## PROPERTY ( $P$ ) ON $\ell_{P}$

## Do Kon Lee

$X$ and $Y$ are real Banach spaces with closed unit balls $B_{X}$ and $B_{Y}$ respectively. For $n=0,1, \ldots$, the space $\mathcal{P}\left({ }^{n} X, Y\right)$ of contiuous $n-$ homogeneous polynomials $P: X \rightarrow Y$ consists of all functions $P$ of the form $P(x)=A(x, \ldots, x)$, where $A: X \times \cdots \times X \rightarrow Y$ is a continuous $n-$ linear mapping. $\|P\| \equiv \sup \left\{\|P(x)\|: x \in B_{X}\right\}$. The space $P(X, Y)$ is the algebraic direct sum of the space $\mathcal{P}\left({ }^{n} X, Y\right), n=0,1,2, \ldots \mathcal{P}(X)$ and $\mathcal{P}\left({ }^{n} X\right)$ denote $\mathcal{P}(X, \mathbb{R})$ and $\mathcal{P}\left({ }^{n} X, \mathbb{R}\right)$, respectively.

We say that a Banach space $X$ has property $(P)$ if for any bounded sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ in $X$ such that $\left|P\left(u_{n}\right)-P\left(v_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$ for all $P \in \mathcal{P}\left({ }^{n} X\right), n \geq 1$, then $\left|Q\left(u_{n}-v_{n}\right)\right| \rightarrow 0$ as. $n \rightarrow \infty$ for all $Q \in$ $\mathcal{P}\left({ }^{n} X\right), n \geq 1$. This property was studied in [ACL], which is closely related with Dundord-Pettis property and Schur property. Aron, Choi and Llavona [ACL] showed that every super-reflexive Banach space has property $(P)$. However in their proof they used the fact that every super-reflexive Banach space is in $W_{P}$-class, which was studied by Castillo and Sánchez[CS]. Hence we cannot have the exact form of polynomial which works in their proof. In this note we will prove that every $\ell_{p}(1 \leq p<\infty)$ has property $(P)$, without using $W_{p}$-class. For general background on polynomials we refer to [D] and $[M]$.

Lemma 1. For any $p, 1 \leq p<\infty$, if ( $u_{j}$ ) and ( $v_{j}$ ) are two sequences in $\ell_{p}$ which go to 0 weakly, and if for all polynomials $P \in$ $\mathcal{P}\left(\ell_{p}\right), P\left(u_{j}\right)-P\left(v_{j}\right) \rightarrow 0$, then $\left\|u_{j}-v_{j}\right\|_{p} \rightarrow 0$

Proof. It is enough to prove the case $1<p<\infty$. Suppose that $\left\|u_{j}-v_{j}\right\|_{p} \nrightarrow 0$. Since $\left(u_{j}\right)$ and ( $v_{j}$ ) converge to 0 weakly, by passing to a subsequence, there is an increasing sequence ( $n_{j}$ ) of positive integers such that for $E_{\jmath}=\left\{n_{3} \leq k \leq n_{\jmath+1}-1\right\}$,

$$
\left\|u_{j} \chi_{E_{J}}-u_{3}\right\|_{p}<\frac{1}{2^{3}} \text { and }\left\|v_{3} \chi_{E_{J}}-v_{J}\right\|_{p}<\frac{1}{2^{3}} .
$$

Received April 30, 1993
The author would like to thank Y.S. Choi for lots of discussions and suggestions in preparing this paper.

We may assume $\left(u_{j}\right)$ and ( $v_{j}$ ) to be ( $u_{j} \chi_{E_{j}}$ ) and ( $v_{j} \chi_{E_{j}}$ ) respectively. Let

$$
E_{j}^{+}=\left\{k \in E_{j}: u_{j}^{k} v_{j}^{k} \geq 0\right\}, \quad \text { and } \quad E_{j}^{-}=\left\{k \in E_{j}: u_{j}^{k} v_{j}^{k}<0\right\}
$$

