MULTIPLICATIVE GROUP IN A FINITE RING

JUNCHEOL HAN

1. Introduction and basic definitions

Let R be a finite ring with identity 1 and let G denote the multiplicative group of all units of R. An element e in R is said to be idempotent if $e^2 = e$. A nonzero idempotent is said to be primitive if it cannot be written as the sum of two orthogonal nonzero idempotents.

In [4], Artinian proved that if R is a semisimple Artinian ring, then R is isomorphic to a direct product of finite number of matrix rings over division rings. In particular, if R is finite, then we obtain the following;

THEOREM 1.1. (Wedderburn-Artin's Structure Theorem for a finite ring)

If R is a finite ring and J is the Jacobson radical of R, then $R/J \cong \bigoplus_{i=1}^{n} M_{i}$ where M_{i} is the ring of all $n_{i} \times n_{i}$ matrices over a finite field F_{i} .

In this paper, we will show that the multiplicative group G in a finite ring R with identity 1 has a (B, N)-pair satisfying the following conditions;

- (1) G = BNB where B and N are subgroups of G.
- (2) $B \cap N$ is a normal subgroup of N and $W = N/(B \cap N)$, is generated by a set $S = \{s_1, s_2, \ldots, s_i\}$ where $s_i \in N/(B \cap N)$, $s_i^2 \equiv 1$ and $s_i \neq 1$.
- (3) For any $s \in S$ and $w \in W$, we have $sBw \subset BwB \cup BswB$.
- (4) We have $sBs \not\subseteq B$ for any $s \in S$.

When G, B, N and S satisfy the above conditions, we say that the quadruple (G, B, N, S) is a Tits system. The group W is called the Weyl gorup of the Tits system.

Received June 23, 1992.

2. Muultiplicative group in a matrix ring over a (finite) field

Let $R = M_n(F)$ be the ring of all $n \times n$ matrices over a (finite) field F and let G the multiplicative group of R. Let F be the set of all primitive idempotents in F and let F be the set of all right ideals in F which is generated by the subset F of F such that each member of F is orthogonal to another. Let F be the set of all chains in F be a subset of F satisfying that F be of or F and F are F and F and F and F are F and F and F are F are F and F are F and F are F and F are F are F and F are F are F and F are F and F are F and F are F are F and F are F and F are F and F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F are F and F are F and F are F and F are F a

Let \sum_{Δ} be the set of all chains in $\Delta(E)$ constructed by \sum . Pick a maximal chain c in \sum_{Δ} ;

$$c: e_1R + \ldots + e_{n-1}R \supset e_1R + \ldots + e_{n-2}R \supset \ldots \supset e_1R.$$

For each $g \in G$, define g(C) by

$$g(e_1R + \ldots + e_{n-1})R \supset g(e_1R + \ldots + e_{n-2}R) \supset \ldots \supset g(e_1R).$$

Note that by the Proposition 3 in [6,pp 77], g(C) is also a maximal chain in $\Delta(E)$ constructed by a set $\{f_1, f_2, \ldots, f_i\}$ satisfying that $f_i f_j = 0$ for $i \neq j$ and $f_1 + f_2 + \ldots + f_n = 1$ where $f_i = g e_i g^{-1}$ for each $i = 1, 2, \ldots, n$.

LEMMA 2.1. Let R be the ring of all $n \times n$ matrices over a (finite) field F and let G the multiplicative group of R. Let $B = \{g \in G : g(C) = C\}$. Then B is a subgroup of G and $B = \{g \in G : g \text{ is upper-triangular}\}$.

Proof. Let $g = (g_{ij}) \in B$. Without loss of generality, we may take $e_i = E_{ij} = (a_{ij})$ where $a_{ij} = 1$ and $a_{ij} = 0$ for $i \neq j (1 \leq i, j \leq n)$, which is assured by the Proposition 3 in [6,p-77]. From the equality q(C) = C, we have

$$g(e_1R) = e_1R - (1)$$

$$g(e_1R + e_2R) = e_1R - (2)$$
......
$$g(e_1R + \dots + e_{n-1})R = e_1R + \dots + e_{n-2}R - (n-1).$$

Multiplicative Group in a Finite Ring

From the equality (1), $g_{1j} = 0$ for $2 \le j \le n$. From the equality (2), $g_{2j} = 0$ for $3 \le j \le n$. By induction on n and the equality (n-1), $g_{ij} = 0$ for $i \le j \le n$. Hence $g = (g_{ij})$ is upper-triangular. On the other hand, it is clear that g(C) = C for all upper-triangular $g \in G$. Consequently, $B = \{g \in G : g \text{ is upper-triangular}\}$ and clearly, B is a subgroup of G.

