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MULTIPLICATIVE GROUP IN A FINITE RING

JUNCHEOL HAN

1. Introduction and basic definitions

Let R be a finite ring with identity 1 and let ( denote the multiplica-
tive group of all units of R. An element e in R is said to be idempotent
if ¢ = e. A nonzero idempotent is said to be primitive if it cannot be
written as the sum of two orthogonal nonzero idempotents.

In [4], Artinian proved that if R is a semisiniple Artinian ring, then
R 15 isomorphic to a direct product of finite number of matrix rings over
division rings. In particular, if R is finite, then we obtain the following;

THeoreM 1.1, (Wedderburn-Artin’s Struct are Theorem for a finite
ring)

If R is a finite ring and J is the Jacobson radical of R, then R/ J =
DL\ M; where M, is the ring of all n; x n, matrices over a finite field

£

In this paper, we will show that the multiplicative group G in a
finite ring R with identity 1 has a (B, N)-pair satisfying the following
conditions;

(1) G = BN B where B and N are subgroups of G.

(2) BN N is a normal subgroup of N and W = N/{B N N), is
generated by a set S = {s;,82,...,5,} where s; € N/(Bn
N), s;?=1ands; # 1.

(3) For any s € S and w € W, we have sB v C BwB U BswDB.

(4) We have sBs ¢ B for any s € S.

When G, B, N and S satisfy the above conditions, we say that the
quadruple (G,B,N,S) is a Tits system. The group W is called the
Weyl gorup of the Tits system.
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2. Muultiplicative group in a matrix ring over a (finite)
field

Let R = M,(F) be the ring of all n x n matric2s over a (finite)
field F and let G the multiplicative group of R. Let I be the set of all
primitive idempotents in R and let I(E) be the set of all rignt ideals in
R which is generated by the subset S of E such that each member of
S is orthogonal to another. Let A(E) be the set of all chains in I(E).
Let 3~ = {e1,e2,...,€n} be a subset of E satisfying that c,c¢; = 0 for
t#£jand ey +ep+ .. ey =1L

Let 3 . be the set of all chains in A(E) constructed by 3. Pick a
maximal chain ¢in 3 4;

c:eitR+ .. . 4+ep  RDOe R+ ... +e,2RD ..De R
For each g € G, define ¢(C) by
g(elR 4 (In—l)R D) g((‘ll? 4o+ Cn«'ZR) DD g((‘l}?#

Note that by the Proposition 3 in [6,pp 77], ¢(C) 1s also a maxi-
mal chain in A(E) constructed by a set {fy, fa,..., f.} satisfying that
fif; =0fori# jand fi+ fa+...+ fn =1 where f; = ge,g7" for cach
1= 1,2,...,n.

LEMMA 2.1. Let R be the ring of all n xn matrices over a (finite ) field
F and let G the multiplicative group of R. Let B = {¢ € GG : ¢(C') = C'}.
Then B is a subgroup of G and B = {g € G : g is upper-triangular}.

Proof. Let g = (gi;) € B. Without loss of genera ity, we may take
e; = Ei; = (a;;) where a;; = 1 and a;; = 0 for ¢ # (1 < 0,5 < nj.
which is assured by the Proposition 3 in [6,p 77]. From the equality

g(C) = C, we have

glesR) = ¢ R — (1)
gle xR+ eyR) = e R~ (2)

(]((]R+ +(¢"-1)R‘—_— fo-{ ...+6n_2R—- (‘I"L - l)
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From the equality (1), g1; = 0 for 2 < j < n. From the equality
(2), 92; = 0 for 3 < j < n. By induction on n and the equality (n —
1), gi; = 0 for i < j < n. Hence ¢ = (gi;) is vpper-triangular. On the
other hand, it is clear that ¢(C) = C for all upper-triangular ¢ € G.
Consequently, B == {g € G : ¢is upper-triangalar} and clearly, B is a
subgroup of G.

LEMMA 2.2. Let R be the ring of all n x 1 matrices over a (finite)
field F' and let G the multiplicative group o' R. Let N = {9 € G:
9(22A) = A} Then N is a subgroup of G and N = {g € G :
g has only one nonzero entry for cach row}.

Proof. Clearly, N is a subfroup of G. Let ; = (gi;) € N. Without
loss of generality, we may assume that the first cow of ¢ has two nonzero
entries ¢y, g1,(1 <1 < s < n). Let C be a macimal chain in Yo

C:etR+...4+e,3R+ erp i+ ot eRE . b, RT 0 D ey R

Then we have g(e; R+ . . ey Rter iR+ e, R4+ .. 4 e, R) =R,

which means that ¢(C) is not a maximal chair in Y A. a contraction.
On the other hand, it is clear that if ¢ € 5 has only one nonzero

entry for each row, then ¢(3" ,) = 3" . . Hence we have the result.