where $u_{3}=\left(u_{j}^{1}, u_{j}^{2}, \ldots, u_{j}^{n}, \ldots\right)$ and $v_{j}=\left(v_{j}^{1}, v_{j}^{2}, \ldots, v_{j}^{n}, \ldots\right)$. Since $\left\|u_{j}-v_{j}\right\|_{p} \nrightarrow 0$. We have that $\left\|\left(u_{j}-v_{j}\right) \chi_{E_{j}}+\right\|_{p} \nrightarrow 0$ or $\|(u,-$ $\left.v_{j}\right) \chi_{E_{j}} \|_{p} \nrightarrow 0$. When $\left\|\left(u_{j}-v_{j}\right) \chi_{E_{j}}\right\|_{p} \nrightarrow 0$, we partition each set $E_{j}^{+}$into four pairwise disjoint subsets. $P_{u_{j}}, P_{v_{j}}, N_{u_{j}}, N_{v_{j}}$ where

$$
\begin{aligned}
P_{u_{j}} & =\left\{k \in E_{j}^{+}: u_{j}^{k} \geq v_{j}^{k}>0\right\}, \\
P_{v_{j}} & =\left\{k \in E_{j}^{+}: v_{j}^{k}>u_{j}^{k}>0\right\}, \\
N_{u_{j}} & =\left\{k \in E_{j}^{+}: u_{j}^{k} \leq v_{j}^{k} \leq 0\right\} \text { and } \\
N_{v_{,}} & =\left\{k \in E_{3}^{+}: v_{j}^{k}<u_{j}^{k} \leq 0\right\} .
\end{aligned}
$$

Since $\left\|\left(u_{j}-v_{j}\right) \chi_{E_{2}}\right\|_{p} \nrightarrow 0$, one of the following four sequences does not converge to $0 ;\left(\left\|\left(u_{j}-v_{j}\right) \chi_{P_{u}},\right\|_{p}\right),\left(\left\|\left(u_{j}-v_{j}\right) \chi_{P_{v_{l}}}\right\|_{p}\right),\left(\left\|\left(u,-v_{j}\right) \chi_{N_{u},}\right\|_{p}\right)$, $\left(\left\|\left(u,-v_{j}\right) \chi_{N_{v_{j}}}\right\|_{p}\right)$. Suppose $\left(\left\|\left(u_{j}-v_{j}\right) \chi_{P_{u}}\right\|_{p}\right)$ does not converge to 0 . We may assume that for each $\jmath,\left\|\left(u_{j}-v_{j}\right) \chi P_{u},\right\|_{p} \geq \delta$ for some $\delta>0$ (consider a subsequence if necessary). Define

$$
P(x)=\sum_{j=1}^{\infty}\left(\sum_{k \in P_{u_{j}}} x^{k}\left|u_{j}^{k}-v_{j}^{k}\right|^{p-1}\right)^{N}
$$

where $N$ is an integer greater than $p$ and $x=\left(x^{1}, x^{2}, \ldots, x^{n}, \ldots\right) \in \ell_{p}$. If $\|x\|_{p} \leq 1$, then

$$
\begin{aligned}
|P(x)| & \leq \sum_{j=1}^{\infty}\left(\sum_{k \in P_{u}}\left|x^{k}\right|\left|u_{j}^{k}-v_{\jmath}^{k}\right|^{p-1}\right)^{N} \\
& \leq \sum_{j=1}^{\infty}\left(\sum_{k \in P_{u}}\left|x^{k}\right|^{p}\right)^{\frac{N}{p}}\left(\sum_{k \in P_{u},}\left|u_{j}^{k}-v_{j}^{k}\right|^{(p-1) q}\right)^{\frac{N}{q}}
\end{aligned}
$$

( $q$ is the exponential conjugate of $p$ ).

Since ( $u_{j}$ ) and ( $v_{j}$ ) are bounded sequences in $\ell_{p}$, there exists a constant $C>0$ such that

$$
\left(\sum_{k \in P_{u},}\left|u_{j}^{k}-v_{j}^{k}\right|^{(p-1) q}\right)^{\frac{N}{q}}=\left(\sum_{k \in P_{u_{j}}}\left|u_{j}^{k}-v_{j}^{k}\right|^{p}\right)^{\frac{N}{q}} \leq C
$$

for every $j$. Thus

$$
|P(x)| \leq C \sum_{j=1}^{\infty}\left(\sum_{k \in P_{u}}\left|x^{k}\right|^{P}\right)^{\frac{N}{p}} \leq C\|x\|_{p}^{p} \leq C
$$

for $\|x\|_{p} \leq 1$. The second inequality above comes from the fact $\frac{N}{p} \geq 1$ and $\|x\|_{p} \leq 1$. Thus $P$ is a continuoms $N$-homogereors polynomial on $\ell_{p}$. However