LEMMA 2.2. Let R be the ring of all $n \times r$ matrices over a (finite) field F and let G the multiplicative group of R. Let $N = \{g \in G : g(\sum_{\Delta}) = \sum_{\Delta}\}$. Then N is a subgroup of G and $N = \{g \in G : g \text{ has only one nonzero entry for each row}\}.$

Proof. Clearly, N is a subfroup of G. Let $j = (g_{ij}) \in N$. Without loss of generality, we may assume that the first row of g has two nonzero entries $g_{1r}, g_{1s} (1 \le r < s \le n)$. Let C be a maximal chain in \sum_{\triangle} ;

$$C: e_1R + \ldots + e_{r-1}R + e_{r+1}R + \ldots + e_sR + \ldots + e_nR \supset \ldots \supset e_1R.$$

Then we have $g(e_1R + \ldots + e_{r-1}R + e_{r+1}R + \ldots + e_sR + \ldots + e_nR) = R$, which means that g(C) is not a maximal chain in \sum_{\triangle} , a contraction.

On the other hand, it is clear that if $g \in G$ has only one nonzero entry for each row, then $g(\sum_{\Delta}) = \sum_{\Delta}$. Hence we have the result.

LEMMA 2.3. Let R be the ring of all $n \times n$ matrices over a (finite) field F and let G the multiplicative group of R. Let $N_G(D) = \{g \in G : gDg^{-1} \subseteq D\}$ where $D = \{a \in R : a \text{ is diagonal matrix}\}$. Then $N_G(D) = N$ where N is given in Lemma 2.2.

Proof. First, we will show that $N \subseteq N_G(L^i)$. Indeed, For any $g = (g_{ij}) \in N, d = (d_{ij}\delta_{ij}) \in D$ and $g^{-1} = (h_{ij})$, we have

$$gdg^{-1} = \sum_{k=1}^{n} (g_{ik}h_{kj})d_{kk} = ((g_{is}h_{sj})d_{ss}) \text{ (for some } s, 1 \le s \le n)$$
$$= \sum_{k=1}^{n} (g_{ik}h_{kj})d_{ss} = (d_{ss}\delta_{ij}) \in D.$$

Hence $g \in N_G(D)$. Assume that $N \neq N_G(D)$. Then there exists $g = (g_{ij}) \in N_G(D) \setminus N$. Without loss of generality, we may assume that

Juncheol Han

some row of g, say i-th row, has two non-zero entries $g_{ir}, g_{is} (1 \le r < s \le n)$. Choose a diagonal matrix $d = (d_{ij}\delta_{ij})$ so that $d_{ii} = 0$ for $i \ne r$, s and $d_{rr}, d_{ss} \ne 0$ and $d_{rr} \ne d_{ss}$. Since $g \in N_G(D)$, there exists $d_1 = (x_{ij}\delta_{ij}) \in D$ such that $gd = d_{1g} - (*)$. Note that (i, r)-entry of $gd = g_{ir}d_{rr}$, (i, s)-entry of $gd = g_{is}d_{ss}$, (i, r)-entry of $d_{1g} = x_{ii}g_{rr}$ and (i, s)-entry of $d_{1g} = x_{ii}g_{ss}$. From (*), we have $d_{rr} = a_{ii}$ and $d_{ss} = x_{ii}$, and so $d_{rr} = d_{ss}$, a contraction. Hence $N = N_G(D)$.

PROPOSITION 2.4. Let R be the ring of all $n \times n$ matrices over a (finite) field F and let G the multiplicative group of R. Let $B = \{g \in G : g(C) = C\}$ and $N = \{g \in G : g(\sum_{triangle}) = \sum_{\triangle}\}$. Then G = BNB.

Proof. Let g be any element in G. To make each row of G have different number of zeroes beginning from the left, consider an invertible matrix obtained from g by means of a sequence of elemently row operation which is defined by replacing i-th row with i-th row $+a \cdot (j$ -th row) for some nonzero $a \in F(i < j)$. Note that the matrices obtained from identity matrix by the operations given above are upper-triangular, and so $bg = g_1$ for some $b \in B$ by Lemma 2.1.

