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1 The Generalized Grav-
ity Model

Let N;; be a flow (e.g., of people or vehicles)
between an origin ¢ € I and a destination

j€J and let ¢;; = (cf,l), (K))’ be a vec-

tor with components cfk) whlch are different
measures of separation (e.g., travel time, gen-

eralized cost, logarithm of travel time, etc.)

between i and j. For all i and j, the gravity
model may be written as

T;; = E(Nij) = A(i) BG) F(ei). (1)

We shall assume the Njj’s have independent

Poisson distributions [see Smith (1987) for the
conditions which are necessary and sufficient
for N;;’s to be Poisson). In the classical gravity
models the A(¢)’s and B(j)’s have been, a pri-
ori, set equal to functions of observable factors
such as population, number of jobs and so on.
However they led to inconsistencies in prac-
tice. In the Generalized Gravity Model, A(i)’s
and B(j)’s are considered to be unknown pa-
rameters, the value of which are then to be
estimated from observations of flows.

A form of F(c¢;;) which subsumes as special
cases the most commonly used expressions for
F(cij), and appears to be general enough for
most practical use, is the exponential form:

F(ci;) = expl8'ci;] (2

where 8 = (64,...,
parameters.

Methods based on Maximum Likelihood
(ML) are deservedly among the most fre-
quently used techniques for the estimation of
gravity model parameters. ML estimates have
pleasant asymptotic properties and are essen-
tially unbiased for a very small sample of trips
as frequently found in intra-urban O-D tables.
It is well known that the ML estimate can
be obtained by maximizing the log-likelihood
function

fk)' consists of unknown

£= Y {~A(DBG) explb'cy]

+ Ni;(log A(i) + log B(j) + 6'c;j)—log(N;;1)},

: 3)
-which is equivalent to solving
Tiw =N;u foriel, T.,j=N, forjeJ
(4)
and
Zc(k)T = Zc( )N, for k€ K,
(5)

where replacement of a subscript by a * in-
dicates that we have summed with respect
to that subscript (e.g., Tin = 3}, Tij, Tuj =

2. tr'J)

2 Derivation of the LDSF
Procedure

Since the LDSF procedure is at the heart of
the procedures proposed in this paper, we out-
line it below. The LDSF procedure is a lin-
earized version of the well known DSF pro-
cedure, also called the row-column balancing
algorithm, Furness iterations.

Let AO = (AOy,...,AOr) and AD =
(AD;,...,ADy) to be small changes in the
values of O = (01,...,01) and D =
(D1,...,Dj), and let AF;; be a small change
in F;j. Then the LDSF procedure consists of
the iterative steps

AT(Zr 1) __ AT(Zr 2)+ a'j (AO,--—AfI‘,-(fr"z))
(6)
and
ATE) = ATV + ‘f (AD; — ATS™™Y)
D;
(7)
with initial values
AT = (Tij/ Fij)AF;;. (8)
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This procedure also converges under mild con-
ditions. Let AT;-(;) — AT;;. If T;;'s are of the
form A(¢)B(j)F;;, then

T;; + AT;;
~ [A(1) + AAG)][B() + AB()[F; + AE{;;

for some AA(i)s and AB(j)s with

Y AT; = AO;
J

and

Y AT; = AD;.

An attractive feature of the LDSF procedure
is that in most practical situations where T;;’s
are positive, convergence is very rapid — often
one or two iterations are adequate. Let AF;;
be a small change in F;; due to A@. Then

K

E F"Ao —Zc )Fi; A0, (10)

AT = AFyT;/Fy = Ty Z(c( )A0)

k=1
(11)
and if AO = AD = o, the first two LDSF
steps are (from (6) and (7))

AT = AT - AT (%) (12)
and
AT = AT - AT L 13

Combining (12) and (13), we get

AT = AT - AT("’( )
O;

57

N Z(AT(O)<T”))I( )
= AT - AT (&)

O;
© (L (0) L
a9 (3) 5 (R ).
(14)
Using (11), it follows that
K
AT; = Y [SA8). (15)
k=1

where O; = T;., Dj = T.j, and
S o7, E ;) ( )
(k)T 4
Z[ 'J] (D)

DIIICED (B (R):
J

D

The only unknowns in (15) are Af’s. The

Sf]k Vs are constants if T;;’s are known and

O; = T;. and D; = T,;. Equation (15) will

be used for developing the Modified Scoring

Procedure and two of the Modified Gradient

Search Procedures, presented in the following
sections.

