SPECTRAL ANALYSIS OF JACOBI POLYNOMIALS IN KREIN SPACE

S. S. HAN and K. H. KWON

1. Introduction

The Jacobi polynomials $\{P_n^{(\alpha,\beta)}(x)\}_{n=0}^{\infty}$ are polynomial solutions of the second order Strum-Liouville differential ϵ quation of the form

$$(x^{2}-1)y'' + [(\alpha+\beta+2)x + (\alpha-\beta)]y' = n(n+\alpha+\beta+1)y, \qquad n = 0, 1, \dots,$$

where α , β , and $\alpha + \beta + 1$ are not negative integers, and they are orthogonal with respect to the distributional weight

(1.1)
$$\omega(x) = (1-x)_+^{\alpha} (1+x)_+^{\beta}.$$

When $\alpha, \beta > -1, \omega(x)$ is a locally integrable function given by

(1.2)
$$\omega(x) = \begin{cases} (1-x)^{\alpha} (1+x)^{\beta}, & -1 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

When α or $\beta < -1$, a regularization of $(1-x)^{\alpha}(1+x)^{\beta}$ is required [7]. If $-N-1 < \alpha < -N$, $-M-1 < \beta < -M$, where N and M are positive integers, we have for any smooth function $\phi(x)$

$$\begin{split} \langle \omega, \phi \rangle = & \left(\frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)2^{\alpha + \beta + 1}} \right) \left(\int_{0}^{1} (1 - x)^{\alpha} \left((1 + x)^{\beta} \phi(x) \right)^{\beta} dx \\ & - \sum_{j=0}^{N-1} \frac{((1 + x)^{\beta} \phi(x))^{j}}{j!} \Big|_{x=1} (-1)^{j} (1 - x)^{j} \right) dx \\ & + \int_{-1}^{0} (1 + x)^{\beta} \left((1 - x)^{\alpha} \phi(x) \right)^{(k)} \\ & - \sum_{k=0}^{M-1} \frac{((1 - x)^{\alpha} \phi(x))^{(k)}}{k!} \Big|_{x=-1} (1 + x)^{k} \right) dx \end{split}$$

Received July 13, 1992.

$$+ \sum_{j=0}^{N-1} \frac{((1+x)^{\beta}\phi(x))^{(j)}}{j!} \Big|_{x=1} \frac{(-1)^{j}}{(\alpha+1+j)} + \sum_{k=0}^{M-1} \frac{((1-x)^{\alpha}\phi(x))^{(k)}}{k!} \Big|_{x=-1} \frac{1}{(\beta+1+k)}.$$

For the so called classical orthogonal polynomial sets, i.e. Jacobi, Laguerre, Hermite, and Bessel polynomials, all of which satisfy second order Sturm-Liouville differential equation of the form (see [5]),

$$(1.4) p(x)y'' + q(x)y' + r(x)y = \lambda y,$$

the spectral analysis of the associated Strum-Liouville problems is well advanced except for the Bessel polynomials and the Jacobi polynomials $\{P_n^{(\alpha,\beta)}(x)\}_{n=0}^{\infty}$ when α or $\beta<-1$ [5].

Recently the spectral theory for the Bessel polynomials in a suitable Krein space is partially developed using a hyperfunctional weight. In case of Jacobi polynomials $\{P_n^{(\alpha,\beta)}\}$ for α or $\beta < -1$, the regularization (1.3) generates an indefinite inner product $(f,g) = \langle \alpha, f\bar{g} \rangle$, in contrast to the ordinary inner product

(1.5)
$$(f,g) = \int_{-1}^{1} f(x) \overline{g(x)} (1-x)^{\alpha} (1+x)^{\beta} dx, \quad \alpha, \beta > -1.$$

In this work, we construct an appropriate indefinite inner product space (which turns out to be a Krein space) in which the Jacobi operator

(1.6)
$$\ell = (x^2 - 1)D^2 + [(\alpha + \beta + 2)x + (\alpha - \beta)]D$$

is self-adjoint and the Jacobi polynomials $\{P_n^{(\alpha,\beta)}(x)\}$ are complete with real discrete eigenvalues $n(n+\alpha+\beta+1), n=0,1,\ldots$

Since the analysis for distinct pairs of α and β are essentially the same, we study here the special case $-N-1 < \alpha$, $\beta < -N$ and $-2N-1 < \alpha + \beta + 1 < -2N$, N is an even integer.

