PROPERTY (P) ON ℓ_p

DO KON LEE

X and Y are real Banach spaces with closed unit balls B_X and B_Y respectively. For $n=0,1,\ldots$, the space $\mathcal{P}(^nX,Y)$ of continuous n-homogeneous polynomials $P:X\to Y$ consists of all functions P of the form $P(x)=A(x,\ldots,x)$, where $A:X\times\cdots\times X\to Y$ is a continuous n-linear mapping. $\|P\|\equiv\sup\{\|P(x)\|:x\in B_X\}$. The space P(X,Y) is the algebraic direct sum of the space $\mathcal{P}(^nX,Y), n=0,1,2,\ldots,\mathcal{P}(X)$ and $\mathcal{P}(^nX)$ denote $\mathcal{P}(X,\mathbb{R})$ and $\mathcal{P}(^nX,\mathbb{R})$, respectively.

We say that a Banach space X has property (P) if for any bounded sequences (u_n) and (v_n) in X such that $|P(u_n)-P(v_n)| \to 0$ as $n \to \infty$ for all $P \in \mathcal{P}(^nX)$, $n \ge 1$, then $|Q(u_n-v_n)| \to 0$ as $n \to \infty$ for all $Q \in \mathcal{P}(^nX)$, $n \ge 1$. This property was studied in [ACL], which is closely related with Dundord-Pettis property and Schur property. Aron, Choi and Llavona [ACL] showed that every super-reflexive Banach space has property (P). However in their proof they used the fact that every super-reflexive Banach space is in W_p -class, which was studied by Castillo and Sánchez[CS]. Hence we cannot have the exact form of polynomial which works in their proof. In this note we will prove that every ℓ_p $(1 \le p < \infty)$ has property (P), without using W_p -class. For general background on polynomials we refer to [D] and [M].

LEMMA 1. For any p, $1 \leq p < \infty$, if (u_j) and (v_j) are two sequences in ℓ_p which go to 0 weakly, and if for all polynomials $P \in \mathcal{P}(\ell_p), \ P(u_j) - P(v_j) \to 0$, then $\|u_j - v_j\|_p \to 0$

Proof. It is enough to prove the case $1 . Suppose that <math>||u_j - v_j||_p \neq 0$. Since (u_j) and (v_j) converge to 0 weakly, by passing to a subsequence, there is an increasing sequence (n_j) of positive integers such that for $E_j = \{n_j \leq k \leq n_{j+1} - 1\}$,

$$\|u_j\chi_{E_j}-u_j\|_p<rac{1}{2j} \quad ext{and} \quad \|v_j\chi_{E_j}-v_j\|_p<rac{1}{2j}.$$

Received April 30, 1993

The author would like to thank Y.S. Choi for lots of discussions and suggestions in preparing this paper.

We may assume (u_j) and (v_j) to be $(u_j\chi_{E_j})$ and $(v_j\chi_{E_j})$ respectively. Let

$$E_{j}^{+} = \{k \in E_{j} : u_{j}^{k}v_{j}^{k} \geq 0\}, \text{ and } E_{j}^{-} = \{k \in E_{j} : u_{j}^{k}v_{j}^{k} < 0\},$$

where $u_j = (u_j^1, u_j^2, \dots, u_j^n, \dots)$ and $v_j = (v_j^1, v_j^2, \dots, v_j^n, \dots)$. Since $\|u_j - v_j\|_p \neq 0$. We have that $\|(u_j - v_j)\chi_{E_j^+}\|_p \neq 0$ or $\|(u_j - v_j)\chi_{E_j^-}\|_p \neq 0$. When $\|(u_j - v_j)\chi_{E_j^+}\|_p \neq 0$, we partition each set E_j^+ into four pairwise disjoint subsets. $P_{u_j}, P_{v_j}, N_{u_j}, N_{v_j}$ where

$$P_{u_j} = \{k \in E_j^+ : u_j^k \ge v_j^k > 0\},$$

 $P_{v_j} = \{k \in E_j^+ : v_j^k > u_j^k > 0\},$
 $N_{u_j} = \{k \in E_j^+ : u_j^k \le v_j^k \le 0\}$ and
 $N_{v_j} = \{k \in E_j^+ : v_j^k < u_j^k \le 0\}.$

