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ON THE MONOTONICITY OF THE
DITTERT FUNCTION ON CLASSES
OF NONNEGATIVE MATRICES

G1-SANG CHEON

1. Introduction

Let Q,, denote the set of all n x n doubly stochastic matrices, and let
Jn denote the n x n matrix all of whose entries are 1/n. The permanent
of a real n x n matrix A = [a;;] is defined by

per A = }: alo’(]) Tt Qe () (]1)

o

where o runs over all permutations of {1,---, 2}.
For k € {1,--- ,n}, let ox(A) denote the sum of all subpermanents
of order k of A.

The famed van der Waerden - Egoryéev - Fal kiman theorem [3],[4] as-
serts that the permanent function attains its miaimum over §2,, uniquely
at J,.

In [4], Friedland and Minc remarked that a stronger version of this
theorem is the following.

MoNOTONICITY CONIJECTURE. The permenent function is mono-

tone decreasing on the line segment from A € 12, to J,.

It is often referred to as the monotonicity o; permanent (abb. MP).
MP has been proved for several classes of matiices in £, [5],[6],[7],[9],

[10],[13],[15].

A conjecture related to MP is the following cne proposed by Dokovié
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Dokovié CONJECTURE. Let A € Q,,. Then

ox(A) =

— k- 2
Ln———n—kt-l—)-ak_l(/l), k=2, - ,n (1.2)

with equality holds if and only if A = J,.

The Dokovi¢ conjecture for k < 3 was proved by Dokovié himself [2].

In [11], Massoud Malek-Shahmirzadi has revealed a connection be-
tween the monotonicity conjecture and the Dokovi¢ conjecture by show-
ing that

THEOREM A. If A € §2, satisfies the Dokovié inequality (1.2) then
MP holds for A.

For a positive integer n, let K, denote the set of all real nonnegative
n X n matrices whose entries have sum n. For X € K, with row sums
r1,--- ,Tn and column sums ¢, - ,Cn, let

n

e(X) = Hr.-«}—HcJ'——perX. (1.3)

i=1 =1

Then ¢ defines a real valued function on K. We shall call ¢ the Dittert
function. The following conjecture [12] due to E. Dittert is still open.

DITTERT CONJECTURE. The Dittert function attzins its maximum
over K, uniquely at Jp.

Clearly the Dittert conjecture is a generalization of van der Waerden
- Egoryéev - Falikman theorem.

or k € {1,---,n}, let Qxn denote the set of all «trictly increasing
integer sequences of length k chosen from 1,---,n. For a, € Qkn,
and for an n x n matrix A, let A{e|f] denote the k x k submatrix of A
lying in rows « and columns 3, and A(a|B) is the comolement of Alalp]
in A.
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Let @i denote the real valued function defin=d on K, by

pr(A) = Z II ri + H ¢j — per Alal|g] (1.4)

a,BEQrn \€a JEB

where 7; and c¢; are the sum of all the entries in row ¢ and the sum of
all the entries in column j of A € K,,, respectively. Note that ¢, = .
We call @i the k-th sub-Dittert function.

In this paper, we study the monotonicity of the Dittert function
(abb. MD) on the line segment from A € K, +o J, generalizing both
the Dittert conjecture and the Monotonicity conjecture for permanent,
and obtain a sufficient condition on A € K, for which the MD holds. It
is also proved that if A € K, satisfies the Dokovi¢ inequality (1.2) then
MD holds for A, and a subclass of K, for whici1 MD holds is found.

2. Some Preliminary Lemmas

For k € {1,---,n}, let Sk denote the k-th elementary symmetric
function of R"*, i.e.,

Sex) = 3 []= (2.1)

®€EQk n 1€

for x = (zq,--- ,zn)T € R™.

To study the monotonicity of the Dittert function, we need the
following results concerning elementary symmetric functions and sub-
Dittert functions. The following lemmas are due to Cheon and Hwang

1]
LEMMA 2.1. [1] Let A€ K,. Then

p2(A) < @2(Jn) (2.2)
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LEMMA 2.2. [1] Let x = (21, ,2n)T be a nonnegative real vec-
tor such that z; +---+ 2, =n and let k € {1,--- ,r.}. Then

Sk(x) < (:) (2.3)

LEMMA 2.3. [14] For k € {1,---,n}, the furction Sk/Sk—, is
Schur-concave on the set of all positive real vectors.

