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CHARACTRIZATION OF EXTREME
GTT - (0,1,1)- MATRICES

GEUM Suc HwWANG

1. Introduction and basic definitions

A tournament matrix of order n is a (0, 1)-matrix M = [m,,] which
satisfies

(1) mu=0,(z=1,..,n) and my,+m, =1 (z#7j).

The tournament matrix M is transitive, say a T7T-matnx, provided it
also satisfies

(2) m,, + myp +mg, > 1 (4,5, k distinet).

A generalized tournament matrix, GT-matrix, of order n is a nonneg-
ative matrix M which satisfies (1). A generalized transitive tourna-
ment matrix, is a generalized tournament matrix satisfing (2). The
set of all GT-matrices of order n forms a convex polytope G, whose
extreme points are the tournament matrices of order n. The set of all
GTT-matrices of order n also forms a convex polytope 7,, while the
TT-matrices are extreme points of 7,, there are in general other ex-
treme points. We say that a GTT -matrix is ezfreme provided it is an
extreme point of 7,,. Let 7,7 denote the convex hull of the TT-matrices
of order n. It is known that T, = 7.¥ only for n < 5 [4,6]. For n > 6,
there 1s no known charactrazation of 7, by a finite set of linear con-
straints. For each GT- matrix M, we associate a graph{* -graph of M)
whose edges correspond to the non-integral entries of M. A graph G
is GTT-realizable provided there exists a GTT-matrix whose *-graph
is 1somorphic to G. A graph G is tfransitively orientable provided it is
possible to orient each edge of G so that the resulting digraph satisfies
the transitive law:

a— b, b— cimplies a — c.
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168 Charactrization of extreme GTT — (0, -;-, 1)— matrices
A graph with transitive orientation is called a comparebility graph.

2. Preliminaries

Theorem 1 A graph G is GTT-reahzable if and only if the com-
phiment G i3 a comparability greph.

Proof Let M = [m,,] be a GTT-matrix of order n and let G denote
its x-graph. Choosing for each edge {i,;} of G the orientation i — j if
m,; = 1 we obtain a transitive orientation of G. Conversely, suppose
G has a transitive orientation. We define a GT-matrix M = [m, ;) by:

% if {¢,7} is an edge of G,

My = 1 if {i,j} is an edge of G with orientation ¢ — j,

0 otherwise.

i m,, = m;r = 1, then the transitive orientation of G implies that
{i,k} is an edge of G and m,x = 1. It now follows that M is a GTT-
matrix with *-graph equal to G.

Comparability graphs have been charactrized by Gillmore and Ho-
fiman|[3 ](see Theorem 3}, so we get the charactrization of GTT-reali-
zable graphs by appling to the G.

Let G be a graph with edge set E. Let
E ={ (a,b),(b,a)|(a,b) € E }.
Define binary relation I' on E as follows.

either ¢ = o' and {b,0'} ¢ E

BT (a', b)) iff
(,b) T (¢, ) i {m-b:u,and{a,a'wE-

The reflexive transitive closure I'* of T’ is an equivalence relation on
E and equivalence class is called implication class of G. For each
imphication class I, define

I = {(a,b) : (b,a) € T}.
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Lemma 2 Let I be a implication class of a graph G. Ezacily one
of the follounng holds;

)INI~1=0

W) I=1".

Proof Assume INI~! #£ @. Let {(a,b) € INTY, so (a,b)*(d,a).
For any (¢,d) € I, (¢,d)[*(a,b) and (d,c)I'*(b,a). Since I'* is an
equivalence relation, (¢, d)I'*(d,¢) and {d,c) € I. Thus I = I~!.

Theorm 3 Let G be a undirected graph with edge set E. E s
defined as above. The following statements are equivalence:

t) G is ¢ comparability graph.

#) INT™' =0 for all smplication classes I of E.

t1e} Bvery circust of edges {ay,a2},{az,a3}, - ,{an,a1} € E such
that {an_1,a1},{an, a2}, - ,{@icr,aq,1} ¢ E (1 =2,--- ,n ~ 1) has
even length.

