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ON THE SOLVABILITY OF THE NONLINEAR
FUNCTIONAL EQUATIONS IN BANACH SPACES

JONG S00 JUNG* AND JONG SEO PARK

1. Introduction

Let E be a real Banach space and let T be a (generally multivalued)
operator in E. We consider the nonlinear funcsional equation:

(E) feTu

The mapping theorems for the equation (F) with accretive opera-
tor T' in Banach spaces have been studied by Kartsatos [8], Kirk and
Schéneberg [10], and Morales [11]. The case of A-proper operator T
has been given by Webb [15].

On the other hand, for T = A + B with .1 and B two monotone
operators in Hilbert space H, the cquation (<) has been studied by
Brézis and Haraux [3], Brézis and Nirenberg [4], and Gupta and Hess [7].
In the case of accretive eperator in Banach spaces with T = 4 + B, the
equation (E) has been considered by Calvert and Gupta [5], Kartsatos
[91, Reich [12] and Torrején [13].

The purpose of this paper is to study the solvability of the equation
(E). In Section 2, we give preliminary definifions. In Scction 3, we
prove related two results (Theorem 1 and Corollary 1) concerning the
closedness property of accretive operators in the class of spaces whose
nonempty bounded closed convex subsets have the fixed point property
for nonexpansive self-mapping. Using Theoremn 1, we derive a result
(Theorem 2) on the range of accretive operators in (7); spaces with a
view to establishing a new result, which improves a result of Kartsatos
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[8] and Webb [15]. Further, we give an interesting consequence (Corol-
lary 3) of Theorem 2. In Section 4, we apply Corollary 1 to obtain
two results (Theorem 3 and 4) for the range of sums of two accretive
operators, which generalize two results of Reich [12].

2. Preliminaries
Let E be a real Banach space and let E* be its dual. The duality
mapping J : E — 2F" is defined by
J(z)={j € E*: (z,j) = ||l=|I* = |51},

and for each z and y in E we let

W, z]+ = sup{(y,5): j € J(z)}
and
[y, 2] = inf{(y,j) : 7 € J(x)}.

Since J(r) is a weak-star compact subset of E*, these values are actually
attained. Furthermore, the following relationships hold:

() [z +y,z]x <o, ]2 + [y, 2]4

(i) |lz, yl£l < llz|llly

(iii) [z + ay,yls = [z, y]x +ally||* foralla € R

(iv) [az, By]+ = aBlz,y]+ for all @, B € R witl. o - 8 > 0.

Let U = {z € E : ||z} = 1} be the unit sphere of E Then a Banach
space 1s saild to be smooth provided the limit

ty|l — ||
o ety e
t—0 i

exists for each z,y € U. In this case, the norm of E is said to be
Gateaux differentiable. The space E is said to be unifcrmly smooth (or
equivalently, E* is uniformly convex) if this limit is attained uniformly
for (z,y) € U x U. In this case, the space E is said to have uniformly
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Fréchet differentiable norm. Ii is well known that E is smooth if and
only if the duality mapping J is single valued.

Let I denote the identity operator. Recall that an operator A C
E x E with domain D(A) and range R(A) is said to be accretive if
lz1 — 22l < |2y = 72 + AMys — y2)|| for all [x;,4:] € 4,7 = 1,2, and
A > 0. A is accretive if and only if for any z; € D(A) and y; €
Azt = 1,2, there exists j € J(z; — z2) such that (y; — y2,7) > 0
(or equivalently if and only if for any z; € L(A4) and y; € Az,,i =
L,2,[y1 — y2, &y — 22]4 > 0). An accretive operator A is said to m-
accretive if R(I + AA) = E for all A > 0. For ¢n m-accretive operator
A, the resolvent J = (I4+XA)~' A > 0, is a sinyle valued nonexpansive
mapping which is defined on all of E.

Let C' be a nonempty closed convex subset of E. Then C is said
to have the fixed point property for nonexpansive self-mappings if for
every nonexpansive mapping 7' : C' — C| therc is a point p € C such
that T(p) = p. It is known that every bounded closed convex subset
of a uniformly smooth Banach space has the fxed point property for
nouexpansive self-mappings(cf. [6, P. 45]).

The closure, interior and boundary of D C E will be denoted by
c(D),int(D) and 0D, respectively. We will use B,(z) to denote the
open ball centered at r € E with radius » > 0.

3. The mapping theorem for accretive operators

We start proving a result concerning the closedness property of ac-
cretive operators.