COROLLARY 2.1. Let x = (z1,--- ,zn)7 be a pusitive real vector
such that z; +--- 4+, =n and let k € {1,--- ,n}. Then
Sk(x) <= k+1
Sk--l(X) - k '

Proof. The inequality (2.4) follows directly fron: Lemma 2.3 and
Lemma 2.2.

(2.4)

In addition to these lemmnas, we make use of the following theorem

due to Massoud Malek-Shahmirzadi.

LEMMA 2.4. [11] Let A be an n X n matrix anc x a real number.
Then

per(A+nzJp) = Z(n —k)lor(A)z" k. (2.5)
k=0

3. Monotonicity of The Dittert Function

Let A € K,, have row sum vector K and column sum vector C. Then
for each k =1, -+ ,n, pi(A) can be written as

or(A) = (Z)Sk(R)+ (:)Sk(C) — o A). (3.1)

For an n x n matrix A and for & := nln*/kln™, let

Ae(A) = pi(4) + (1= S)ow(A). (3.2)

We are now ready to prove one of our main theorcms.
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THEOREM 3.1. Let A € K, satisfy the condition

\ 2
A(4) < (P—‘—:i—l-) Na(4),  k=1.m (33)

Then MD holds for A.

Proof. Let A be a matrix on K, with row sum vector R = (ry,--- ,
)7 and column sum vector C = (c1,-++ ,¢n)?. For real 6, let Ay =
(1-6)A+8J, and ri(8) = ri + (1 —=1)0, ¢;(0) = ¢j+ (1 —¢;)0 for¢,5 =
1,--- ,nandlet Rg = (r1(8),--- ,r(8))T and C¢ = (c1(8), -, ca(8))T.
Then

n

o(Ag) = [T ri(8) + [] ¢;(8) — per As. (3.4)
i=1 =1
We prove that if A € K, satisfies the condition (3.3) then ¢'(A44) > 0
for the interval 0 < 6 < 1.
Let nz:= 125 (0< 6 <1). Then

1
A = A JIn).
o 1+n:c( +nzJa)

ri(0) = (¢; +nz).

We define

; d c:H8) = -
(r +nz) and cj(9) T

n

1 n
9(z) = E’”i(‘g) = AT no)y g(ri +nz),

h(z) =[] ei(®) = ZﬂinT IT¢s +no),

j=1

p(z) = per Ag = ————per (A +nzJ,),

(14 nz)®
and

f(2) = ¢(44) = g(z) + h(z) — p(z)
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on the interval 0 < § < 1. Then we get

2 n n i
oy —-n _ L1 L n
g(z)= ‘—""‘_(1 Fnz)ih H(r. +nz)+ 1+ nz)" g(r. + nc) ; T
(3.5)

We compute first that

H(r,- +nz) = Z Sk(R)(nz)"* (3.6)

1=1 k=0
and

[T+ n2)>° s Z(n —k+ DSk (R)(nz)*~%.  (3.7)

t==1 =1

From (3.5), (3.6) and (3.7) it follows that

n

] - 1 _ . . n—k+1 _n—k

0'(®) = G k‘;{m E+1)Sk1(R) ksk:R)}n ek,
(3.8)

Similarly we can show that

e __________}—_ e o _ Y n—k+1 _n—k

K (z) = T neyT ;{(n k+1)Sk-1(C) — kSk C)}n "k
(3.9)

On the other hand, from (2.5), we get

pz) = WZ(W. ) {(n—k+1)205_1(A) —nkor(A)}z" .

(3.10)
Thus from (3.8), (3.9) and (3.10), we get

I N 1 - T n—1# s
fl(z) = R ;Tk(A):c (3.11)
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where
Tk(A)
="M {(n — k 4+ 1)(Sk-1(R) + Se-1(C)) — k(Sk(R) + Sk(C))}
+(n— k) {nkox(A) — (n — k + 1)20k_1(A‘} . (3.12)

From (3.1), we have

Se(R) + Si(C) = (wa(A) + u(A))/(",j). (3.13)

By an elementary computation, we get, from ‘3.2) and (3.13)

n— 2
Ta) = 2 - {(” ik 1) Ae—1(od) — Ak(AJI (3.14)

;) k [

Hence from (3.11) and (3.14), if

2
, fn—k+1
Ak(A) < (""”‘k——) Ak-1(A)
then f'(z) > 0, which completes the proof.