Next, we can make an invertible matrix obtained from g_1 by means of a sequence of some rotation of two rows be upper-triangular. Note that the matrices obtained from identity matrix by the operations given above are contained in N by Lemma 2.2. Hence $ng = nbg = b_1$ for some $b_1 \in B$, so $g = (nb)^{-1}b_1 = b^{-1}n^{-1}b_1 \in BNB$.

PROPOSITION 2.5. Let R be the ring of all $n \times r$ matrices over a (finite) field F and let G the multiplicative group of R. Let $B = \{g \in G : g(C) = C\}$ and $N = \{g \in G : g(\sum_{\triangle}) = \sum_{\triangle}\}$. Then $B \cap N$ is a normal subgroup of G.

Proof. It is clear from Lemma 2.1 and Lemma 2.2 to show that $B \cap N = G \cap D$. For all $n \in N$ and all $a \in B \cap N$, $nan^{-1} \in D$ since $a \in D$ and $n \in N$. Clearly, $nan^{-1} \in G$. Hence $nan^{-1} \in G \cap D = B \cap N$, and so $B \cap N$ is a normal subgroup of G.

PROPOSITION 2.6. Let R be the ring of all $n \times r$ matrices over a (finite) field F and let G the multiplicative group of R. Let $B = \{g \in G : g(C) = C\}$ and $N = \{g \in G : g(\sum_{\triangle}) = \sum_{\triangle}\}$. Then $N/(B \cap N)$

is generated by a set $S = \{s_1, s_2, ..., s_k\}$ for some positive integer k where $s_i \in N/(B \cap N)$, $s_i^2 \equiv 1$ and $s_i \neq 1$.

Proof. Let t_{ij} be the matrix obtained by interchanging two defferent rows, *i*-th and *j*-th rows, on the identity matrix *I*. Then $t_{ij}^2 = I$ and $t_{ij} \neq I$. Let $s_{ij} = t_{ij}(B \cap N)$. Since $t_{ij} \in N/(B \cap N)$.

We will show that $N/(B \cap N)$ is generated by the set $\{s_{ij}|1 \leq i, j \leq n, i \neq j\}$. Let $n(B \cap N) \in N/(B \cap N)$ and $t = (d_{ij}\delta_{ij}) \in B \cap N$ where d_{ii} is the inverse of nonzero entry of i-th column of n. Then nt can be expressed by a product of some elements of $\{i_{ij}|1 \leq i, j \leq n, i \neq j\}$. Therefore, $nt(B \cap N) = (n(B \cap N))(t(B \cap N))$ can by also expressed by a product of some element of $\{s_{ij}|1 \leq i, j \leq n, i \neq j\}$.

COROLLARY 2.7. Let R be the ring of all $n \times n$ matrices over a (finite) field F and let G the multiplicative group of R. Let $B = \{g \in G : g(C) = C\}$ and $N = \{g \in G : g(\sum_{\triangle}) = \sum_{\triangle}\}$. Then $N/(B \cap N)$ is generated by a set $S_0 = \{s_{ii+1} | i = 1, 2, ..., n-1\}$ where $s_{ii+1} = t_{ii+1}(B \cap N) \in N/(B \cap N)$ and t_{ii+1} be the matrix obtained by interchanging two rows, i-th and i + 1-th rows on the identity matrix I.

Proof. Since the symmetric group S_n of degree n is generated by all the n-1 transposition (i i + 1) for i = 1, 2, ..., n-1, each s_i in the set S given in Proposition 2.6 is generated by S_0 .

DEFINITION 2.8. An element $s_{ij} \in W = N/(B \cap N)$ satisfying $s_{ij}^2 \equiv 1$ and $s_{ij} \not\equiv 1$ (1 is an identity of W) is called the involution with respect to B. The group W generated by the involutions is called the Weyl group of the \sum_{\triangle} .

The equality G = BNB which is proved in proposition 2.4 shows that G is a union of the double cosets with respect to (B, B) and that we can take an element of N as representative from each (B, B)-double coset. For $w = n(B \cap N) \in W$, we can define BwB = BnB. We also use notations such as Bw = Bn when $w = n(E \cap N)$.

PROPOSITION 2.9. Let R be the ring of al. $n \times n$ matrices over a (finite) field F and let G the multiplicative group of R. Let $B = \{g \in G : g(C) = C\}$ and $N = \{g \in G : g(\sum_{\triangle}) = \sum_{\triangle}\}$. Then $s_{ij}Bs_{ij} \subseteq B$

Juncheol Han

for any $s_{ij} \in S$, a generating set for $W = N/(B \cap N)$ given in the proof of proposition 2.6.