3 The Modified Scoring
Procedure

One approach to obtaining ML estimates is
by solving (4) and (5). For some reasonable
initial choice of 8, we use the DSF procedure
with O; = N;. and D; = N.;. Then (4) would
be solved. In order to solve (5) we could use
a Newton-Raphson type procedure or, equiv-
alently, a procedure akin to the method of
scoring (Rao, 1973). That is, we could aug-
ment 6 to 8+ AB, compute the corresponding
(T:j+AT;;)s and insert these into (5) to obtain
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E ST + ATy) = E N (1)

If these AT;;s are computed using the LDSF
procedure, (4) wouldvremain approximately
satisfied, while (17) would become

Z c(k)[z S a6 Z PNy~ Toy).

(18)
A solution of (18) for A8 would result in Tj; +
ATjs which come closer to solving (17) and
hence (5). The 6 + A8s could become the 8s
for the next iteration.

Notice that (18) gives a system of K lin-
ear equations in K unknowns (Afy’s) which
can be solved by any of the standard solution
methods (e.g., Gaussian elimination). Notice
also that in practice K is usually quite small
(e.g., 2, 3 or 4). The quantities on the right
hand side of (18) which are 9£/80,’s, where
L is the log-likelihood of the parameter vector
8, are defined as efficient scores for 8 (Rao
1973) The maximum likelihood estimates are
the values of 8 for which the efficient score van-
ishes. This gives the name ‘method of scoring’
to what is essentially a Newton-Raphson type
algorithm.

We call the procedure just described as the.

Modified Scoring Procedure. Its steps may be
summarized as follows:

‘Algorithm for MOdlﬁed Scoring Proce-
dure

1. Select an initial value 8(%).

2. Using the DSF procedure (with O; = Ny,
and D; = N,;), obtain Tj;s and the coef-

ficients S( )2 (from (16)).
3. Solve (18) for Ady’s. |

4. Revise tﬁe value of 6" as folldws:

60) = 6D 4 AGC-D  (19)

5. Iterate steps 2, 3, and 4 until stable values
of @ are obtained (changes from iteration
to iteration become negligible).

4 The Modified Gradient
Search Procedures

Sen (1986) introduced a version of the gradient
search procedure which we will refer to as the
‘General Procedure’. This procedure, outlined
below, was claimed by Sen to be the fastest
available procedure which could handle large
O-D matrices. We shall use it as a benchmark
for comparisons and also modify it using the
LDSF procedure. In each step of the General
Procedure, "+ ) is obtained from the value
o) given by the previous step as follows:

0('+1) = 0(") + p(r)(yf")’ . ,,yg))’ (20)

where

E ¢t [N — Ti5(8)].

Then 7;;(8"+")s are obtained using the
DSF procedure with O; = N;, and D; = N,;.
The value of p{") is a solution to pin (21) be-
low.

K
Z{Ck -y T80
2 2

exp[z pc(l) () 1w =0

(21)

where

Zr.,(o< >)exp<2 o)/ T

z c(k)N Z (k)T;J
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and Cr = ) ;¢ Sk)N,,

Since 8 is kept. fixed at (), £ attains its
maximum when T{" = N;. and T_(;) = N.j.
Consequently the DSF procedure which solves
the ML equations (4) and (5) raises the value
of L. However, notice that only the last K
components of the gradient (£, ((')) of the pa-
rameter vector were considered in the proce-

dure. This was because dL/0A(i) = 0 and
8L/OB(j) = 0 on account of the DSF pro-
cedure. However, it is obvious that the two
conditions

>_T(67) = (22)

j
and

> T;(67) = N, (23)
need not exactly hold as p changes. After a

suitable p is found and then the DSF proce-
dure is applied (in the following iterations),
a large part of the improvement due to the
changing of @ could be negated. This problem
can be alleviated with the use of the LDSF
procedure.

