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CONTINUITY OF HOMOMORPHISMS AND
DERIVATIONS ON BANACH ALGEBRAS

SUNG-Wo0O0K PARK

1. Introduction

Let A and B be algebras. A homomorphism 8 : A — B is a linear
map that satisfies

6(ab) = 6(a)f(b) (a,b € A).

When A and B are Banach algebras, the basic automatic continuity
problem is to give algebraic conditions on A aad/or B which ensure
that every homomorphism 6 : A — B is necessarily continuous.

In 1940 Eidelheit showed that every homormorphism of a Banach
algebra onto the Banach algebra B(X) of all beunded linear operators
on a Banach space X is continuous. At about the same time, Gelfand
proved that every homomorphism of a commutative Banach algebra
into a commutative semi-simple Banach algebru is continuous. In (7]
Johnson proved that every homomorphism of & Banach algebra onto
non-commutative semi-simple Banach algebra is continuous, and this is
still the most important result of this type.

A derivation D: A — A is a linear map such that

D(ab) = aDb+ (Da)b (a,b = A).

In [14] Singer and Wermer showed that the range of a continuous
derivation on a commutative Banach algebra is contained in the radi-
cal. In that paper they conjectured that the assumption of continuity
1s unnecessary. In [8] Johnson proved that every derivation on a com-
mutative semi-simple Banach algebra is contimious and hence by the
Singer-Wermer theorem it is zero.

In [15] Thomas proved the following theorem.
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THEOREM. Any derivation on a commutative Banach algebra maps
into the radical.

[n this paper we are concerned with continuits of derivations on
cominutative Banach algebras and of homomorphisms into commuta-
tive Banach algebras.

Throughout this paper we suppose that A is a commutative Banach
algebra. R will denote the radical of A.

In §3, we prove the following theorem.

THEOREM. If A is an integral domain and if there exists a nonzero
closed ideal I of A such that (Yoo, I™ = {0} then every derivation on
A and every homomorphism of a Banach algebra onto A is continuous.

We also prove the following theorem.

THEOREM. Suppose that R is an integral domnain. If there is a
nonzero closed ideal I of R such that (\oo,I™ = {0} then every
derivation on A is continuous.

2. Preliminaries

In this section we collect most of the concept and facts needed in the
rest of the paper.

If S:X —Y isalinear map of a Banach space X into the Banach
space Y, the separating space G (S} or 6 of § is defined as the set

{y € Y : there are z, — 0 in X with Sz, —»y in YV}

It 1s a closed subspace of Y. By the closed graph theorem, S is continu-
ous if and only if & = {0}. One can find basic properties of separating
spaces in [13].

The next result is called the stability lemma anc due to Jewell and
Sinclair [6].

THEOREM 2.1. If §: X — Y is a linear map with separating space
6 and T, : X — X, Rnp:Y — Y are continuous linear maps such

that R, S — ST, Is continuous for each n = 1,2,..., then there is an
N such that for n > N we have
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(Ri-RnS) =(R,---Rp6).

A closed bi-ideal J of a Banach algebra B is called a separating
ideal if, for each sequence (bn) in B, there is a natural number N
such that

(by - bpJ) =(by---bnJ) (n>N).

It is easy to show that the separating space of a homomorphism of a
Banach algebra onto a Banach algebra B, or of a derivation on B, is
a bi-ideal of B. From this fact and Theorem 2.1, the separating space
of a homomorphism of a Banach algebra onto a Banach algebra B, or
of a derivation on B, is a separating ideal of B.

A closed prime ideal P of A is called accessible, if it is the inter-
section of all closed ideals of A properly contiining it. Otherwise, it is
said to be inaccessible.

The following lemma is due to Curtis [3].

LEMMA 2.2. If P is an accessible prime ideal of A, then P contains
every separating ideal of A.

Proof. Let I be a separating ideal of A. Suppose I ¢ P. Since P
is prime, zI # 0 for each z & P. Since I is a separating ideal of 4,

there exists zj,...,2n, not in P such that for each z ¢ P

(2 ---znozI)—z (21"'ZnoI)- # 0.

Let 29 = 21---zn,. Then zp € P. If K is a closed ideal properly
containing P, pick z € K \ P. Then (20217 = (ng—)_ C K. Thus
(zOI_).~ C Nk-opK, which equals P since P is accessible. However,
this is impossible since neither zg € P nor I C P. Hence I C P.

The following theorem, known as the Mittag-Lefller theorem of Bour-
baki, is essential to prove theorems in section 3. The proof can be found
in [4].

THEOREM 2.3. Let (X, :n =0,1,2,...) beasequence of complete
metric spaces, and for n =1,2,..., let fo:.X, — Xn_1 be a contin-

uous map with fn.(Xn) dense in Xn_1. Let go = fio---0 fu. Then
No21gn(Xn) is dense in X.
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3. Main Results

THEOREM 3.1. Let A be an integral domain. If there is a nonzero
closed ideal I of A such that (oo, I™ = {0}, then 0} is accessible.

