DOI QR코드

DOI QR Code

화력발전용 로터강의 초기 변형률법에 의한 장시간 크리프 수명 및 강도 예측

Long Time Creep Strength and Life Prediction of Steam Turbine Rotor Steel by Initial Strain Method

  • 오세규 (부산수산대학교 기계공학과) ;
  • 정순억 (통영수산전문대학 기관학과)
  • 발행 : 1993.06.01

초록

본 연구에서는 이들보다 매우 간단한 IS법, 즉 초기 변형률법(ISM: initial strain method)에 의한 크리프 수명예측식을 고안하여, 현재 화력발전용 고압 로터강 에 사용되고 있는 1%Cr-Mo-V강과 발전소 효율향상을 위해 최근 국내최초로 개발된 12% Cr강에 대하여 도출하였고, 이 도출식이 앞에서 언급한 여러 파라메트에 의한 결과와 비교 평가하여 장시간 강도 및 수명예측식으로 사용될 수 있음을 입증하였다.

Long time creep strength and life prediction of 1% Cr-Mo-V and 12% Cr rotor steel were performed by using round-bar type specimens under static load at 500-600.deg. C TTP (time temperature parameter), MCM (minimum commitment method) and ISM (initial strain method newly devised) as life prediction methods were investigated, and the results could be summarized as follows. (1) The minimum parameter of SEE (standard error) by TTP was proved as LMP (larson-miller parameter), and the minimum parameter of RMS (root mean squares), by data less than 10$^{3}$hrs was MHP (manson-haferd parameter). (2) The parameters of the minimum and the maximum strength values predicted in $10^{5}$hrs creep life of 1% Cr-Mo-V steel by TTP were LMP and MSP, respectively. In case of 12% Cr steel above $550^{\circ}C$ OSDP (orr-sherby-dorn parameter) was minimum and MSP (manson-succop parameter) was maximum, but below $550^{\circ}C$, the inverse phenomena was observed. On the other hand the creep strengths before $10^{3}hrs$ life by MCM were similar to those by TTP, but the strengths after $10^{3}hrs$ life were 10-25% lower than those by TTP. (3) Creep strengths by ISM were maximum 5% lower than those by TTP. Because $10^{5}hrs$ strengths were similar to those of the lower band by TTP, the ISM was safer than the TTP.

키워드