4.1 Procedures Iaand Ib '

We conjecture, based on the discussion just
made, that the incorporation of the LDSF pro-
cedure would improve the General Procedure.
In order to do this, the log-likelihood function
L is expressed in terms of the (Tj; + ATij)s
where the AT;;s are considered as additive cor-
rections whose values are obtained using the
LDSF procedure, i.e.,

L= [(Ti; + ATy;) + N log(Ti; + ATy;)
G

— log(Ni;)]

Notice that

(24)

AT = pIIV(L,60) = prpr) (25)

The values of the 7;;(8()’s are the result of
an application of the DSF procedure with 8 =
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6"),0; = N;., and D; = N.,;. Equation (25)
gives the direction of change for 6 along the
gradient. The distance moved is given by p.
In the direction of the gradient, £ is a function
of p alone. The use of the LDSF procedure in
obtaining AT;;s assume us that

T:; (0 V) ~ T3; (6 + A6,

One method of obtaining p(") is to set it
equal to that value of p for which d(/dp = 0.
Now

dA(z)
Z o

dB(]) oL dby
Z 63(:) dp Z d6; dp (26)
Z dAT;
= aAT,, dp
where (from (24))
oL ‘ - .
AT, = -1+ Ni;(Ty; + AT (27)

Since Afg = puy,

K

= Z[uk{c( T, - Z[c(k)T ]

- (3)

= (%)
- 2T
+ 20 (5 (5

—Z[wc S5 = ZQS}" (say) -

k=1
(28)
where S’,(f)’s are given by (16). Therefore the
function 8(p) can be written as
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5(p) = Z{[N.,(T., +pZQ"°> -1]

(E Q)
| (29)

Let p* be a solution to §(p) = 0. Newton-
Raphson iterations can be used for this pur-
pose. This p* then is the step size for this
modified gradient search procedure, Proce-
dure Ia.

The equation §(p) = 0 can be linearized us-
ing a Taylor series approximation and the re-
sultant linear equation in one unknown can be
solved. Such an approximation for (29) is

. K
2 <[~.-,-(1 +p Q5 /T T3 - 11 <ZQ“) )
: k=1 ’

\ S

=y ([m,-u —p QT Tt -1 (O Qﬁf’)>
131 k=1 k=1

. (30)

Notice that this approximation (taking Taylor
series and retaining only linear term) would be

allowable since sz -1 Q(k) AT in

(1 +pZQ“)/11-j)'1

would be much smaller than T;;. Now set-

ting (30) to 0, we have

oy (o Q) -5 (T
) T (b (T e

(31)
The resultant procedure is designated as Pro-
cedure Ib. Notice that while a linear approx-
imation will lead to greater computational ef-
ficiency, this approximation may increase the
total number of iterations needed to converge.

Algorithm for Procedures Ia and Ib

1. Select an inil_;ial ya.lue 0.

2. Compute F(cj; 6").

3. Apply the DSF procedure to obtain the
q—;J (0(1‘ )’

4. Set V(r) = Zt: Sk)[N'J - T (o(r))]

5. Compute the terms in §(p). The values of

Q(k) and hence S(k) are obtained by the
LDSF procedure.

6. Solve the equation 8(p) = O for p either
by

Procedure Ia:
using an iterative Newton-Raphson
algorithm,

8(p"~1)

w7

p(ﬂ) = p("-l) -

where n denotes the n-th iteration in
the Newton-Raphson method and,

§'(p) = ds(p)/dp

. |
Z ((T.,/zk IQ"°>+p>2)
(33)

Procedure Ib: directly solving the lin-
ear equation for p given by (31).