THEOREM 1. Let E be a Banach space for which nonempty
bounded closed convex subset has the fixed point property for non-
expansive self-mappings, and f € E. If A C E x E is m-accretive,
Yn € Azp,{r,} is bounded and

(l) )‘nxn+!/7t:f+Arzg

for A\, — 0 as n — oo and some g € E, then there exists u € D(A)

such that f € Au, that is, f € R(A).
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Proof. Suppose that y, € Az, such that {z,} is bounded and satis-
fies (1). Let K = limsup,,_, . ||| and set

M = {z € E: limsup ||z, — z|| < K}.

n-—0cO

Then M is a nonempty bounded closed convex subset of E. Now let
C=A-f. Then JCz = J(z + f) for all z € E. Furthermore, M is
invariant under JC. In fact, since y, € Az, or 2, -+ yn € (I + A)xp,
we have 7, = J{ (2, + yn). So if € M, then by (1,

Iz = J7zll = 1772 + ya) = Iz + P
< |l(zn +yn) = (= + £
= [len =2l + [Anlllzn — g |

and hence

limsup ||z, — JICIL‘” <lhmsup |z, —z| <K
n—00 n—o0

because lim,, .o |A,|||z» — g|| = 0. This implies that J&z € M, that is,
JEM ¢ M. Thus by the nonexpansiveness of J £ anc hypothesis, there
u € M such that JCu = uor J{N(u+ f) = u. This give u+ f € (I+ A)u,
that is, f € Au.

Theorem 1 is an improvement of [16, Theorem 2] for multivalued op-
erators although it does require the existence of a subsequence {z,, } of
{zn} which converges to u. The following result is also an improvement

of [16, Theorem 1](cf. [12, Lemma 1.1]).

COROLLARY 1. Let E be a Banach space for which each nonempty
bounded closed convex subset has the fixed point property for non-
expansive self-mappings, and f € E. If A C E x E is m-accretive,
Yn € Azn,{zn} Is bounded and y,, — f as n — oo, then there exists

u € D(A) such that f € Au, that is, f € R(A).

Proof. The conclusion of this corollary follows from the proof of
Theorem 1.
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Using Theorem 1, we prove a theorem on tle range of accretive oper-
ators in (), spaces, which is analogous to Webb’s result (15, Theoremn
4]. For this purpose, we give the following detinitions.

A Banach space E is called a (7)1 space if there exists a sequence
of linear projections {P,}, each of norm one, with finite dimensional
range E, = P,FE satisfying E, C E, +1 anc such that P,z — z as
n — oo for each z in E. A mapping T : E — E is said to be A-proper
if P,T : E, — E, is continuous for each n and whenever {2n;} 15 a
bounded sequence with Ty, € E, and Py T n, = f € Easj— o0,
then there exists a subsequence {x 5ok }, say, which converges to a point
z satisfying Tz = f. A mapping T : E — E is called demicontinuous
if 2, -+ z implies that Tz, converges weakly to Tr. An operator
A C E x E is strongly accretive if 4 — A[ is accretive for some A > 0.

In (14, 15], Webb proved the following resu ts.

LEMMA 1([14]). Let E be a (), spac: with uniformly convex
dual E* and let T : E — E be demicontinuous and strongly accretive.
Then T is A-proper and R(T) = E.

LEMMA 2([15]). Let G be an open bounced subset of a (7)) space
E and let T : cl(G) — E be A-proper (with >bvious modifications of
the definition). Write G,, for G N Ey, an open subset of E,, and let 8G,,
denote its boundary in E,,. Suppose there exizt w € G and a sequernice
n; — oo such that, for all z € 0G,, and all t ¢ [0,1],

tP, Te + (1~ t)a # Py .

Then T(G') contains every pathwise connected «ubset of E that contains
w and does not intersect T(9G).

THEOREM 2. Let E be a (), space with uniformly convex dual
E* andlet T : E — E be demicontinuous and accretive. Suppose that
G is an open bounded neighborhood of x4 € E such that for some r > 0

(2) |Txo]| <r < ITx] for all z € 9G.
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Then cl(B,(0)) C R(T).

Proof. Without loss of generality, we may assume that o = 0in (2).
In fact, we may replace T by T" given by T’z = T(x + ) forall z € E.
Now we follow the argument of Webb in [15]. First suppose that T is
strongly accretive with constant ¢. Then it follows fromn Lemma 1 that
ul + T is A-proper for all g > 0. We claim that for all n sufficiently
large, and z € OGN E,, and t € [0, 1],

tP, Tz + (1 —t)x # 0.

Indeed, otherwise there would be sequence {¢;},0 <t <1and {z;} €
O0G N E; and such that

(3) t;PTx;+(1—t;)z, =0.