Proof. Assume that there exists some $s_{ij} \in S$ such that $s_{ij}Bs_{ij} \subseteq B$. Let $s_{ij} = t_{ij}(B \cap N)$ where t_{ij} is the matrix obtained by interchanging two rows, *i*-th and *j*-th rows (i < j), on the identity natrix *I*. Choose $b \in B$ so that (i,j)-entry of $b = b_{ij} \neq 0$. Then $t_{ij} \partial t_{ij}^{-1} \notin B$. Hence $s_{ij}Bs_{ij}^{-1} = s_{ij}Bs_{ij} \nsubseteq B$ for any $s_{ij} \in S$.

PROPOSITION 2.10. Let R be the ring of all $n \times n$ matrices over a (finite) field F and let G the multiplicative group of R. Let $B = \{g \in G : g(C) = C\}$ and $N = \{g \in G : g(\sum_{\triangle^+} = \sum_{\triangle}\}$. Then $sBw \subset BsB \cup BswB$ for any $s \in S$, a generating set for W, and for any $w \in W$.

Proof. Since W is generated by $S, w = s_1 s_2 \dots s_k$ for some $s_i \in S$ and positive integer $k(i = 1, 2, \dots, k)$. We will prove the result by induction on k. By straight forward calculation, $sBs_1 \subset BsB$ if $s = s_1$ and $sBs_1 \subset Bss_1B$ if $s \neq s_1$. Moreover, $sBs_1s_2 \subset BsB$ if $s = s_1 = s_2$ and $sBs_1s_2 \subset Bss_1s_2B$ otherwise. Hence by induction on k, $sBw = sBs_1s_2 \dots s_k \subset BsB$ if $s = s_i$ for all $i = 1, 2, \dots, k$ and $sBw \subset BswB$ otherwise.

DEFINITION 2.11. Let G be a group. Two subgroups B and N of G are said to be a (B, N)-pair of G if the following conditions are satisfied:

- (1) G = BNB where B and N are subgroups of G.
- (2) $B \cap N$ is a normal subgroup of N and $W = N/(B \cap N)$ is generated by the set $S = \{s_1, s_2, \ldots, s_k\}$ where $s_i \in W$, $s_i^2 \equiv 1$ and $s_i \not\equiv 1$ (1 is the identity of W).
- (3) For any $s \in S$ and $w \in W$, we have $sBw \subset BwB \cup BswB$.
- (4) For any $s \in S$, we have $sBs \nsubseteq B$.

When G, B, N, and S satisfy the above conditions, we say that the quadruple (G, B, N, S) is a Tits system. The group W is called the Weyl group of the Tits system.

In this section, we have shown that if R is the ring of all $n \times n$ matrices over a (finite) field F and G is the multiplicative group of R, then there is a Tits system (G, B, N, S).

COROLLARY 2.12. If G is the multiplicative group of a finite semisimple ring R, then there is a Tits system (G, B, N, S).

Proof. By Theorem 1.1, $R \cong \bigoplus_{i=1}^n M_i$ where M_i is the matrix ring of all $n_i \times n_i$ matrices over a finite field F_i . For the simplicity of notation, we can assume that $R = \bigoplus_{i=1}^n M_i$. Let G_i be the multiplicative group of M_i for each i = 1, 2, ..., n. By the above argument, there is a Tits system (G_i, B_i, N_i, S_i) for each i = 1, 2, ..., n.

Note that $G = \bigoplus_{i=1}^n G_i$. Let $B = \bigoplus_{i=1}^n B_i$, $N = \bigoplus_{i=1}^n N_i$, and $S = \bigoplus_{i=1}^n S_i$. It is easy to show that (G, B, N, S) is a Tits system for G.

3. Multiplicative Group in a Finite Ring with Identity

In this section, we will show that in the multiplicative group G of a finite ring with identity 1, there is a Tits system (G, B, N, S).

LEMMA 3.1. Let R be a finite ring with identity 1, let J the Jacobson radical of R, let G the multiplicative group of R and let \overline{G} the multiplicative group of $\overline{R} = R/J$. Then $g \in G$ if and only if $g + J \in \overline{G}$.

Proof. (\Rightarrow) Clear.