Either way, call the solution p*
7. Update the parameter estimates:

60r+D) = 6 4 pv(£,6).  (34)

8. Iterate steps 2 through 7 until V(") s
small enough.

5 Performance of New Al-
gorithms

The three new procedures described in the last
two sections were compared with each other
and with two existing procedures. The exist-
ing procedures were
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1. the GLIM procedure which has been
widely used for computing maximum like-
lihood estimates, and

2. the procedure given by Sen (1986) and
which has been outlined in Section 4.

Computer programs in FORTRAN were writ-
ten for all procedures. Four data sets were
used for the evaluation of performance.

1. One data set is based on 25247 trips allo-
cated over 42 origins and destinations in
the village of Skokie, Illinois, USA. The

cf}) was set equal to the Skokie travel
times. Distances were also computed,
but since these would be highly corre-
lated with travel times, these were per-
muted over the various origin-destination

pairs to essentially remove multicollinear-

ity. This permuted distance is c,(-]?).

2. Same as above but with the distances left
unpermuted. This data set was used to

check for effects of multicollinearity.

3. In order to evaluate the performance of
the algorithms on a larger data set, the
data set described in S66t and Sen (1991)
was used. This data set includes a work
trip O-D matrix (NV;;) with almost two
thousand origin and destination zones for
the Chicago Metropolitan Area. Four
cg‘)’s were used in the model. Three were
related to travel times by various modes.
The fourth measure was an occupational
compatibility index.

4, Another data set consisted of flows of
patients between 250 zip code areas
and 94 hospitals in the Chicago area.
Data .on travel times, distances and
a- payer/hospital match index .(reflect-
ing the fact that different hospitals deal
with indigents differently) constituted the

cg‘)s

In the sequel these data sets will be denoted by

numbers, e.g., data sets #1 and #2 will also
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be called Skokie data set and data set #3 will
be called the SEED data set. Data set #4 is
the Hospital data set. In the next few sections
we report on:

1. Comparison of the performance of the
procedures in terms of computing time
while maintaining specified precision lev-
els.

2. Effects of multicollinearity in the separa-
tion measures.

3. Effects of initial values.

4. Effect of the number of separafion mea-
sures (e.g. K =1, K =2,K =4).

It should be pointed out that in all the trials
we ran, we did not have any convergence prob-
lems (except for the GLIM procedure which
ran out of memory even for moderate sized
problems). In all cases, successive iterations
yielded parameter values that moved fairly
smoothly towards their limits. The successive
values of the Modified Scoring Procedure and
the GLIM Procedure appeared to be smoother
than the others. No underflows or overflows
in the computer occurred during execution of
any of the alternative procedures, and given
the smoothness of convergence, no overflows
or underflows should be expected in normal
use. This is in sharp contrast to some com-
peting procedures such as the usual Scoring
Procedure (Batty, 1976 and Sen, 1986).

5.1 Speed Comparison

In order to set up identical conditions to evalu-
ate the relative speed of the procedures, we set
the initial values of all parameters to zero. In
order to make the convergence criterion sim-
ilar we first ran the Modified Scoring Proce-
dure setting the requirement that the efficient
scores (the right side of (18)) be less than
10=1°. The parameter values obtained in this
way [call these values 8},..] were taken to be
the ‘correct values.’ Whenever, in the course
of iterations, parameter values éalt entered a
disk of TOL radius centered on this point, i.e.,
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the corresponding procedure is deemed to have
converged and the time taken to achieve con-
vergence is used for comparison. The differ-
ent levels of TOL (the tolerance) varied from
10~! to 10~5. The results, using data set #1,
are shown in Table 1. The CPU times are in
seconds and Speed-up is given in parenthesis.
Speed-up is defined as:

CPU time of the General Procedure
CPU time of the alternative procedure

It is easily seen from the Table 1 that the Mod-
ified Scoring Procedure is the fastest of the
procedures at all tolerance levels. The speed-
up of the Modified Scoring Procedure grows
rapidly from a factor of 7 to over 600 as the
tolerance level gets smaller.