LEMMA 2.3. Let R be the ring of all n x n matrices over a (Hinite)
field F' and let G the multiplicative group of R. Let Ng(D) = {g ¢
G :gDg™' C D} where D = {a € R: ais diagonal matrix}. Then

/a(D) = N where N is given in Lemma 2.2.

Proof. First, we will show that N C Ng(L'). Indeed, For any ¢ =

(9i;) € N,d = (d;;6;;) € D and ¢! = (hij), we have

n

gdg™' = Z(g,-khkj‘)(lkk = ({gishsj)dss) (for some 5,1 < s < n)
k=1

T

= Y (girha;)das = (dyy6,;) € D.
k=1

Hence ¢ € Ng(D). Assume that N # N¢(D). Then there exists
9 = (9i;) € Na(D)\N. Without loss of generality, we may assume that
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some row of g, say i-th row, has two non-zero entries g;,, gis(1 < 7 <
s < n). Choose a diagonal matrix d = (d;;0,;) so that d;; = 0 for
¢ #r, s and dyp,dyy # 0 and d,, # dy,. Since g € Ng(D), there exists
d1 = (x;;6;;) € D such that gd = dyy — (*). Note that {i,7)-entry of
gd = girdyr, (1, 8)-entry of gd = gisdss, (1,7)-entry of dig = x;igrr and
(i, 8)-entry of diy = Z,i¢ss- From (*), we have d,, = 2,; and dss = T4,
and so d,, = d,,, a contraction. Hence N = N¢(D).

ProOPOSITION 2.4. Let R be the ring of all n x n matrices over a
(finite) field F' and let G the multiplicative group of R. Let B = {g € G :
g(C)=CYand N = {g € G: (3 1 iangic) = YA} Then G = BNB.

Proof. Let g be any element in G. To make each row of G have dif-
ferent number of zeroes beginning from the left, consider an invertible
matrix obtained from ¢ by means of a sequence of elemently row opera.
tion which is defined by replacing i-th row with -th rcw +a-(y-th row)
for some nonzero a € F(z < j). Note that the matrices obtained from
identity matrix by the operations given above are upper-triangular, and
so bg = g, for some b € B by Lemma 2.1.

Next, we can make an invertible matrix obtained from ¢, by means
of a sequence of some rotation of two rows be upper-triangular. Note
that the matrices obtained from identity matrix by the operations given
above are contained in N by Lemma 2.2. Hence ng = nbg = b, for

PRrROPOSITION 2.5. Let R be the ring of all n x v matrices over a
(finite) field F and let G the multiplicative group of R. Let B = {g ¢
G:gC)=CYand N ={g € G:g(3 ) =2 A} Then BON is a

normal subgroup of G.

Proof. It is clear from Lemma 2.1 and Lemma 2.2 to show that
BNN=GND.Foralln € N and all « € BN N,nan~! € D since
a € Dand n € N. Clearly, nan™! € G. Hence nan™!' ¢ GND = BNN,
and so BN N is a normal subgroup of G.

PROPOSITION 2.6. Let R be the ring of all n x 1 matrices over a
(finite) field F and let G the multiplicative group of R. Let B = {g €
G:9(C)=C}and N ={g€G:9(3 )= s} Then N(BNN)
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is generated by a set S = {sy,s2,...,5%} for some positive integer k
where s; € N/(BNN),s;2 =1 and s; # 1.

Proof. Let t;; be the matrix obtained by interchanging two defferent

rows, i-th and j-th rows, on the identity matirix I. Then t?j = I and
tiy # 1. Let s;; = t;;(BNN). Since t;; € N/(BNN).
n,t# j}. Let n(BNN) e N/(BNN)and t = (d,;6;;) € BN N where
d;; 1s the inverse of nonzero entry of i-th colunw of n. Then nt can be
expressed by a product of some elements of {i;;]1 < ¢, 7 < n, i £ 4},
Therefore, nt(BNAN) = (n(BNN))(#(BN N) can by also expressed by
a product of some element of {s;;11 <i.j <n,i# ;}.

COROLLARY 2.7. Let R be the ring of all v x n wmatrices over a
(finite) field F' and let G the multiplicative group of B. Let B =
{g € G:g(C)=C}Yyand N = {g € G: g3, = ) Then
N/(BNN) is generated by a set Sy = {s;;41] 0 = 1,2,...,n =1} where
Siiv1 = tig1l(BNAN) € N/(BNN) and t;;;, be the matrix obtained by
interchanging two rows, t-th and 1 + 1-th rows on the identity matrix

I

Proof. Since the synunetric group S, of deg ce n is generated by all
the n — 1 transposition (7 + 1) for i = 1,2,...,n ~ 1, each 5, in the set

S given in Proposition 2.6 is gerarated by Sy.