(\Leftarrow) Suppose that $\overline{g} = g + J \in \overline{G}$. Then there exists $\overline{h} = h + J$ such that $\overline{gh} = \overline{hg} = \overline{1}$ (where $\overline{1}$ is the identity of \overline{G}), and so 1 - gh and $1 - hg \in J$. Since J is a two-sided quasi-left ideal of R and R has identity 1, 1 - (1 - gh) = gh and 1 - (1 - hg) = hg are invertible in G by Theorem 2.3 through Lemma 2.8, in [4, pp.426-428]. Hence (gh)x = y(hg) = 1 for some x and $y \in G$. Therefore, $g \in G$.

LEMMA 3.2. Let $\phi: A \to B$ be a ring homomorphism which is onto. If P and Q are subsets of B, then $\phi^{-1}(PQ) = \phi^{-1}(P)\phi^{-1}(Q)$.

Proof. If $a \in \phi^{-1}(PQ)$, then $\phi(a) \in PQ$, $\phi(a) = pq$ for some $p \in P$ and $q \in Q$. Since ϕ is onto, there exist p_0 and $q_0 \in A$ such that $\phi(p_0) = p$ and $\phi(q_0) = q$. Then $\phi(a) = \phi(p_0)\phi(q_0) \in \phi(\phi^{-1}(P)\phi^{-1}(Q))$, and so $a \in \phi^{-1}(P)\phi^{-1}(Q)$.

If $a \in \phi^{-1}(P)\phi^{-1}(Q)$, then a = xy for some $x \in \phi^{-1}(P)$ and $y \in \phi^{-1}(Q)$. Thus $\phi(a) = \phi(xy) = \phi(x)\phi(y) \in PQ$, and so $a \in \phi^{-1}(PQ)$.

Juncheol Han

PROPOSITION 3.3. Let R be a finite ring with identity and G be the multiplicative group of R. Then G has a (B^*, N^*) -pair satisfying the following conditions;

- (1) $G = B^*N^*B^*$ where B^* and N^* are subgroups of G.
- (2) $B^* \cap N^*$ is a normal subgroup of N^* and $W^* = N^*/(B^* \cap N^*)$ is generated by a set $S^* = \{s_1^*, s_2^*, \dots, s_k^*\}$ where $s_i \in N^*/(B^* \cap N^*)$, $s_i^{*2} \equiv 1$ and $s_i^* \not\equiv 1$.
- (3) For any $s^* \in S^*$ and $w^* \in W^*$, we have $s^*B^*w^* \subset B^*w^*B^* \cup B^*s^*w^*B^*$.
- (4) We have $s^*B^*s^* \not\subseteq B^*$ for any $s^* \in S^*$.

Proof. Let $\pi: R \to \overline{R} = R/J$ be the canonical ring homomorphism where J is the Jacobson radical of R. For any $g \in G$, $\pi(g) = g + J = \overline{g} \in \pi(G) = \overline{G}$ by Lemma 3.1. By Corollary 2.12, $\overline{G} = BNB$ for some subgroups B and N of G. Thus it follows from Lemma 3.2 that $g \in \pi^{-1}(\overline{G}) = \pi^{-1}(BNB) = \pi^{-1}(B)\pi^{-1}(N)\pi^{-1}(B)$. Hence $G = \pi^{-1}(B)\pi^{-1}(N)\pi^{-1}(B)$. Clearly, $B^* = \pi^{-1}(B)$ and $N^* = \pi^{-1}(N)$ are subgroups of G. If $n \in N^*$ and $a \in B^* \cap N^*$, then $\pi(n) \in N$ and $\pi(a) \in B \cap N$. Note that $\pi(n)\pi(a)\pi(n)^{-1} = \pi(nan^{-1}) \in B \cap N$ since $B \cap N$ is a normal subgroup of N. Thus $nan^{-1} \in \pi^{-1}(B \cap N) = \pi^{-1}(B) \cap \pi^{-1}(N) = B^* \cap N^*$, and so $B^* \cap N^*$ is a normal subgroup of N^* .