3. Main Results

Theorem 4 Let M = [m,;] be a GTT-matriz whose *-graph is a
G with at least one edge. M s a extreme GTT — (0, %,1)— matriz if
and only if INI~1 £ @ for all implication classes I.

Proof Suppose that 7N I~! = § for some implicatiion class I of
G. Let M{¢) = [my,(¢)] be obtained from M by adding € to m,, if
(¢,7) € I and subtracting e from m,, if (3,1) € I™'. We claim that
M(e) is a GTT- matrix. Because INI~! = §§, M(e) is a GT-matrix. It
suffices that M(e) satisfies

(4) 1< my(e)+mele) + mp,(e) <2

for all distinct 2,7,k. If none of (¢,7),(s,%) and (k,2) is in I then
M(€) satisfies transitive inequality (4). Assume that at least one of
(2,3),(U, k) and (k,2),say (i,7) is in T and thus m,, is strictly between
0 and 1. One of the following holds:

(1) Both of m,; and my, are integers (0 or 1). Since M is a GTT-
matrix, both of them can not be O{or 1) and thus 1 < m,, +mx+my, <
2.

(i) Only one of m; and my,, say m 4, is an integer. Since (1,7) € I
and {j, k} is not an edge of G, we have (2,k} € I. I T~! = § implies
(k,2) € I,
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(iii) Neither m,x nor my, is integer. Since m,; = m, = my, =
%, 1 <my, +myp +mg, < 2.

It follows from (i),(ii) and (iii) that for € a small positive number,
M{(e) satisfies (4). By same argument M{—¢) is a GTT- matrix. We

have
(8) M = j(M(e)+ M(-¢)),

so M is not extreme.

Conversely, suppose that ITNI~! # § for all implication class I of G
and let M = 1(A+ B) for some GTT-matrices 4 = [a,,] and B = [b,,].
We have

My = @,; = b,y (=0 or 1) if {z,7}is not an edge of G

m,, = % = %(au +b,), by, =1 —a, if {z,7} is an edge of G.

Suppose that (2,7) ' (¢, k) for some distinct ¢, ), k. Then {j,k} is not
an edge of G, and so m;t = a,; = b,i is an integer { 0 or 1). Without
loss of generality assume that m,x = 1. Then we have a,; + a4, <1
and b,; + b, < 1. If a,; + ax, < 1 then by, + bx, =2 — (as; + ar.) > 1,
contradicting the fact that B is GTT-matrix. Hence a,, + ag, = 1, and
80 @,; = 1 — ag, = as. Therfore a,;, = a,x whenever (2,7) I (3, k). Now

(i,7) T* (o', 5") iff
AT — chain (3,5} = (21,71)T(i2,32)T - Dok, 5} = (i, 7).
Hence we have a,; = ayp if (¢,7) I'* (¢, 3'). Let (2,7) € I for some

implication class I. Then a,, = ayy for all (/,3)) € 1. INI™" # ¢
means I = I, so a,; = a,,. Thus a,, = } = b,, for (2,7) € I. By

the same argument, a,, = b,, = 1 for all edges {z,7} of G. Hence
M = A = B, so M is an extreme GTT — (0, },1)- matrix.
Corollary 5 The x-graph of any extreme GTT — (0, %, 1) —matriz

with at least one edge is not @ comparability graph, but its compliment
13 a comparability graph.

We now see the relation between extreme GTT —(0, 1, 1)- matrices
and examples of GTT-nonrealizable graphs.
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Lemma 6 If the compliment G of a graph G is a even-cycle C,
for n > 6, then G 13 *-graph of an éztreme GTT — (0, 3,1)- matriz.