$$
\begin{aligned}
& P\left(u_{\ell}\right)-P\left(v_{\ell}\right) \\
&=\left(\sum_{k \in P_{u_{\ell}}} u_{\ell}^{k}\left|u_{\ell}^{k}-v_{\ell}^{k}\right|^{p-1}\right)^{N}-\left(\sum_{k \in P_{u_{\ell}}} v_{\ell}^{k}\left|u_{\ell}^{k}-v_{\ell}^{k}\right|^{p-1}\right)^{N} \\
& \geq\left(\sum_{k \in P_{u_{\ell}}}\left|u_{\ell}^{k}-v_{\ell}^{k}\right|^{p}\right)^{N}=\left\|\left(u_{\ell}-v_{\ell}\right) \chi_{P_{u_{\ell}}}\right\|_{p}^{p N} \geq \delta^{p N},
\end{aligned}
$$

which contradicts hypothesis. (The first inequality above from the fact that if $a \geq b>0$, then $(a-b)^{N} \geq a^{N}-b^{N}$.) The other cases are proved similarly to the above.

On the other hand, when $\left\|\left(u_{3}-v_{3}\right) \chi_{E_{,}}\right\|_{p} \nrightarrow 0$, we have that $\left\|u, \chi_{E_{j}^{-}}\right\|_{p} \nrightarrow 0$ or $\left\|v, \chi_{E^{-}}\right\|_{p} \nrightarrow 0$. We may assume without loss of generality that for each $j,\left\|u, \chi_{E_{j}}\right\|_{P} \geq \delta$ for some $\delta>0$ (consider a subsequence if necessary). Let $z_{j}=\frac{u_{j} \chi_{E_{j}^{-}}}{\left\|u_{i} \chi_{E_{j}}-\right\|_{p}}$ and then $\left(z_{j}\right)$ is a normalized basic sequence in $\ell_{p}$. Let $Z$ be the closed subspace of $\ell_{p}$
spanned by $\left(z_{j}\right)$. Define $\pi: \ell_{p} \rightarrow \ell_{p}$ by

$$
\begin{aligned}
\pi(x)= & \sum_{j=1}^{\infty}\left(\sum_{k \in E_{-}^{-}} x^{k}\left(\operatorname{sign} z_{j}^{k}\right)\left|z_{j}^{k}\right|^{p-1}\right) z_{j} \\
& \left(x=\left(x^{1}, x^{2}, \ldots\right) \in \ell_{p}\right) .
\end{aligned}
$$

Since $\left(z_{j}\right)$ is a normalized sequence with pairwise disjoint supports,

$$
\begin{aligned}
\|\pi(x)\|_{p} & =\left(\left.\left.\sum_{j=1}^{\infty}\left|\sum_{k \in E_{j}^{-}} x^{k}\left(\operatorname{sign} z_{j}^{k}\right)\right| z_{j}^{k}\right|^{p-1}\right|^{p}\right)^{\frac{1}{p}} \\
& \leq\left[\sum_{j=1}^{\infty}\left(\sum_{k \in E_{j}^{-}}\left|x^{k}\right|^{p}\right)\left(\sum_{k \in E_{j}^{-}}\left|z_{j}^{k}\right|^{(p-1) q}\right)^{\frac{p}{q}}\right]^{\frac{1}{p}}
\end{aligned}
$$

Since $\sum_{k \in E_{j}^{-}}\left|z_{j}^{k}\right|^{(p-1) q}=\sum_{k \in E_{j}^{-}}\left|z_{j}^{k}\right|^{p}=1$ for every $j$, we obtain $\|\pi(x)\|_{p} \leq\|x\|_{p}$ and also $\pi\left(z_{\ell}\right)=z_{\ell}$ for every $\ell$. Hence $\pi$ is a norm 1 projection from $\ell_{p}$ onto $Z$.