Let $n_0(B^*\cap N^*)$ be arbitrary element of $N^*/(B^*\cap N^*)$. By Corollary 2.12, $N/(B\cap N)$ is generated by a subset $S=\{\overline{s}_1,\overline{s}_2,\ldots,\overline{s}_k\}$. of $N/(B\cap N)$ where $s_i^2\equiv 1$ and $s_i\not\equiv 1$. Let $n=\pi(n_0)\in N$. Then $n(B\cap N)$ can be a finite product of elements of S, say $n(B\cap N)=\overline{s}_1\cdot\overline{s}_2\ldots\overline{s}_t=s_1\cdot s_2\ldots s_t(B\cap N)$ where $\overline{s}_i=s_i(B\cap N)$, $i=1,2,\ldots,i$ for some positive integer t. Note that $n(s_1\cdot s_2\ldots s_t)^{-1}\in B\cap N$. Since π is onto, there exists $s_i^*\in N^*$ such that $\pi(s_i^*)=s_i$ for each $i=1,2\ldots t$. Thus $n(s_1\cdot s_2\ldots s_t)^{-1}=\pi(n_0)\pi(s_1^*\cdot s_2^*\ldots s_t^*)^{-1}=\pi(n_0(s_1^*\ldots s_t^*)^{-1})\in (B\cap N,$ and hence $n_0(s_1^*\cdot s_2^*\ldots s_t^*)^{-1}=\pi^{-1}(B\cap N)=B^*\cap N^*$, $n_0(B^*\cap N^*)=(s_1^*\cdot s_2^*\ldots s_t^*)(B^*\cap N^*)=s_1^*(B^*\cap N^*)\cdot s_2^*(B^*\cap N^*)\ldots s_t^*(B^*\cap N^*)$, which means that $n_0(B^*\cap N^*)$ can be a finite product of elements of $S=\{\overline{s}_1^*,\overline{s}_2^*,\ldots,\overline{s}_k^*\}$. Therefore, $N^*/(B^*\cap N^*)$ is generated by a subset $S^*=\{s_1^*,s_2^*,\ldots,s_k^*\}$.

Since $\overline{s}B\overline{s} \nsubseteq B$ for any $\overline{s} \in S$, it is easy to show that $\overline{s}^*B\overline{s}^* \nsubseteq B^*$

Multiplicative Group in a Finite Ring

for any $\overline{s} \in S^*$. It remains to show that $\overline{s}^*B\overline{w}^* \subset B^*\overline{w}^*B^* \cup B^*\overline{s}^*\overline{w}^*B^*$ for any $\overline{s}^* \in S^*$ and $\overline{w}^* \in W^*$. Let $\pi(\overline{s}^*) = \overline{s}$ and $\pi(\overline{w}^*) = \overline{w}$ for any $\overline{s}^* \in S^*$ and $\overline{w}^* \in W^*$. Then $\overline{s} \in S$ and $\overline{w} \in W$, and so by Corollary 2.12, we have $\overline{s}B\overline{w} \subset B\overline{w}B \cup B\overline{s}\overline{w}B$. Hence it follows from Lemma 3.2 that $\overline{s}^*B^*\overline{w}^* \subset \pi^{-1}(\overline{s})\pi^{-1}(B)\pi^{-1}(\overline{w}) = \pi^{-1}(\overline{s}B\overline{w}) \subset \pi^{-1}(B\overline{s}B \cup B\overline{s}\overline{w}B) \subset \pi^{-1}(B\overline{s}B) \cup \pi^{-1}(B\overline{s}\overline{w}B) = \pi^{-1}(B)\pi^{-1}(\overline{s})\pi^{-1}(B) \cup \pi^{-1}(B)\pi^{-1}(\overline{s})\pi^{-1}(\overline{w})\pi^{-1}(B) = B^*\overline{w}^*B^* \cup B^*\overline{s}^*B^* \cup B^*\overline{s}^*\overline{w}^*B^*.$

References

- 1. Anderson, F.W. and Fuller, K.R., Rings and Category of Modules, New York, Springer-Verlag, 1974.
- 2. Cohen, J and Koh, K., The subring Generated by the Units in a Compact Ring, Communications in Algebra . 18(5) (1990), 1617-1620.
- 3. Cohen, J and Koh, K., The Group of Units in a Compact Ring, Journal of Pure and Applied Algebra 54 (1988), 167-179.
- 4. Hungerford, T.W., Algebra, New-York, Holt, Rinehart and Winston Inc., 1976.
- 5. Jacobson, N., Structure of rings, Amer. Math. Soc. Colloq. Publ. Rev. Ed. Providence: AMS 37 (1964).
- Lambek, J., Lectures on rings and Modules, New-York, Chelsea Publ. Com., 1976.
- 7. Suzuki, M., Group Theory I, New-York, Springer-Verlag, 1982.

DEPARTMENT MATHEMATICS, KOSHIN UNIVERSITY, PUSAN 606-080, KOREA