We now address the question of what ef-
fect the number, K, of separation measures
has on performance. For this we continued
to use Data set #1 but for the K = 4 case,
() and c(4) as logarithms of travel

time and permuted distance (c(l) and c(f)

mained travel time and permuted dlstance)
For the case where only one measure of sepa-
ration is considered, that is, K = 1, c(l) was
set as simply travel time. The results, using
essentially the same method as that described
above, are shown in Table 2. The increase of
computer times, with increasing values of K,
for the modified scoring procedure is reason-
ably small and its relative standing vis a vis
competing procedures actually improves.

we set €55

A major problem with algorithms for ML es-
timation of gravity model parameters is that
frequently there are a very large number of
them. Notice that there are I values of A(i), J
values of B(j) and K values of 6, and while K
is usually not large, I and J often are. There-
fore, it is reasonable to ask how the proce-
dures would handle larger data sets. A similar
approach to the one described above for the
Skokie data set (data set #1) was applied to

the Hospital data set (data set #4). The re-
sults are shown in Tables 3.

It can be seen from Table 3 that in the Gen-
eral Procedure, Procedure Ia, and Procedure
Ib, because the DSF procedure is imbedded in
each iteration, execution time dramatically in-
creases as the size of the application problem
get larger. Notice that although the DSF pro-
cedure is also imbedded in the Modified Scor-
ing procedure, it converged so fast that the in-
crease in computing time due to the increase
of application size is not as bad.

Since the Modified Scoring Procedure ap-
pears to be the best in terms of computational
performance, we applied it to the SEED data
(data set #3). Notice that this data set, with
about two thousand origins and destinations
and four separation measures, is by all stan-
dards large, and indeed of a size such that
maximum likelihood methods typically would
not be considered. The results, included in
Table 4, show that the Modified Scoring Pro-
cedure does very well and handles very low tol-
erances without substantial increases in com-
putational time.

5.2 Effect on Multicollinearity
and Initial Values

For the General Procedure the results are not
quite as pleasant when the ¢; ®)s are highly cor-
related, i.e. if real distances (unpermuted) are

used as c(J). This is illustrated in Table 5,
which shows the rate of convergence for t.he
Skokie data with c(J) being travel time and c. 4

being actual distance (data set #2). In order
to further investigate this issue a ‘seriously’
multicollinear data set was created by gener-
ating pseudo random numbers from a uniform

(0,1) distribution and then adding these ran-

dom numbers to Skokie travel time matrix cSJ)

to get c Given that the mean of the c(Jl )

is 12.8 (mmutes) one should expect that this
would lead to very serious multicollinearity.
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The resuits from using this data set are shown
in Table 5.

The slowness of convergence of the gradi-
ent search type ‘algorithms near the optimal
value, particularly in the presence of multi-
collinearity, is well-known and discussed in
Sen and Matuszewski(1991). Nevertheless the
results show that the two modified gradient
search procedures, Procedure Ia and Ib, more
or less overcomes this shortcoming. It is eas-
ily seen from Table 5 that the convergence
rate of the Modified Scoring Procedure is not
seriously affected by the presence of multi-
collinearity among the independent variables
(separation measures} — not even by the pres-
ence of as ‘serious’ a level multicollinearity as
one is likely to permit.

Another comparative merit of the Modified
Scoring Procedure is that no matter what ini-
tial values one chooses convergence is very fast
so that one need not choose the initial values
too carefully.

6 Conclusion

The Modified Scoring Procedure appears to be
the most computationally efficient procedure,
for obtaining maximum likelihood estimates of
generalized gravity model parameters. More-
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over,

1. its convergence rate does not appear to
be affected by multicollinearity among the
separation measures,

2. a careful choice of the initial values is not
necessary, ’

3. as the application scale (size of problern)
increases, the relative speed-up over other
alternative procedure grows,

4. asthe tolerance is decreased (i.e., required
precision is enhanced), its relative speed-
up grows,

5. it performs very efficiently when K = 2,3
and 4 whereas convergence rates of alter-
native procedures frequently slow down as
K increases. :

Even in absolute (i.e., non comparative)
terms the Modified Scoring Procedure has ex-
cellent properties. Indeed, because of it, max-
imum likelihood, which clearly gives the best
estimates, can be used routinely, even in very
large applications. With regard to future re-
search, I expect that the Modified Scoring Pro-
cedure will be extended to Logit Models and
to Combined Mddels as the maximum likeli-
hood estimation procedure of them by taking
advantage of its generality.

