
Pusan Kyongnam Math. J. 9(1993), No 1, pp. 167—173

CHARACTRIZATION OF EXTREME

GTT-(0, |,1)- MATRICES

Geum Sug Hwang

1. Introduction and basic definitions

A tournament matrix of order n is a (0,1)-matrix M = [mtJ] which 

satisfies

(1) mzl — 0, (i = 1,n) and + m3l — 1 (/ 尹顶).

The tournament matrix M is transitive^ say a TT-matnx, provided it 

also satisfies

(2) + m-fk + m，jn > 1 (z, j, k distinct).

A generalized tournament matrix, GT-matrix, of order n is a nonneg- 

ative matrix M which satisfies (1). A generalized transitive tourna­

ment matrix, is a generalized tournament matrix satisfing (2). The 

set of all GT-matrices of order n forms a convex polytope Qn whose 

extreme points are the tournament matrices of order n. The set of all 

GTT-matrices of order n also forms a convex polytope Tny while the 

TT-matrices are extreme points of Tn there are in general other ex­

treme points. We say that a GTT -matrix is extreme provided it is an 

extreme point of Tn. Let T* denote the convex hull of the TT-matrices 

of order n. It is known that Tn = T* only for n < 5 [4,6]. For n > 6, 

there is no known charactrazation of 7^ by a finite set of linear con­

straints. For each GT- matrix we associate a graph(* -graph of M) 

whose edges correspond to the non-integral entries of M. A graph G 

is GTT-realizable provided there exists a GTT-matrix whose *-graph 

is isomorphic to G. A graph G is transitively orientable provided it is 

possible to orient each edge of G so that the resulting digraph satisfies 

the transitive law:

a —> b, b c implies a c.
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168 Charactrization of extreme GTT — (0, & 1)— matrices

A graph with transitive orientation is called a comparability graph.

2. Preliminaries

Theorem 1 A graph G is GTT-re시%zombie if and only iftthe com­

pliment G is a comparability graph.

Proof Let M = [mt}] be a GTT-matrix of order n and let G denote 

its *-graph. Choosing for each edge (i,j} of G the orientation / -승 顶 if 
= 1 we obtain a transitive orientation of G, Conversely, suppose 

G has a transitive orientation. We define a G^Z^matrix M = [mu] by:

1
2

if {z,j} is an edge of G,

= 1 if (z, J} is an edge of G with orientation z —j, 

0 otherwise.

If = rrijk = 1, then the transitive orientation of G implies that 

(z, A:} is an edge of G and = 1. It now follows that M is a GTT- 

matrix with +-graph equal to G.

Comparability graphs have been charactrized by Gillmore and Ho- 

ffman[3 ](see Theorem 3), so we get the charactrization of GZrreali- 

zable graphs by appling to the G.

Let G be a graph with edge set E. Let

E= {(心)),

Define binary relation r on £ as follows.

(a,b)P ⑷幻 iff <
either a = a! and (5, b1}牛 E 

or b = and {角a'}牛 E.

The reflexive transitive closure r* of F is an equivalence relation on 

E and equivalence class is called implication class of G. For each 

implication class I, define

r1 = {(a, b) : (b, a) e I}.
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Lemma 2 Let I be a zmplication 시of a graph G. Exactly one 

of the follovjznq holds:

i) ICil-1 =0

ii) I = I~V

Proof Assume I D I-1 尹 0. Let (a, i) £ I A I-1, so (a, b)r*(h, a). 

For any (c, d) G I, (c, d)r*(a, &) and (d, c)F*(6,(z). Since T* is an 

equivalence relation, (c, </)r*(d, c) and (d, c) £ I. Thus / = I-1.

Theorm 3 Let G be a undirected graph with edge set E. E zs 

defined as above. The following statements are equivalence:

i) G is a comparability graph,

ii) I Cl Z-1 = 0 for all implication classes I of E.

iiz) Every circuit of edges {a1, a2}5 {%,四}, , {an, aj) E E such

that {(如一{。几,，{”z—1,。虹+1}牛 E (z 二二 2,•,- ti — 1) has 

even length.

3. Main Results

Theorem 4 Let M = [mtJ] be a GTT-matrix whose ^-graph is a 

G v)ith at least one edge. M ts a extreme GTT — (0, 1)- matrix if

and only if IR J'1 + 0 for all implication classes I.

Proof Suppose that I A I-1 = 0 for some implicatiion class I of 

G. Let M(e) = [mv(e)] be obtained from M by adding e to ml3 if 

(z,j) € I and subtracting e from mJt if 0,i) € I-1. We claim that 

Af(e) is a GTT- matrix. Because I Cl I~x = 0, Af(e) is a GT-matrix. It 

suffices that M(e) satisfies

(4) 1 < ml;(e) + m3k(e) + m妇(时 < 2

for all distinct J, k. If none of (z, J), (j, k) and (知 z) is in I then 
satisfies transitive inequality (4). Assume that at least one of 

fc) and (fc,t),say (i, J) is in I and thus mt} is strictly between

0 and 1. One of the following holds:

(i) Both of mjk and my are integers (0 or 1). Since M is a GTT-

matrix, both of them can not be 0(or 1) and thus 1 < mv <

2.

(ii) Only one of m3^ and my say mg is an integer. Since (z, j) 6 I 

and (J, k} is not an edge of G, we have (i, fc) £ I. IH I"*1 = 0 implies 

(知 2)G I'1.
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(iii) Neither nor m知 is integer. Since mtj = m3k = m知 = 
I，1 < mtJ + rrijk + m虹 V 2.

It follows from (i),(ii) and (iii) that for € a small positive number, 

M(e) satisfies (4). By same argument M(—e) is a GTT- matrix. We 

have

(5) M = |(M(€)+ M(-€)),

so M is not extreme.