Proof. Note that {0} is a prime ideal. Let H be tae intersection of
all nonzero closed ideals of A. Suppose H to be nonzero. Since H is
closed, we have that HZ? = H.

For n =1,2,... let [[i=;H be the product of n copies of H. Then
each [[;_,H is a Banach algebra. For any n = 1,2,..., define
fa T H — 1oL H by

f"(}l],. . ,hn+1) = (h],.., shn~13hnhn H)r

whf‘re hi € H (¢ = 1,2,...,n+1). Then for each n = 1,2,...,
i H - ;:_njH is a continuous map with f, ([[fX;H) dense
in Hk H. Also (f, of,,)(H"+l — H™*t holds.

By the Mlttdg—Lefﬂer theorem, we get ﬂ:‘;lH * = H. Therefore,
(g H™ # {0}. Since I is a nonzero closed ideal of A, we have that

H C I andhence (oo H" C (ow I™ = {0}, which is a contradiction.
Thus {0} is accessible.

Using Lemma 2.2 and Theorem 3.1, we have the fcllowing theorem.

THEOREM 3.2. Let A be an integral domain. If there is a nonzero
closed ideal I of A such that (ow,I™ = {0}, -then every derivation on
A and every homomorphism of a Banach algebra onto A is continuous.

Proof. If there is a nonzero closed ideal I of A such that (oo I" =
{0}, then {0} is accessible. By Lemma 2.2, {0} contains every sepa-
rating ideal of A. Since the separating space of a derivation on A, or
of a homomorphism of a Banach algebra onto A, is & separating ideal
16], we have the result.

As shown in [12], the existence of a commutative Banach algebra
which is an integral domain with inaccessible zero iceal is equivalent
to the existence of a topologically simple, commutative: Banach algebra
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other than C. A Banach algebra A4 with A? 3 {0} is called topologi-
cally simple if there are no closed, bi-ideals of A other than {0} and
A. Since it is not known whether there is a topologically simple, com-
mutative Banach algebra other than C, it is an open question whether
there is a commutative Banach algebra which is an integral domain
with inaccessible zero ideal.

In what follows, we consider some Banach algebras satisfying Theo-
rem 3.2. Every derivation on each of them and every homomorphism
of a Banach algebra onto each of them is continuous. Thesé are simple
consequences of Theorem 3.2.

EXAMPLE 3.3. Let A be a Banach algebru of power series. Then
A is commutative and an integral domain. Note that A is a principal
ideal domain. Hence for any nonzero closed ideal I of A, we have that
(MoeiI" = {0} and every derivation on A and every homomorphism
of a Banach algebra onto A is continuous.

EXAMPLE 3.4. Let w be a weight function : w is a continuous func-
tion on R* such that w(0) = 1, w(t) >0, w(s+1t) < w(sk(t), (s,t €
R*).

Let

)= (el = | 1R | wt) dt < oo).

Then L'(w) is a commutative Banach algebra with the convolution
multiplication:

(Fg)(t) = / flt—s)g(s)ds (f,g€L'(w) t€RY).

For f € L'Y(w)\ {0}, let a(f) = inf supp f, where supp f is the
support of f. Set a(0) = oco. By Titchmarsh’s convolution theorem
[4], L'(w) is an integral domain.
For a > 0, let
M, ={f € L'(w): a(f) 2 a}.

Then M, is a nonzero closed ideal of L'(w). Since (or, M® = {0},
every derivation on L'(w) and every homomorphism of a Banach alge-
bra onto L'(w) is continuous.
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REMARK 3.5. Let D be a discontinuous derivation on a commuta-
tive Banach algebra A. Then by Theorem 2.7 of [1], there is an « in
A such that Dy = aD is a discontinuous derivation on A with the
following properties:

(i) A(6(Do)) ={z€A:26(Do) = {0}} is a closed prime ideal
of A.

(ii) For every z in A, either z € A(G(Dg)} or z26(Dy) =
G (Dy).

We now have the final result of this paper.

THEOREM 3.6. Suppose that the radical R of A is an iutegra.]
domain. If there exists a nonzero closed ideal I of R such that (Yoo
= {0}, then every derivation on A is continuous.

Proof. Suppose the contrary. Then by Remark 3.5, we may assume
that there is a discontinuous derivation D satisfy:ng (i) and (ii) of
Remark 3.5, so that A( &) is a closed prime ideal of A and, for every
z in A, either 7€ A(&)orz6 = 6.

Pick any nonzero a in I. Since R is an integral domain, a ¢
A(G). Hence a6 = 6 and 6 =a6 c 1= I. Thus ()32 G"’
Na=11™ = {0} and hence (or, 6™ = {0}.

On the other hand, take :my nonzero s in &. Then s& # {0}
implies that s6 = &. Since & is closed, we aave that &2 =
S. By the Mlttag Leffler theorem, we get ﬂ" , 6 " = & and hence
MNp=1©™ is dense in &. Since D is discontinuous, & # {0} and
Moe, 6" # {0}, which is impossible.

n=l
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