Table 1: Comparison of Execution Times

Modified

Tolerance General Procedure | Procedure GLIM
level proceure Ia Ib Scoring procedure

< 1077 .23 (1.0) 22 (1.1) .10 (2.3) .03 (7.7) 3.84 (.1)

< |10-2 46 (1.0) 33 (1.4) 17 (2.7) .04 (11.5) 3.84 (.1)

<1078 .62 (1.0) 44 (1.4) .25 (2.5) .05 (12.4) 3.84 (.2)

<1074 .32.70 (1.0)*| .55 (59.5) | .30 (109.0) | .05 (654.0) | 3.84 (8.5)

<1079 32.70 (1.0)*} .62 (52.7) | .32 (102.2) | .06 (545.0) | 3.84 (8.5)
Average time .03 .02 .01 02 7
per iteration

(0,0) were used as the initial values except GLIM procedure.

CPU times are in seconds.
Speed-up factors are given in parenthesis.

*indicates procedure fails to meet stopping criteria at maximum of 1000 iterations.
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Table 2: Performance for Various values of K

value Procedure
of General Procedure | Procedure | Modified GLIM
K proceure Ia Ib Scoring procedure
K=1]| .26 (1.0) .05 (5.2) 9.43 (n.a)*| .03 (8.7) 3.31(.1)
K=2{ .62(1.0) 44 (1.4) .25 (2.5) .05 (12.4) 3.84 (.2)
K =4 | 40.79 (1.0)*]| 23.89 (n.a)*| 10.37 (n.a)*| .10 (407.9) | 3.92 (10.4)
10~2 tolerance level was used for this table.
Table 3: Performance for Various Application Scales
Data Procedure
Sets General Procedure Procedure Modified GLIM
proceure Ia Ib Scoring procedure
Skokie .62 (1.0) 44(14) .25 (2.5) .05 (12.4) 3.84 (.2)
Hospital | 1058.94 (1.0)*| 556.50 (n.a)*| 393.76 (n.a)*| 1.43 (740.5) n.a

10~ tolerance level was used for this table.

Table 4: Performance of Modified Scoring Procedure

Application Convergence Limit® Average time

Scale <107° <107° < 10710 | per iteration
Skokie .09 (7) 11 (9) .16 (13) .01
Hospital 4.54 (12) | 5.30(14) § 7.78 (21) .38
SEED | 56.34 (14) | 64.44 (16) | 94.58 (24) 4.00

Number of iterations is given in parenthesis.
%(in terms of absolute values of efficient scores)
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Table 5: Performances on Multicollinearity and Initial Values
Multi Initial Procedures
collinearity { values | General Procedure | Procedure Modified GLIM
proceure Ta Ib Scoring procedure
permuted | (0,0) .62 (1.0) 44 (1.4) .25 (2.5) .05 (12.4) 3.84 (.2)
distance® LS? | 30.61 (n.a)*| .52(1.2) .35 (1.8) .04 (15.5)
real (0,0) [ 33.08(1.0)*[ .29 (114.1) | .25 (132.3) | .04 (827.0) | 4.01(8.3)
distance® LS 30.74 (1.1)*| .41 (80.7) | .28 (118.1) | .03 (1102.7)
simulated | (0,0) | 30.80 (1.0)*] 3.20 (9.6) | 12.33 (n.a)*| .05 (616.0) | 3.87 (8.0)
distance® LS 30.64 (1.0)*| 1.35 (22.8) | 12.30 (n.a)*| .05 (616.0)

%(absence of multicollinearity)

b(presence of ‘high’ multicollinearity)
¢(presence of ‘serious’ multicollinearity)
9(least square estimate values)

10~2 tolerance level was used for this table.
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