In the Theorem 3.1, if A is restricted to be in §2, then the condition
(3.3) coincides with the Dokovié¢ inequality (1 2).

Note that if £k = n in (3.3) then

1 n n

P(A) < =D pi(4) (3.15)

n =1 j=1
where
pij(A) = H Tk + H cx — per A(ilj).

ks#i k3j
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In [8], it was shown that not every matrix A € K, satisfies the
condition (3.15). But we guess that MD holds for every matrix in K,
satisfying (3.15).

For an n x n matrix A4, and for each k =1,--- | n, let

Tk(A) = /\k(A) — (n — /’: ’t-l-) /\k-l(;l). (3.16)

\

A simple computation shows that Ti(J,,) = 0 for each k =1,--- | n.
The Theorem 3.1 just says that if Tx(A) <0fork =1 --- ,n, then MD
holds for 4 € K,,.

THEOREM 3.2. The condition (3.3) holds for k < .

Proof. The case k =1 is trivial. To prove the theorem for k = 2, let
A be a matrix on K,, with row sum vector R and coiwumnn sum vector

C. Then

n—1

To(A) = Aa(A) — ( )2/\,(A)

n!

=+ (1 -mn@ - (5) (2-2). (3.17)

By an elementary computation, we get, from (3.1) an1 (3.17)
Ty(A) = b2(p2(A) — p2(JIn)) + (;)(1 - 52)(52(3) + 5(C) - 2(2))

Thus from (2.2) and (2.3), it follows that
T2(A) S 0)

which completes the proof.

As a corollary to Theorem 3.2, it follows that if A € K,, satisfies the
condition (3.15) then MD holds for n < 3.

In the following, we find a subclass of K, for whict MD holds.
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THEOREM 3.3. For an n x n diagonal matrix D and for any n X n
permutation matrices P and Q, if A is a matrix: of the form A = PDQ €
K., then MD holds for A.

Proof. First, let A be a positive diagonal mutrix on K,, with row sum
vector R and column sum vector C. Note S R) = Si(C) = ok(A) for
each k = 1,--- ,n. Then

Me(A) = sk(R)(z (Z) - 5k). (3.18)
Thus we get

2
Ti(A) = Ak(A) — (”—‘—P) Ae—1(A4

s (525 ) () - )

() o)

Hence from (2.4), it follows that

Ti(A) < 0

fork=1,---  n.

Now let 4 be a nonnegative diagonal metrix on K, with A :=
diag(ay, -+ ,a:,0,---,0), and for a sufficiently small € > 0, let A(e) :=
diag(a; —¢€,--- ,a; — €,€',--- | ¢') where ¢ = te¢/(n —1). Then A(e) is a
positive diagonal matrix on K, and it follows that for each k — 1,---,n,

Te(4) = lim Te(A(e) < o.

It shows the conclusion also holds for nonnegative matrices, hence the
proof is completed.

Theorem 3.3 has the following corollary as « special case.
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COROLLARY 3.1. MP holds for any permutation matrix.

THEOREM 3.4. If A € K, satisfies the Dokovié inequality (1.2) for
eachk=1,--- ,n, then MD holds for A.

Proof. Let A € K,,. What we proved in the proof of the Theorem 3.3
enables us to assume that both the row sum vector K and the column
sum vector C of A are positive. Note that

A(A) = (Z) <5k(R) + Sk(C)) — 6karlA). (3.19)

We get from (3.19)

Te(A) = Ae(A) — (f—"—]’fi—l) Me_1(4)

= s () (550 - )

SHC)  n—k+1
+ Sl (k)<5k NN )
— bk Di(A),

where ‘
(n—k+1)*

Di(A) = ox(4) - T

Tk—1 (/’ )
From (2.4), it follows that

Tk(bA) < —5ka(A).
Thus if Dg(A) >0 foreachk=1,- - ,n, then
Tk(A) < 0»

which completes the proof.

Note that our Theorem 3.4 is a direct generalization of the Theorem

A
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