Clearly we cannot have t; = 0 for any such j. For this sequence {r;},
we have, using the fact that P*J(z) = J(z) for 2 € Ej (cf. [2]) and T

1s strongly accretive, we have
(PjTx; — PjTz, J(zj — 2)) > c|lzj — 2||* forall =€ E,.

and so ||z, — z|| < ||lz; + aPjTx; — (z + aP;Tz)| for all o > 0. From
this fact and (3), we have (the case t; = 1 is trivial)

1P Tz} < |2 T0))| < [T

That is, {P;Tx;} is uniformly bounded. Passing t¢ a subsequence,
we can suppose that t; — ty. The above fact shows ‘hat 1y # 0. For
0 < to < 1,since ((1—~1g)/te)I+T is A-proper, there exists a convergent
subsequence of {z;} whose limit € 0G satisfies (1 —tg)z + toTx =
0. This implies that ||Tz|| < ||7°(0)]] < r which contradicts to (2).
Since B.(0) is pathwise connected and never intersect:. T(9G), Lemma
2 implies that T(G) > B,(0), that is, B.(0) C R(T). In general case.
let A, = ;1; Then T, = A, I + T is strongly accretive. Moreover, for
r € 0G and s = sup{||z] : = € IG},

ITn(O)] < v = Ans < ||Tu(z)|
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for n sufficiently large. Thus T.(G) D B,_»,4(0) for all sufficiently
large n. Thus, given f € cl(B,(0)), there exists Tn € G such that

2s
/\nxn + 7111‘% = (1 - ‘—:)‘ﬂ)f
r

Therefore, by Theorem 1, there exists € E such that f =Tz, that is,
f e R(T).

Theorem 2 is an improvement of (8, Theorem 2] although those re-
sults do not require E to be a (7)1 space. In particular, we wish to
point out that E is not assumed to be uniformly convex. As a direct
consequence, we also have the following result, which is partially an
improvement of [15, Theorem 4],

COROLLARY 2. Let E be a(r), space with uniformly convex dual
E* and let T : E — E be demicontinuous anc accretive. Suppose that
there are positive constants r,s such that

I 7°(0)

<r < mf ||Tz|.
[l lf=

8

Then cl(B,(0)) C R(T).

We conclude this section with the following new result.

COROLLARY 3. Let E be a (m)1 space with uniformly convex dual
E* and let T : E — E be demicontinuous and accretive. Suppose that
for some § > 0 the set

F={reFE:|Tz| < &)
1s nonempty and bounded. Then cl(Bs(0)) C R(T).
Proof. Since F is nonempty and bounded, tlere exist 2y € E and an
open ball B, (z¢) for some p > 0 such that F ¢- B,(z¢). Therefore
[Tzo] < & < Tl for all x € dB,(z).
Then Theorem 2 implies that c{(Bs(0)) C R(T.
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4. The range of sums of accretive operators

In this section, we obtain two results for the range of sums of two
accretive operators. Applying Corollary 1, we prepzre the following
lemma in spirit of [3, Lemma 1](cf. [12]).

LEMMA 3. Let E be a Banach space, A C E x I an m-accretive
operator and F a subset of E. If there is a € E such that for all f € F

(4) sup [~ fya— 2]y < oo,
[z,w]€A

then f € cl(R(A)). If we assume further that each noaempty bounded
closed convex subset of E has the fixed point property for nonexpansive
self-mappings, then int(F) C R(A).

Proof Let f € F. For each r > 0, let u, € E be such that f €
Au, + ru,. By (4), there exist a € E and K € R such that
[w - fa a -— Z]+ < K

for all [z,w] € A. Taking z = u,,w = f—ru,, we have —ru,,a—u,J; <
K. This give that

rllur — a||2 <K +rla,a —u-
< K +rlalllla — urll

< K+ Se(llall* + llur = o).

Consequently, v/7]|u,|| is bounded as r — 0 and hence {ru,} — 0, as
r — 0, proving that f € cl(R(A)).

Next, suppose that f belongs to int(F). For each + > 0, let u, € £
be such that f € Au, + ru,. Now let p > 0 such that ||h|| < p implies
f+heF. Apply (4) to f + h and to [u,, f — ru;] < A. Then there
exist a € E and K(h) such that

[w—f—h,a—u)y =[-ru, = h,a—u]y < K(h).
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This gives that

(hur — aly < K(R)+ rlup,a—u,]_
= K(h) ~rlja — uf|®* + rla,a - U]

< K(B) = rlfa = url® + Sr(lall? + fla - u, )

1 .
< K(h)+ ;7‘”(1,”2.

Hence [h,u, — a]y is bounded as r — 0 by a constant depending on
k. Then {u,} is bounded as » — 0 by uniforn: boundedness principle.
Since f—ru, € Au, and ru, —» Qasr — 0, by Corollary 1, there exists

u € D(A) such that f € Au, that is, f € R(A)

Now we establish a theorem for the range of sums of accretive oper-
ators, which satisfy

(5) sup [w - fiy —z]y < x
[z,u]€A

for all f € R(A) and y € D(A).