2. Spectral Analysis

In [7] it was shown that the Jacobi polynomials $\{P_n^{(\alpha,\beta)}(x)\}_{n=0}^{\infty}$ are orthogonal with respect to the sesquilinear form

$$(2.1) (f,g) = \langle \omega, f\bar{g} \rangle,$$

and

$$(2.2) \qquad (P_n^{(\alpha,\beta)}(x), P_m^{(\alpha,\beta)}(x)) \\ = \frac{\Gamma(\alpha+\beta+2)\Gamma(\alpha+1+n)\Gamma(\beta+1+n)}{\Gamma(\alpha+1)\Gamma(\beta+1)\Gamma(\alpha+\beta+1+n)\Gamma(\alpha+\beta+1+2n)n!} \delta_{mn}, \\ m, n \ge 0$$

where δ_{mn} is the Kroneker delta.

It naturally leads us to define spaces J^{\pm} to be the span of

$$\{P_n^{(\alpha,\beta)}\mid (P_n^{(\alpha,\beta)},)>0\} \text{ and } \{P_n^{(\alpha,\beta)}\mid (P_n^{(\alpha,\beta)},P_n^{(\alpha,\beta)})<0\},$$

respectively.

Precisely, when N = 2M, J^+ is spanned by

$$P_{2k+1}^{(\alpha,\beta)}(x), \quad k = 0, 1, \dots, M-1,$$

 $P_{2k}^{(\alpha,\beta)}(x), \quad k = M+1, M+2, \dots, 2M,$

and

$$P_n^{(\alpha,\beta)}(x), \quad n = 4M + 1, 4M + 2, \dots$$

 J^- is spanned by

$$P_{2k}^{(\alpha,\beta)}(x), \quad k=0,1,\ldots,2M,$$

and

$$P_{2k+1}^{(\alpha,\beta)}(x), \quad k=M+1,M+2,\ldots,2M-1.$$

On the space $J = J^+ \oplus J^-$, define a new positive definite inner product by

$$[f,g] = \sum_{n=0}^{\infty} (f, e_n^{(\alpha,\beta)})(e_n^{(\alpha,\beta)}, g)$$

where

$$e_n^{(\alpha,\beta)}(x) = |(P_n^{(\alpha,\beta)}, P_n^{(\alpha,\beta)})|^{\frac{-1}{2}} P_n^{(\alpha,\beta)}(x)$$

is the normalization of $P_n^{(\alpha,\beta)}(x)$. Then [f,g]=(f,g) on J^+ and [f,g]=|(f,g)| on J^- and the space J with $[\cdot,\cdot]$ becomes a pre-Hilbert space. Let K^{\pm} be the completions of J^{\pm} respectively with respect to $[\cdot,\cdot]$ and let $K=K^+\oplus K^-$.

We note that

$$K^{+} = \left\{ \sum_{n=0}^{\infty} c_{n} e_{n}^{(\alpha,\beta)} \mid e_{n}^{(\alpha,\beta)} \in J^{+}, \sum_{n=0}^{\infty} |c_{n}|^{2} < \infty \right\},$$

$$K^{-} = \left\{ \sum_{n=0}^{\infty} c_{n} e_{n}^{(\alpha,\beta)} \mid e_{n}^{(\alpha,\beta)} \in J^{-}, \sum_{n=0}^{\infty} |c_{n}|^{2} < \infty \right\},$$

and

$$K = \left\{ \sum_{n=0}^{\infty} c_n e_n^{(\alpha,\beta)} \mid \sum_{n=0}^{\infty} |c_n|^2 < \infty \right\}.$$

Moreover, the space K with the indefinite inner product (\cdot, \cdot) (resp. $[\cdot, \cdot]$) is a Krein space (resp. a Hilbert space). For more details on Krein spaces, we refer to Bognar [1].

The Jacobi operator ℓ in (1.6) is densely defined symmetric operator in K with domain J given by

(2.4)
$$\ell f = \sum_{n=0}^{N} n(n+\alpha+\beta+1)c_n e_n^{(\alpha,\beta)},$$

for any
$$f = \sum_{n=0}^{N} c_n e_n^{(\alpha,\beta)}$$
 in J .