Since $\|(u_j-v_j)\chi_{E_j^+}\|_p \neq 0$, one of the following four sequences does not converge to 0; $(\|(u_j-v_j)\chi_{P_{u_j}}\|_p), (\|(u_j-v_j)\chi_{P_{u_j}}\|_p), (\|(u_j-v_j)\chi_{N_{u_j}}\|_p), (\|(u_j-v_j)\chi_{N_{u_j}}\|_p)$. Suppose $(\|(u_j-v_j)\chi_{P_{u_j}}\|_p)$ does not converge to 0. We may assume that for each j, $\|(u_j-v_j)\chi_{P_{u_j}}\|_p \geq \delta$ for some $\delta > 0$ (consider a subsequence if necessary). Define

$$P(x) = \sum_{j=1}^{\infty} \left(\sum_{k \in P_{u_j}} x^k |u_j^k - v_j^k|^{p-1} \right)^N$$

where N is an integer greater than p and $x = (x^1, x^2, \dots, x^n, \dots) \in \ell_p$. If $||x||_p \leq 1$, then

$$\begin{aligned} |P(x)| &\leq \sum_{j=1}^{\infty} \left(\sum_{k \in P_{u_j}} |x^k| |u_j^k - v_j^k|^{p-1} \right)^N \\ &\leq \sum_{j=1}^{\infty} \left(\sum_{k \in P_{u_j}} |x^k|^p \right)^{\frac{N}{p}} \left(\sum_{k \in P_{u_j}} |u_j^k - v_j^k|^{(p-1)q} \right)^{\frac{N}{q}} \\ &\qquad (q \text{ is the exponential conjugate of } p). \end{aligned}$$

Do Kon Lee

183

Since (u_j) and (v_j) are bounded sequences in ℓ_p , there exists a constant C > 0 such that

$$\left(\sum_{k \in P_{u_j}} |u_j^k - v_j^k|^{(p-1)q}\right)^{\frac{N}{q}} = \left(\sum_{k \in P_{u_j}} |u_j^k - v_j^k|^p\right)^{\frac{N}{q}} \le C$$

for every j. Thus

$$|P(x)| \le C \sum_{j=1}^{\infty} \left(\sum_{k \in P_{u_j}} |x^k|^p \right)^{\frac{N}{p}} \le C ||x||_p^p \le C,$$

for $||x||_p \le 1$. The second inequality above comes from the fact $\frac{N}{p} \ge 1$ and $||x||_p \le 1$. Thus P is a continuous N-homogeneous polynomial on ℓ_p . However

$$\begin{split} P(u_{\ell}) - P(v_{\ell}) \\ &= \left(\sum_{k \in P_{u_{\ell}}} u_{\ell}^{k} |u_{\ell}^{k} - v_{\ell}^{k}|^{p-1}\right)^{N} - \left(\sum_{k \in P_{u_{\ell}}} v_{\ell}^{k} |u_{\ell}^{k} - v_{\ell}^{k}|^{p-1}\right)^{N} \\ &\geq \left(\sum_{k \in P_{u_{\ell}}} |u_{\ell}^{k} - v_{\ell}^{k}|^{p}\right)^{N} = \|(u_{\ell} - v_{\ell})\chi_{P_{u_{\ell}}}\|_{p}^{pN} \geq \delta^{pN}, \end{split}$$

which contradicts hypothesis. (The first inequality above from the fact that if $a \ge b > 0$, then $(a - b)^N \ge a^N - b^N$.) The other cases are proved similarly to the above.

On the other hand, when $\|(u_j - v_j)\chi_{E_j^-}\|_p \neq 0$, we have that $\|u_j\chi_{E_j^-}\|_p \neq 0$ or $\|v_j\chi_{E_j^-}\|_p \neq 0$. We may assume without loss of generality that for each j, $\|u_j\chi_{E_j^-}\|_p \geq \delta$ for some $\delta > 0$ (consider a subsequence if necessary). Let $z_j = \frac{u_j\chi_{E_j^-}}{\|u_j\chi_{E_j^-}\|_p}$ and then (z_j) is a normalized basic sequence in ℓ_p . Let Z be the closed subspace of ℓ_p

spanned by (z_j) . Define $\pi: \ell_p \to \ell_p$ by

$$\pi(x) = \sum_{j=1}^{\infty} \left(\sum_{k \in E_j^-} x^k (\operatorname{sign} z_j^k) |z_j^k|^{p-1} \right) z_j$$
$$(x = (x^1, x^2, \dots) \in \ell_p).$$