For example if A is accretive and coercive i1 the sense that

i [w,z — y]

e el

wE A

— = o

for each y € D(A), then it satisties (5). For two subsets D; and D, of
E we write Dy ~ Dy if cl(Dy) = cl(D,) and ini (D) = int( D).

THEOREM 3. Let E be a Banach space for which each nonempty
bounded closed convex subset has the fixed pcint property for nonex-
pansive self-mappings. Let A and B be two «ccretive operator on E
that satisfy the condition (5). If A+ B is m-accretive, then R(A+B) ~
R(A)+ R(B).

Proof. 1t is clear that R(A + B) C R(A) + R(B). Let F = R(A) +
R(B). In order to apply Lemma 1 to A + B and F, it is necessary to
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verify the condition (4). In fact, let a € D(A) N D(B) be fixed and let
f € R(A)+ R(B), that is, f = f1 + f2 with f; € R(A) and f; € R(B).
Then, by the condition (5), we have

sup [w; — fr,a—z]3 <0
[z,w1]€A

and
sup [w2 — f2,a — z]4 < oo
[z,w2]EA
This gives that supy, ,jea4plw—f,a—z]; < oo. Thus ¥ C cl(R(A+B))
and int(R(A) + R(B)) C R(A + B) by Lemma 3. This completes the
proof.

Theorem 3 asserts that Theorem 1.4 1n {12] is tru: without the as-
sumptions of smoothness and reflexivity of the space F. Theorem 3 also
applies to all reflexive Banach spaces which possess normal structure.

DEFINITION 1. A Banach space E is said to hase Property (1) if
for any sequence {r,} C E and any sequence of positive numbers {ev, }
with a, — 0 as n — oo satisfying

(i) apr, — 0, and
(i1) for each h € B,(0) there exists a(h) € E and a constantC'(h)
such that

(h, 2, — a(l)]y < C(Rh),

it follows that {z,} is a bounded sequence (cf. [13]).

REMARK 1. Any Banach space whose duality mapping is uni-
formly continous on bounded sets satisfies Property ([)(cf. [1]).

LEMMA 4. Let E be a Banach space which satisfies Property
(), A C E x F an m-accretive operator and F a subset of E. If
for each f € F there is a(f) € E such that condition (4) holds, then
f € cl(R(A)). If we assume further that each nonempty bounded closed
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convex subset of E/ has the fixed point property for nonexpansive self-
mappings, then int(F) C R(A).

Proof. Let f € F. For cach r > 0, let u. € E be such that f ¢
Au, 4+ ru,. Then, using the notation of the pryof of Lemma 3, we have

rlles = a(HI* < KUY+ 5r(laCHI + flar - a(f)]).

Consequently, {ru,} — 0 as r -+ 0 and hence f € cI(R(A4)).

Next, suppose that f belongs to int(F). For each r > 0, let w, € E
be such that f € Au, 4+ ru,. Now let p > 0 such that HR]I < p implies
f+h € F. Again using the proof of Lemma 3, we also have

[hyuy —a()]y < K(R) + %7’ a(l))|*.

Thus {u,} is bounded by Property (I) and the result follows from Corol-
lary 1.

We close this section with the following result which slightly com-
plements Theorem 1.7 in [12].

THEOREM 4. Let E be a smooth Ban:ch space which satisties
Property (1), and suppose that each nonempty bounded closed convex
subset of E has the fixed point property for nonexpansive self-mappings.
Let A and B be two accretive operators in E such that D{A) C D(B)
and satisfies condition (5). If A+ B is m-accretive, then R(A)+ R(B) ~
R(A + B).

Proof. 1t is clear that R(A+ B) C R(A) + R(B). Let F = R(A) +
R(B). In order to apply Lemma 4 to A + B and F, it is nccessary to
verify the condition (4). Infact, let f € R(A)+R(B), thatis, f = fi+f,
with fi € R(A) and f; € R(B) and let a = a(f) € D(A) ¢ D(B) such
that f; € Aa and f, € Ba. By accretiveness of' A, we have

(wy = fi, Jla—z)) <(
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for all [z,w,] € A. On the other hand, by condition (5), there exists K
such that

(wy — fo, J(a—2)) < K

for all [z,w,] € B. This gives that sup|, ,jeaqp(w—f, J(a—2)) < +o0.
Thus the result follows from Lemma 4.

REMARK 2. Theorem 4 applies to all uniformly smooth Banach
spaces. In the case that E is a uniformly smooth Banach space, several
related results are given in [9] and [12]. Interesting applications of
related results are given in [5].
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