Define another linear operator L in K by

(2.5)
$$Lf = \sum_{n=0}^{\infty} n(n+\alpha+\beta+1)c_n e_n^{(\alpha,\beta)},$$

for any $f = \sum_{n=0}^{\infty} c_n e_n^{(\alpha,\beta)}$ in D, where

$$D = \left\{ \sum_{n=0}^{\infty} c_n e_n^{(\alpha,\beta)} \in K \mid \sum_{n=0}^{\infty} |n(n+\alpha+\beta+1)|^2 < \infty \right\}.$$

Since $J \subset D$, L is also densely defined in K.

LEMMA 1. L is symmetric, that is, for any f and g in D

(2.6)
$$(Lf, g) = (f, Lg).$$

Proof. This is straightforward.

LEMMA 2. For any complex number $\lambda \neq n(n+\alpha+\beta+1)$, $n \geq 0$ integer, $(L-\lambda I)D = K$ and $L-\lambda I$ has an inverse which is bounded with respect to $[\cdot, \cdot]$ and so the operator L is self-adjoint in K.

Proof. For any $g = \sum_{n=0}^{\infty} d_n e_n^{(\alpha,\beta)}$ in K, consider $(L - \lambda I)f = g$. If $f = \sum_{n=0}^{\infty} c_n e_n^{(\alpha,\beta)}$, then we have

(2.7)
$$c_n = \frac{d_n}{n(n+\alpha+\beta+1)-\lambda}, \qquad n \ge 0.$$

For any $\lambda \neq n(n+\alpha+\beta+1)$, $n \geq 0$, both $\sum_{0}^{\infty} |c_n|^2$ and $\sum_{0}^{\infty} |n(n+\alpha+\beta+1)c_n|^2$ are finite so that f must be in D. Moreover, if we set $\frac{1}{\varepsilon} = \inf_{n\geq 0} |\lambda - n(n+\alpha+\beta+1)| > 0$, then $\sum_{0}^{\infty} |c_n|^2 \leq \varepsilon^2 \sum_{0}^{\infty} |d_n|^2$, so that $(L-\lambda I)^{-1}$ is bounded and for such real λ , $(L-\lambda I)^{-1}$ is self-adjoint since it is defined on the whole space K. Thus L is also self-adjoint.

As a consequence of Lemma 1 and Lemma 2, we now have

S. S. Han and K. H. Kwon

THEOREM 3. (a) L is a self-adjoint extension of ℓ in K.

- (b) The spectrum of L consists of only eigenvalues $n(n + \alpha + \beta + 1)$, $n \geq 0$, with multiplicity 1 and Jacobi polynomials $\{P_n^{(\alpha,\beta)}(x)\}$ as corresponding eigenfunctions.
 - Proof. (a) This is immediate consequence of Lemma 2.
- (b) Since $LP_n^{(\alpha,\beta)}(x) = n(n+\alpha+\beta+1)P_n^{(\alpha,\beta)}(x)$, $n \geq 0$ and there are no other points in the spectrum of L, for if $\lambda \neq n(n+\alpha+\beta+1)$, $n \geq 0$ integer, then $(L-\lambda I)$ is invertible and its range coincides with K, hence the spectrum of L consists of only eigenvalues $n(n+\alpha+\beta+1)$, $n \geq 0$, with single corresponding eigenfunction $P_n^{(\alpha,\beta)}$.

References

- 1. J. Bognar, Indefinite inner product spaces, Springer-Verlag, New York, 1974.
- W.N. Everitt and L.L. Littlejohn, Orthogonal polynomials and spectral theory, Proc. 3rd Int'al Symp. on orthogonal polynomials and their Applications, IMACS Vol. 9, J.C. Baltzer, Basel (1991), 21-55.
- 3. S.S. Han and K.H. Kwon, Spectral Analysis of Bessel polynomials in Krein space, Quaestiones Math. 14(3) (1991), 327-335.
- 4. A.M. Krall, Laguerre polynomial expansions in indefinite inner product spaces, J. Math. Anal. Appl. 70 (1979), 267-279.
- A.M. Krall and L.L. Littlejohn, Orthogonal polynomials and singular Sturm-Lio uville systems I, Rocky Mt. J. Math. 16 (1986), 435-479.
- 6. _____, Orthogonal polynomials and higher order singular strum-Liouville systems, Acta. Appl. Math. 17 (1989), 99-170.
- 7. R.D. Morton and A.M. Krall, Distributional Weight functions for orthogonal polynomials, SIAM J. Math. Anal. 9 (1978), 604-626.

DEPARTMENT OF MATHEMATICS, KAIST, TAEJON 305-701, KOREA