Define $P: Z \rightarrow \mathbf{R}$ by $P\left(\sum a_{j} z_{j}\right)=\sum a_{j}^{N}$ where $N$ is an odd integer greater than $p$. It is easy to see $P \in \mathcal{P}\left({ }^{N} Z\right)$ and hence $\tilde{P}=P \circ \pi \in$ $\mathcal{P}\left({ }^{N} \ell_{p}\right)$. For each $\ell$, we get

$$
\begin{aligned}
\tilde{P}\left(u_{\ell}\right) & =(P \circ \pi)\left(u_{\ell}\right) \\
& =\left(\sum_{k \in E_{\ell}^{-}} u_{\ell}^{k}\left(\operatorname{sign} z_{\ell}^{k}\right)\left|z_{\ell}^{k}\right|^{p-1}\right)^{N} \\
& =\left(\left\|u_{\ell} \chi_{E_{\ell}^{-}}\right\|_{p} \sum_{k \in E_{\ell}^{-}}\left|z_{\ell}^{k}\right|^{p}\right)^{N} \\
& =\left\|u_{\ell} \chi_{E_{\ell}}\right\|_{p}^{N} \geq \delta^{N}
\end{aligned}
$$

and

$$
\tilde{P}\left(v_{\ell}\right)=\left(\sum_{k \in E_{\ell}^{-}} v_{\ell}^{k}\left(\operatorname{sign} z_{\ell}^{k}\right)\left|z_{\ell}^{k}\right|^{p-1}\right)^{N}<0
$$

This implies $\tilde{P}\left(u_{\ell}\right)-\tilde{P}\left(v_{\ell}\right) \geq \delta^{N}$ for every $\ell$, which contradicts hypothesis.

Theorem 2. For any $1 \leq p \leq \infty, \ell_{p}$ has property ( $P$ ).
Proof. We only need to consider $p \in(1, \infty)$, since $\ell_{1}$ and $\ell_{\infty}$ have the Dunford Pettis property. Let ( $u_{n}$ ) and ( $v_{n}$ ) be bounded sequences in $X$ such that $\left|P\left(u_{n}\right)-P\left(v_{n}\right)\right| \rightarrow 0$ for all polynomials $P$. Using the reflexivity of $\ell_{p}$, we may suppose without loss of generality that both ( $u_{n}$ ) and ( $v_{n}$ ) tend weakly to some $x \in \ell_{p}$. Moreover, our hypothesis implies that for all continuous polynomials $P, P\left(u_{n}-x\right)-P\left(v_{n}-\right.$ $x) \rightarrow 0$. To see this, let $A$ be the continuous symmetric $k$-linear form associated with a continuous $k$-homogeneous polynomial $P_{k}$. Thus

$$
\begin{aligned}
& P_{k}\left(u_{n}-x\right)-P_{k}\left(v_{n}-x\right) \\
= & A\left(u_{n}-x, \ldots, u_{n}-x\right)-A\left(v_{n}-x, \ldots, v_{n}-x\right) \\
= & {\left[A\left(u_{n}, \ldots, u_{n}\right)-A\left(v_{n}, \ldots, v_{n}\right)\right]+k\left[A\left(x, u_{n}, \ldots, u_{n}\right)-A\left(x, v_{n}, \ldots, v_{n}\right)\right] } \\
& +\cdots+k\left[A\left(x, \ldots, x, u_{n}\right)-A\left(x, \ldots, x, v_{n}\right)\right] \\
= & {\left[P_{k}\left(u_{n}\right)-P_{k}\left(v_{n}\right]+k\left[P_{k-1}\left(u_{n}\right)-P_{k-1}\left(v_{n}\right)\right]\right.} \\
& +\cdots+k\left[P_{1}\left(u_{n}\right)-P_{1}\left(v_{n}\right)\right],
\end{aligned}
$$

where $P_{t}$ is the $\imath$-homogeneous polynomial defined by $P_{2}(y) \equiv A\left(x^{k-2} y^{\mathrm{t}}\right)$, $(1 \leq \imath \leq k)$.

Therefore, the sequences ( $\left.u_{n}-x\right)$ and ( $v_{n}-x$ ) satisfy the conditions of the preceding lemma. Hence $\left\|\left(u_{n}-x\right)-\left(v_{n}-x\right)\right\|=\left\|u_{n}-v_{n}\right\| \rightarrow 0$. Thus, for every $Q \in \mathcal{P}\left({ }^{n} X\right), n \geq 1, Q\left(u_{n}-v_{n}\right) \rightarrow 0$.

## References

[ACL] R. Aron, Y.S Chor \& J Llavona, Estimates by polynomials, Preprint [CS] J Castillo \& C. Sánchez, Weakly p-compact, p-Banach-Saks and super- reflexive Banach spaces, Preprint
[D] S. Dineen, Complex Aralysis in Locally Convex Spaces, North-Hoiland, 1981.
[M] J. Mujica, Complex Analyszs in Banach Spaces, North-Hoiland, 1986.

Pohang College<br>Pohang 795-940, Korea