DEFINITION 2.8. An element s;; € W = N/ BON) satisfying s7, =
1 and s;; # 1 (1 is an identity of W) is cal ed the involution with
respect to B. The group W generated by the nvolutions is called the
Weyl group of the 3, .

The equality G = BN B which is proved in: proposition 2.4 shows
that G is a union of the double cosets with resnect to (B, B) and that
we can take an clement of N as representative from each ( B, B)-double
coset. For w = n{B N N) € W, we can define BuwB = BnB. We also

use notations such as Bw = Bn when w = n(E O N).

PROPOSITION 2.9. Let R be the ring of al n x n matrices over a
(finite) field F and let G the multiplicative grcup of R. Let B = {g €
G:g(C)=C}and N ={g€G:9(3 ) =13 4} Then s,;Bs;; C B

ol
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for any s;; € S, a generating set for W = N/(BNN) given in the proof
of proposition 2.6.

Proof. Assume that there exists some s;; € S such that s;;Bs;; € B.
Let s;; = t;;(B N N) where t,; is the matrix obtained by interchanging
two rows, :-th and j-th rows {¢ < 7), on the identity natrix I. Choose
h & B so that (i,7)-entry of & = b;; # 0. Then t,-jut;;-l ¢ B. Hence
sij,Bs;;l = &;;Bs,;; ¢ B for any s,, € S.

PROPOSITION 2.10. Let R be the ring of all n » n matrices over
a (finite) field F' and let G the multiplicative group of R. Let B =
flg€ G:glC)=C}land N = {g € G: g3, = >} Then
sBw C BsBUDBswB for any s € S, a generating set for W, and for any
we W

Proof. Since W 1s generated by S, w = s1s,. .54 for some s; €
S and positive integer k(7 = 1,2,...,k). We will prove the result by
induction on k. By straight forward calculation, sBs; C BsBif s = s,
and sBsy C Bss B if s # s,. Moreover, sBsys, C BsB if § = s; = sy
and sDBs sy ¢ Basys, B otherwise. Hence by induction on k, sBw ==
sBsysg. . s C BsBif s = foralle = 1,2, .. .,k and sBw C BswbB

otherwise.

DEFINITION 2.11. Let G be a group. Two subgrovps B and N of G
are said to be a (B, N )-pair of G if the following conditions are satisfied:

(1) G = BNB where B and N are subgroups of .

(2) BN N is a normal subgroup of N and W = N/(BNN) is
generated by the set S = {s;, 5. .., 55} where s; € W, s? =1
and s; # 1 (1 1s the identity of W ).

(3) For any s € 5 and w ¢ W, we have sBw ¢ BuDB U BswD.

(4) For any s £ S, we have sBs ¢ B.

When G, B, N, and S satisfy the above conditions, we say that the
quadruple (G, B, N,8) is a Tits system. The group W is called the
Weyl group of the Tits systemt.

In this section, we have shown that if R is the “ing of all n x n
matrices over a (finite) field F and G is the multiplicative group of R,
then there is a Tits system (G B, N,.S5).
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COROLLARY 2.12. If G i1s the multiplicative group of a finite semisi-
mple ring R, then there is a Tits system (G, B N, S).

Proof. By Theorem 1.1, R = B} ; M; where M, is the matrix ring of
all n; x n; matrices over a finite field F;. For the simplicity of notation,
we can assume that R = 6{9}': 1 M. Let G; be the multiplicative group

of M, for each 1 = 1,2,...,n. By the above arzument, there is a Tits
system (G, By, Ny, 5;) for ('(uh = 1,.4 Ce L TL
Note that G = plL, G, Let B = @ Vo= @l Ny, and § =

4 S;. It is easy to show that (G, B, 1’\/, S\) is a Tits system for G.

1“[
3. Multiplicative Group in a Finite Riag with Identity

In this section, we will show that in the mulriplicative group G of a
finite ring with identity 1, there is a Tits systein (G, B, N. 5).

LEMMA 3.1. Let R be a finite ring with identity 1, let J the Ja-
cobson radical of R, let G the multiplicative group of R and let G the
multiplicative group of R = R/J. Then g € G i and onlv if g+ J € G

Proof. (=) Clear.

