mixing
(TWM) gain is measured in photorefractive Bi2SiOy
crystal grown by Sumitomo (10X 10X 10 mm?). The ex-
perimetal configuration is schematically shown in Fig.
1. A beam from an Ar-ion laser at 514.5 nm wavelength
was split into two beams, expanded and collimated.
The intensity beam ratio of pump-to-probe beams set
to 45 with a total incident intensty of 4.6 mW/cm?
The two beams were vertically polarized and were in-
cident on the (110) face of the BSO crystal. The alter-
nating electric field (square or sinusoidal wave) of up
to 7 KV/cm amplitude was applied between the (001)
faces of the crystal. The interbeam angle betwen the
two incident beams was chosen so as to achieve the
optimum gain in experiments at approximately 2° for
both a.c. square and sinusoidal applied field, resulting
in grating spacing of 15 ym. The temporal evolution
of the grating was measured by a photodetector conne-
cted to a digital storage oscilloscope and to a X-Y reco-
rder. The frequency range of the applied electric field
was 10 Hz~1 KHz. Fig. 2 shows the theoretical curves
for temporal behavior of the grating for square wave
field of E,=7 KV/cm amplitude with repetition rates
of 20, 150, and 800 Hz, respectively. For the various
frequencies the three curves show somewhat different
features. It may be seen that as time increases the
gain oscillates with twice frequency and as the repeti-
tion rate increases the oscillatory amplitude rapidly de-
creases, and eventually drops to zero. In the calcula-
tions we used the following crystal parameters: Ey=0.
35 KV/cm, grating spacing of 15 ym and 7,=1.3 msec
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Fig. 2. Theoretical curves for temporal variations of
two wave mixing gain in the presence of square
ac. field of 7 KV/cm. The applied frequency
is (@) 20 Hz, (b) 150 Hz, and (c) 800 Hz.

for input intensity of 4.6 mW/cm? and g,=14.7 Hz and
g:=37.7 Hz for E,=7 KV/cm. Note that these physical
parameters listed here are in good agreement with
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Fig. 3. Experimental verifications of Fig. 2. Square
wave field of 7 KV/cm is applied. (a) 20 Hz,
(b) 150 Hz, and (c) 800 Hz.

those of the literatures.[11'%] Fig. 3 shows the experi-
mental curves for the time-dependent behaviour of
TWM gain for the same repetition rates of 20, 150
and 800 Hz, respectively. The theory agrees well with
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the experimental results with the exception of one as- ©

ect. The experiments show an overshoot in the tran- . . o . . . .
P pert Fig. 5. Experimental verifications of Fig. 4. Sinusoidal

sient response whereas the theory predicts a monoto- wave field of 7 KV/cm is applied. (a) 20 Hz
nic growth. We belive that improved agreement could (b) 150 Hz, and (c) 800 Hz.
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Fig. 6. Theoretical curves of two wave mixing gain as
a function of applied frequency for square and
sinusoidal electric field of 5 KV/cm.
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Fig. 7. Experimental verifications of Fig. 6. Square and
sinusoidal electric field of 5KV/cm is applied
on the crystal.

be obtained by solving simultaneously the materials
and the field equations together.*32) Fig. 4 shows the
theoretical curves for the TWM gain for sinusoidal
field of E,=7 KV/cm amplitude for the same three
repetition rates. In calculating the responses shown
in Fig. 4 we used the same crystal parameters as be-
fore. Fig. 5 represents the experimental verification of
the calculated results shown in Fig. 4. The overall be-
havior is in good agreement with the theory as before.
Fig. 6 shows the theoretical curves of TWM gain as
a function of the frequency for the square wave and
sinusoidal field excitation. It may be seen from Fig. 6
that there is no resonance in TWM gain unlike in the
moving grating method.!™ Fig. 7 shows the depende-
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Fig. 8. Optimum two wave mixing gain as a function
of applied field for square and sinusocidal elect-
ric field. The applied frequency is fixed at 500
Hz. Solid curve is a theoretical curve.
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Fig. 9. Photograph of frequency doubling observed in

two wave mixing gain experiment.

nce of the gain on the frequency of square wave and
sinusoidal field at E,=5 KV/cm. Fig. 8 depicts the opti-
mum TWM gain coefficient versus applied field mea-
sured at the highest practical frequency, namely 500
Hz. From the best fit with experimental results we
obtained the following parameter values: E,=21 KV/
cm, Ey=035 KV/em for K=4.2X10° cm™}, 7,4=0.28
pm/V, and 7;=1.5 msec, which is consistent with the
value obtained in the case of the square wave field
as in Fig. 2 and is again in reasonable agreement with
the literature.l'*1'%1 Fig. 9 shows the photograph of the
double repetition frequency after the gain reached the
steady state as predicted in the theory. The wave form
of frequency doubling in Fig. 9 shows a rather asym-
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metric, which means TWM gain contains higher har-

monics in frequency.
V. CONCLUSION

We have developed a theory, based on the Kukhta-
rev's materials equations, describing the temporal va-
riations of two wave mixing gain in the presence of
a square and sinusoidal a.c. field in photorefractive ma-
terials. The transient behavior of the two wave mixing
gain as well as the average (steady state) gain is mea-
sured in photorefractive Bi;pSiOs crystal for low, me-
dium and high frequency limits (20, 150 and 800 Hz,
respectively) with a.c. applied field of up to 7 KV/cm.
The experiments are in geod agreement with the
theory. We expect that the theory developed in this
paper could be applicable to another photorefractive

materials.
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