CHARACTRIZATION OF EXTREME

GTT - $\left(0, \frac{1}{2}, 1\right)$ - MATRICES

Geum Sug Hwang

1. Introduction and basic definitions

A tournament matrix of order n is a $(0,1)$-matrix $M=\left[m_{2}\right]$ which satisfies

$$
\begin{equation*}
m_{r i}=0,(i=1, \ldots, n) \text { and } \quad m_{\imath j}+m_{\imath \imath}=1 \quad(i \neq j) . \tag{1}
\end{equation*}
$$

The tournament matrix M is transitzve, say a $T T$-matrix, provided it also satisfies
(2) $m_{1 \jmath}+m_{\jmath k}+m_{k:} \geq 1(i, j, k$ distinct $)$.

A generalized tournament matrix, $G T$-matrix, of order n is a nonnegative matrix M which satisfies (1). A generalized transitive tournament matrix, is a generalized tournament matrix satisfing (2). The set of all $G T$-matrices of order n forms a convex polytope \mathcal{G}_{n} whose extreme points are the tournament matrices of order n. The set of all $G T T$-matrices of order n also forms a convex polytope \mathcal{T}_{n}, while the $T T$-matrices are extreme points of \mathcal{T}_{n} there are in general other extreme points. We say that a $G T T$-matrix is extreme provided it is an extreme point of \mathcal{T}_{n}. Let \mathcal{T}_{n}^{*} denote the convex hull of the $T T$-matrices of order n. It is known that $\mathcal{T}_{n}=\mathcal{T}_{n}^{*}$ only for $n \leq 5[4,6]$. For $n \geq 6$, there is no known charactrazation of \mathcal{T}_{n} by a finite set of linear constraints. For each $G T$ - matrix M, we associate a graph(*-graph of M) whose edges correspond to the non-integral entries of M. A graph G is $G T T$-realizable provided there exists a $G T T$-matrix whose $*$-graph is isomorphic to G. A graph G is transitively orientable provided it is possible to orient each edge of G so that the resulting digraph satisfies the transitive law:

$$
a \rightarrow b, b \rightarrow c \text { implies } a \rightarrow c .
$$

Received April 30, 1993

A graph with transitive orientation is called a comparability graph.

2. Preliminaries

Theorem 1 A graph G is GTT-realizable if and only if the compliment \bar{G} is a comparability graph.

Proof Let $M=\left[m_{\imath}\right]$ be a $G T T$-matrix of order n and let G denote its $*$-graph. Choosing for each edge $\{i, j\}$ of \bar{G} the orientation $i \rightarrow j$ if $m_{i j}=1$ we obtain a transitive orientation of \bar{G}. Conversely, suppose \bar{G} has a transitive orientation. We define a $G T$-matrix $M=\left[m_{1}\right]$ by:

$$
m_{i j}=\left\{\begin{array}{l}
\frac{1}{2} \text { if }\{\imath, j\} \text { is an edge of } G \\
1 \text { if }\{i, j\} \text { is an edge of } \bar{G} \text { with orientation } i \rightarrow j \\
0 \text { otherwise. }
\end{array}\right.
$$

If $m_{i j}=m_{j k}=1$, then the transitive orientation of \bar{G} implies that $\{i, k\}$ is an edge of \bar{G} and $m_{t k}=1$. It now follows that M is a $G T T$ matrix with *-graph equal to G.

Comparability graphs have been charactrized by Gillmore and Hoffman [3](see Theorem 3), so we get the charactrization of $G T T$-realizable graphs by appling to the \bar{G}.

Let G be a graph with edge set E. Let

$$
\hat{E}=\{(a, b),(b, a) \mid(a, b) \in E\}
$$

Define binary relation Γ on \hat{E} as follows.

$$
(a, b) \Gamma\left(a^{\prime}, b^{\prime}\right) \text { iff } \quad\left\{\begin{array}{l}
\text { either } a=a^{\prime} \text { and }\left\{b, b^{\prime}\right\} \notin E \\
\text { or } b=b^{\prime}, \text { and }\left\{a, a^{\prime}\right\} \notin E
\end{array}\right.
$$

The reflexive transitive closure Γ^{*} of Γ is an equivalence relation on \hat{E} and equivalence class is called amplication class of G. For each implication class I, define

$$
I^{-1}=\{(a, b):(b, a) \in I\}
$$

Lemma 2 Let I be a amplication class of a graph G. Exactly one of the following holds;
i) $I \cap I^{-1}=\emptyset$
ii) $I=I^{-1}$.

Proof Assume $I \cap I^{-1} \neq \emptyset$. Let $(a, b) \in I \cap I^{-1}$, so $(a, b) \Gamma^{*}(b, a)$. For any $(c, d) \in I,(c, d) \Gamma^{*}(a, b)$ and $(d, c) \Gamma^{*}(b, a)$. Since Γ^{*} is an equivalence relation, $(c, d) \Gamma^{*}(d, c)$ and $(d, c) \in I$. Thus $I=I^{-1}$.

Theorm 3 Let G be a undirected graph with edge set $E . \hat{E}$ is defined as above. The following statements are equivalence:
i) G is a comparabilaty graph.
ii) $I \cap I^{-1}=0$ for all implication classes I of \hat{E}.
iit) Every circutt of edges $\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}, \cdots,\left\{a_{n}, a_{1}\right\} \in E$ such that $\left\{a_{n-1}, a_{1}\right\},\left\{a_{n}, a_{2}\right\}, \cdots,\left\{a_{2-1}, a_{i+1}\right\} \notin E(i=2, \cdots, n-1)$ has even length.