(<) Suppose that 7= ¢ + J € G. Then thers exists h = h 4 .J such
that gh = hg = 1 (where T is the identity of G), and so 1 — gh aud
1—hg € J. Since J is a two-sided quasi left ideal of R and R has identity
1,1-(1—g¢h) = ghand 1 - (1 ~hg) = hg are invertible in G by Theorem
2.3 through Lemma 2.8, in [4, pp.426-428]. Henee {(gh)e = y(hg) = 1
for some & and y € GG, Therefore, g € G.

LEMMA 3.2, Let ¢ : A — B be a ring howorniorphisin which is onto.
If P and Q are subsets of B, then ¢~ Y PQ) = 571 P)o ().

Proof. If a € $~1(PQ), then #(a) € PQ, ¢(.1) = pg for some p € [
and ¢ € Q). Since ¢ is onto, there exist py and qy = A4 such that ¢(py) = p
and ¢(qq) = q Then ¢(a) = ¢ipy)d(qe) € oo Y P)¢H(Q)), and so
a€ ¢ (P Q).

Hae ¢ (P Q) then v — oy for some r € ¢ ) and y €
¢ Q). Thus ¢(a) = ¢(ry) = d(x)p(y) € PQ m(l soa€ o (PQ).
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PROPOSITION 3.3. Let R be a finite ring with identity and G be the
multiplicative group of R. Then G has a (B*, N*)-pair satisfying the
following conditions;

(1) G = B*N*B* where B* and N* are subgroips of G.

(2) B*NN* is a normal subgroup of N* and W* = N*/(B*N N*)
1s generated by a set S* = {s7,s5,...,s}} wheres, € N*/(B*N
N*), st =1 and sT # 1.

(3) For any s* € S* and w* € W*, we have s*B*w* < B*w*B* U
B*s*w* B*.

(4) We have s*B*s* ¢ B* for any s* € S*.

Proof. Let m: R — R = R/J be the canonical rirg homomorphism
J =7 € n(G) = G by Lemma 3.1. By Corollary 2.12, G = BNB
for some subgroups B and N of G. Thus it follows from Lemma 3.2
that g € #71G) = 7" (BNB) = 7~ (B)r "' (N)x~(B). Hence G =
7Y B)r Y N)x Y B). Clearly, B* = 77 1(B) and W* = 77 '(N) are
subgroups of G. If n € N* and a € B* N N*, then w(n) € N and
m(a) € BN N. Note that n(n)n(a)n(n)"" = n(nan~') € BN N since
B 0N is a normal subgroup of N. Thus nan™! ¢ 7 Y4B N N)
BN N) = B* N*, and so B* N N* is a normal subgroup of
]\T*.

Let no{ B*NN™) be arbitrary element of N*/(B*N.V*). By Corollary
2.12, N/(BN N} is generated by a subset § = {51,5a,...,5c}. of N/(BN
N) where s? = 1 and s; # 1. Let n = m(ng) € N. Tlen n(B N N} can
be a finite product of elements of S, say n(BNAN) = 3, -5,... 5, =
810828 BON ) where 5; = s,(BNN Y, 7 = 1,2, .. 1 for some positive
integer t. Note that n(s; - sy...8,)7" € B N. Sinc: 7 is onto, there
exists s7 € N* such that n(s¥) = s; for each ¢ = 1,2 .. .#. Thus n(s, -

sp...080) 7 = wng)m(st o538 = w(ng(st. )Y & (BN,
and hence ng(s} sy ...s7) " ' =77 (BNN) = B*NN", ng(B*NN*) =
(87-85... ) B*NN*)=s}(B*NN*)-s3(B*NN*)...s}{(B* " N*),

which means that ng(B* N N*) can be a finite prodict of elements of
S ={31,55,....5;}. Therefore, N*/([3* N N*) is gencrated by a subsct
S* = {s],83,..., 51}

Since B3 ¢ B for any 3 € S, it is easy to show hat 3 B%* ¢ B*
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for any 3 € S§*. It remains to show that 3*Bw* ¢ B*w*B*U B*s*w*B*
for any 3* € S* and w* € W*. Let 7(3*) = 3 and n(w") = w for any
5 € S*and@* € W*. Thens € S and @ € W, and so by Corollary 2.12,
we have SBW C BwB U B5wWB. Hence it follows from Lemma 3.2 that
_*B*TE* Cx {@E)r Y B)r~Y W) = 7 (3Bw) C 7~ (B3SBU Bs wWH) ’Z

BsB)Un YBswB) = n " YB)x {(Hr 1 (3)U Y (B)r (&) !
(lU)?T B) = B*w*B* U B*3*B* U B*s*w* B*.
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