Since (z_j) is a normalized sequence with pairwise disjoint supports,

$$\|\pi(x)\|_{p} = \left(\sum_{j=1}^{\infty} \left| \sum_{k \in E_{j}^{-}} x^{k} (\operatorname{sign} z_{j}^{k}) |z_{j}^{k}|^{p-1} \right|^{p} \right)^{\frac{1}{p}}$$

$$\leq \left[\sum_{j=1}^{\infty} \left(\sum_{k \in E_{j}^{-}} |x^{k}|^{p} \right) \left(\sum_{k \in E_{j}^{-}} |z_{j}^{k}|^{(p-1)q} \right)^{\frac{p}{q}} \right]^{\frac{1}{p}}$$

Since $\sum_{k \in E_j^-} |z_j^k|^{(p-1)q} = \sum_{k \in E_j^-} |z_j^k|^p = 1$ for every j, we obtain $\|\pi(x)\|_p \le \|x\|_p$ and also $\pi(z_\ell) = z_\ell$ for every ℓ . Hence π is a norm 1 projection from ℓ_p onto Z.

Define $P: Z \to \mathbf{R}$ by $P(\sum a_j z_j) = \sum a_j^N$ where N is an odd integer greater than p. It is easy to see $P \in \mathcal{P}(^N Z)$ and hence $\tilde{P} = P \circ \pi \in \mathcal{P}(^N \ell_p)$. For each ℓ , we get

$$\begin{split} \tilde{P}(u_{\ell}) &= (P \circ \pi)(u_{\ell}) \\ &= \left(\sum_{k \in E_{\ell}^{-}} u_{\ell}^{k} (\operatorname{sign} z_{\ell}^{k}) |z_{\ell}^{k}|^{p-1} \right)^{N} \\ &= \left(\|u_{\ell} \chi_{E_{\ell}^{-}}\|_{p} \sum_{k \in E_{\ell}^{-}} |z_{\ell}^{k}|^{p} \right)^{N} \\ &= \|u_{\ell} \chi_{E_{\ell}^{-}}\|_{p}^{N} \geq \delta^{N} \end{split}$$

and

$$\tilde{P}(v_{\ell}) = \left(\sum_{k \in E_{\ell}^{-}} v_{\ell}^{k}(\operatorname{sign} z_{\ell}^{k}) |z_{\ell}^{k}|^{p-1}\right)^{N} < 0.$$

This implies $\tilde{P}(u_{\ell}) - \tilde{P}(v_{\ell}) \geq \delta^{N}$ for every ℓ , which contradicts hypothesis. \square

THEOREM 2. For any $1 \le p \le \infty$, ℓ_p has property (P).

Proof. We only need to consider $p \in (1, \infty)$, since ℓ_1 and ℓ_{∞} have the Dunford Pettis property. Let (u_n) and (v_n) be bounded sequences in X such that $|P(u_n) - P(v_n)| \to 0$ for all polynomials P. Using the reflexivity of ℓ_p , we may suppose without loss of generality that both (u_n) and (v_n) tend weakly to some $x \in \ell_p$. Moreover, our hypothesis implies that for all continuous polynomials P, $P(u_n - x) - P(v_n - x) \to 0$. To see this, let A be the continuous symmetric k-linear form associated with a continuous k-homogeneous polynomial P_k . Thus

$$\begin{split} &P_k(u_n-x)-P_k(v_n-x)\\ =&A(u_n-x,...,u_n-x)-A(v_n-x,...,v_n-x)\\ =&[A(u_n,...,u_n)-A(v_n,...,v_n)]+k[A(x,u_n,...,u_n)-A(x,v_n,...,v_n)]\\ &+\cdots+k[A(x,...,x,u_n)-A(x,...,x,v_n)]\\ =&[P_k(u_n)-P_k(v_n]+k[P_{k-1}(u_n)-P_{k-1}(v_n)]\\ &+\cdots+k[P_1(u_n)-P_1(v_n)], \end{split}$$

where P_i is the *i*-homogeneous polynomial defined by $P_i(y) \equiv A(x^{k-i}y^i)$, $(1 \le i \le k)$.

Therefore, the sequences $(u_n - x)$ and $(v_n - x)$ satisfy the conditions of the preceding lemma. Hence $\|(u_n - x) - (v_n - x)\| = \|u_n - v_n\| \to 0$. Thus, for every $Q \in \mathcal{P}(^nX), n \geq 1$, $Q(u_n - v_n) \to 0$. \square

References

- [ACL] R. Aron, Y.S Choi & J Llavona, Estimates by polynomials, Preprint
- [CS] J Castillo & C. Sánchez, Weakly p-compact, p-Banach-Saks and super-reflexive Banach spaces, Preprint
- [D] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland, 1981.
- [M] J. Mujica, Complex Analysis in Banach Spaces, North-Holland, 1986.

Pohang College Pohang 795-940, Korea