Proof Suppose that G is even-cycle C,, = (1,2,--- ,n,1},n > 6.
Since an even-cycle is a comparability graph, G is GTT-realizable
graph. Let M = |m,,] be a GTT-matrix whose *-graph is G and
m,, = L if {1, 7} is an adge of G. Assume that M = }(A + B) for some
GTT- matrices A = [q,;] and B = [b,;]. Then m,; = a,; = b, are
integers if {z,7} is an adge of G. We get, after reordering if necessary,

0 = *
* 0 =* 8
A—
8 * 0 =*
¥ * 0
where +31s Qor 1and 0 < 2 <1, B =1- 3 Then a13 = agn = f

and a,, equals 0 or 1. Thls implies that a3 —l— agn = 28 = 1, thus
M = A = B. Thercfore M is an extreme GTT — (0, §,1)- matrix.

Lemma 7 If the compliment G of a graph G contains a chordless
k—cycle(k > 5,0dd) as induced subgraph, then G 1s GTT -nonreahzable
graph.

Proof Suppose that G contains a cycle Cp = (1,2,-- ,k,1). As-
sume that M = [m,,] is the GTT-matrix whose *-graph is G and
m,; = 3 for all » and j such that {2, 7} is an adge of G. Let P = [p,,] be
the principle submatrix of M of order k, whose *-graph is compliment
of Cx. Then p,, are integers if {2, 7} is an adge of Cx. Whitout loss of
generality, assume that pjs = 1 (the possibility p12 = 0 is argued in a
similar way). Since P is also GTT-matrix we have p,,+y = 1 for all odd
2, (1 =1,3,--- ,k—2) and pix = 1. Thus p1x + Pe—tx + pe1 = % < 1,
contradicting the transitivity of P. Hence G is GTT-nonrealizable
graph.

Lemma 8 Let a graph G be the comphment of LB, n figure 1 for
n > 6. Then G 1s GTT-realizable graph 1f n is even, and G 13 * graph
of extreme GTT — (0,1 2, 1)- matrz if n 1 odd.

Proof Let G be an LB, in Figure 1. Assume that n 1s even

and M = [m,,] is a GTT-matrix whose *-graph 1s G and m,;, = %
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for each edge {z,7} of G. Without loss of generality, assume that
my; = 1. Repeated use of the transitive inequality gives that my; = 1
for k=3,---,n—3,n—1 and mgz41 =0 for even &k, ¥ < n — 3 and
miryy = 1 forodd &k, k¥ < n —3. Hence my,—3 = mp_3n—2 =1 and
Mp_21 = %, contradicting the transitivity of M.

Now assume that n is odd. Let M = [m,,] be a GT-matrix such
that myg = 1for k=2, n—3,n—1and myxy; = 1 for odd &
where k < n — 3, otherwise m;, = % Then it is easy to check that M
satisfies transitive inequality. Assume that M = 1(A + B) for some
GTT-matrices A and B. We get M = A = B by the same argument

in Lemma 6. Hence M is an extreme GTT — (0, ,1)— mareix.

Theorem 9. The compliment of «x-graph of any extreme GTT —
(0,1, 1)- matriz of order 6 13 isomorphic to Cs or Gy 1n figure 1. There-
fore My and M, are the only extreme GTT —(0, ,17, 1)- matrices of order
6 up o 1somorphism.

Pr_oof. If G is a +-graph of an extreme GTT — (0, %, 1)- matrix,
then G is GTT-nonrealizable. Note that Cs,C¢, LBs and two graphs
Gh,G2 are the only minimal GTT-nonrealizable graphs of order at
most 6. If G contains Cs or G = LBg, then G is GTT- nonrealizable
by Lemma 7 and 8. Hence the only possible compliments of *-graph
of any extreme GTT — (0, %, 1}- matrix of order 6 are C¢ and G, and
these two are compliment of *-graphs of My and M,.

1 i 1 1

0 3 1 1 3 3 0 3 3 1 1 3

3 001 1 11 3 0 3 1 11

6 00 1 Lo 1101 11

M, = 2 2 =12 2 2

IS AR R
A !, 21 ;2

3 01 53 30 2 00 2 3 0
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