Conversely, suppose that #0 for all implication class / of G 

and let M = ^(A + B) for some GTT-matrices A = [atJ] and B = 

We have

mZJ = al} = &tJ(= 0 or 1) if (z,j}is not an edge of G

+ hj), —1 — cy
£ 厶

if {z, j} is an edge of G.

Suppose that (z, j)「(i, k) for some distinct z, j, k. Then {J, k} is not 

an edge of G, and so m3k = =吳 is an integer ( 0 or 1). Without

loss of generality assume that m3k — 1- Then we have al3 + a知 J 1 
and bi} + b知 < 1. If + a妇 < 1 then bt} + b妇=2 — (av + ajQ > 1, 

contradicting the fact that B is GTT-matrix. Hence atJ + 이“ = 1, and 
so atJ = 1 — ajti = atk- Therfbre atJ = atk whenever (z, J)「(i, fc). Now

크 I、— chain (z,j) = (妇, ji)P02S)「• • • 1、(办次) = (矿, j').

Hence we have a可 = a” if (z,j) r* (z/,j/). Let (z, j) 6 I for some 

implication class I. Then for all (z\ j1) G Z. Z Cl Z-1 + 0

means I = Z-1, so a可 = aJt. Thus atJ = ^ = btJ for (z, j) E L By 

the same argument, atJ = hj = * for all edges {z, j} of G. Hence 

M = A = B, so M is an extreme GTT — (0, 1)- matrix.

Corollary 5 The graph of any extreme GTT — (0, 1) — matrix

with at least one edge is not a comparability graph, but its compliment 

is a comparability graph.

We now see the relation between extreme GTT — (0, 1)- matrices

and examples of GT^-nonrealizable graphs.
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Lemma 6 If the compliment G of a graph G is a even-cycle Cn 

for n > 6, then G ts -graph of an extreme GTT — (0, 1)- matrix.

Proof Suppose that G is even-cycle Cn = (1,2,- - - ,n, 1),n > 6. 

Since an even-cycle is a comparability graph, G is GTT-realizable 

graph. Let M = \rnl}] be a GTT-matrix whose *-graph is G and 

mv = I if {iyj} is an adge of G. Assume that M = + for some

GTT- matrices A = [atJ] and B =卩切].Then ml3 — at} = b可 are 

integers if {很} is an adge of G. We get, after reordering if necessary,

_0 * *■

* 0 * g

A = ….
B * o *

* 0-

* is。。호 고 ani 0 < < 1, 3 = 1 — p. Then cz13 = a^n — 丿8
and an\ equals 0 or 1. This implies that a\3 + a^n = 20 = 1)thus 

M = A = B. Therefore M is ail extreme GTT — (0, 土 1)- matrix.

Lemina 7 If the compliment G of a graph G contains a chordless 
k — cycle(k > 5, odd) as induced subgraph, then G is GTT-nonreahzable 

graph.

Proof Suppose that G contains a cy시e Ck = (1,2, - - - , fc, 1). As­

sume that M = [mv] is the GTT-matrix whose *-graph is G and 

mtJ = - for all i and j such that (z, j} is an adge of G. Let P = \ptJ] be 

the principle submatrix of M of order k, whose *-graph is compliment 

of Ck・ Then are integers if (z,j} is an adge of Ck・ Whitout loss of 

generality, assume that P12 = 1 (the possibility — 0 is argued in a 

similar way). Since P is also GTT-matrix we have = 1 for all odd 

知(z = 1, 3,…/ 一 2) and p* = 1- Thus 腿 + Pfc-u + 卩妇=* V 1, 
contradicting the transitivity of P. Hence G is GTT-nonrealizable 

graph.

Lemma 8 Let a graph G be the comphment of LBn m figure 1 for 

n > 6. Then G is GTT-realizable graph zf n is e하en： and G is graph 

of extreme GTT — (0, 1)- matrix if n u odd.

Proof Let G be an LBn in Figure 1. Assume that n is even 

and M = \mt}] is a GTT-matrix whose *-graph is G and ml3 = | 
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for each edge {z, j} of G. Without loss of generality, assume that 

mj2 = 1. Repeated use of the transitive inequality gives that = 1 

for fc = 3, •••,?! — 3, n — 1 and m 妇t+i = 0 for even A:, k < n — 3 and 

m妇t+i = 1 for odd 如 A: < n — 3. Hence m\n-^ = mn-zn-2 = 1 and 
mn_2i = I，contradicting the transitivity of M.

Now asstune that n is odd. Let M = [mv] be a GT-matrix such 

that mik = 1 for A = 2, — 3, n — 1 and = 1 for odd k

where fc < n — 3, otherwise ”妬丿=Then it is easy to check that M 

satisfies transitive inequality. Assume that M = |(A + B) for some 

GTT-matrices A and B. We get M = A = B by the same argument 

in Lemma 6. Hence Af is an extreme GTT — (0, 1)— mareix.

Theorem 9. The compliment of graph of any extreme GTT — 

(0, I，1)- matrix of order 6 zs isomorphic to or G\ in figure 1, There­

fore Mi and are the only extreme GTT — (0, 1)- matrices of order 

6 up to isomorphism.

Proof. If G is a *-graph of an extreme GTT — (0, 1)- matrix,

then G is GTT-nonrealizable. Note that C5, Co, LBq and two graphs 
(구±。2 are the only minimal GTT-nonrealizable graphs of order at 

most 6. If G contains C5 or G = then G is GTT- nonrealizable 

by Lemma 7 and 8. Hence the only possible compliments of *-graph 

of any extreme GTT — (0, 1)- matrix of order 6 are C& and Gi, and

these two are compliment of *-graphs of M\ and A小
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