3. Main Results

Theorem 4 Let $M=\left[m_{i f}\right]$ be a GTT-matrix whose *-graph is a G with at least one edge. M is a extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - matrix if and only if $I \cap I^{-1} \neq$ for all implacation classes I.

Proof Suppose that $I \cap I^{-1}=$ for some implication class I of G. Let $M(\epsilon)=\left[m_{i j}(\epsilon)\right]$ be obtained from M by adding ϵ to $m_{i j}$ if $(i, j) \in I$ and subtracting ϵ from $m_{j t}$ if $(\jmath, i) \in I^{-1}$. We claim that $M(\epsilon)$ is a $G T T$-matrix. Because $I \cap I^{-1}=\emptyset, M(\epsilon)$ is a $G T$-matrix. It suffices that $M(\epsilon)$ satisfies

$$
\begin{equation*}
1 \leq m_{\imath \jmath}(\epsilon)+m_{\jmath k}(\epsilon)+m_{k \imath}(\epsilon) \leq 2 \tag{4}
\end{equation*}
$$

for all distinct \imath, j, k. If none of $(i, j),(\jmath, k)$ and (k, \imath) is in I then $M(\epsilon)$ satisfies transitive inequality (4). Assume that at least one of $(i, j),(j, k)$ and (k, \imath), say (i, j) is in I and thus $m_{i j}$ is strictly between 0 and 1. One of the following holds:
(i) Both of $m_{)_{k}}$ and $m_{k i}$ are integers (0 or 1). Since M is a GTTmatrix, both of them can not be 0 (or 1) and thus $1<m_{i j}+m_{j k}+m_{k_{1}}<$ 2.
(ii) Only one of $m_{\jmath k}$ and $m_{k_{t}}$, say $m_{j k}$, is an integer. Since $(i, \jmath) \in I$ and $\{j, k\}$ is not an edge of G, we have $(2, k) \in I . I \cap I^{-1}=0$ implies $(k, z) \in I^{-1}$.
(iii) Neither $m_{j k}$ nor $m_{k t}$ is integer. Since $m_{i j}=m_{j k}=m_{k z}=$ $\frac{1}{2}, 1<m_{\imath \jmath}+m_{j k}+m_{k t}<2$.

It follows from (i),(ii) and (iii) that for ϵ a small positive number, $M(\epsilon)$ satisfies (4). By same argument $M(-\epsilon)$ is a $G T T$ - matrix. We have
(5) $\quad M=\frac{1}{2}(M(\epsilon)+M(-\epsilon))$,
so M is not extreme.
Conversely, suppose that $I \cap I^{-1} \neq \emptyset$ for all implication class I of G and let $M=\frac{1}{2}(A+B)$ for some $G T T$-matrices $A=\left[a_{i}\right]$ and $B=\left[b_{t_{2}}\right]$. We have

$$
\begin{gathered}
m_{i j}=a_{i j}=b_{i j}(=0 \text { or } 1) \text { if }\{\imath, \jmath\} \text { is not an edge of } G \\
m_{i j}=\frac{1}{2}=\frac{1}{2}\left(a_{i j}+b_{i j}\right), b_{i j}=1-a_{i j} \text { if }\{\imath, j\} \text { is an edge of } G .
\end{gathered}
$$

Suppose that $(2, j) \Gamma(i, k)$ for some distinct \imath, \jmath, k. Then $\{j, k\}$ is not an edge of G, and so $m_{j k}=a_{j k}=b_{j k}$ is an integer (0 or 1). Without loss of generality assume that $m_{j k}=1$. Then we have $a_{1 j}+a_{k t} \leq 1$ and $b_{2 \jmath}+b_{k t} \leq 1$. If $a_{1}+a_{k t}<1$ then $b_{\imath \jmath}+b_{k t}=2-\left(a_{2 \jmath}+a_{k t}\right)>1$, contradicting the fact that B is $G T T$-matrix. Hence $a_{i j}+a_{k z}=1$, and so $a_{t j}=1-a_{k i}=a_{t k}$. Therfore $a_{t j}=a_{t k}$ whenever $(\imath, j) \Gamma(i, k)$. Now

$$
\begin{gathered}
(i, j) \Gamma^{*}\left(i^{\prime}, j^{\prime}\right) \text { iff } \\
\exists \Gamma-\operatorname{chain}(\imath, j)=\left(\imath_{1}, j_{1}\right) \Gamma\left(i_{2}, j_{2}\right) \Gamma \cdots \Gamma\left(\imath_{k}, j_{k}\right)=\left(i^{\prime}, j^{\prime}\right) .
\end{gathered}
$$

Hence we have $a_{t j}=a_{i^{\prime} j^{\prime}}$ if $(i, j) \Gamma^{*}\left(i^{\prime}, j^{\prime}\right)$. Let $(i, j) \in I$ for some implication class I. Then $a_{2},=a_{i^{\prime} \jmath^{\prime}}$ for all $\left(i^{\prime}, j^{\prime}\right) \in I$. $I \cap I^{-1} \neq 0$ means $I=I^{-1}$, so $a_{i j}=a_{j 2}$. Thus $a_{1 j}=\frac{1}{2}=b_{1 j}$ for $(2, j) \in I$. By the same argument, $a_{i j}=b_{i j}=\frac{1}{2}$ for all edges $\{2, j\}$ of G. Hence $M=A=B$, so M is an extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - matrix.

Corollary 5 The *-graph of any extreme GTT-(0, $\left.\frac{1}{2}, 1\right)$ - matrix with at least one edge is not a comparabulity graph, but its compliment is a comparability graph.

We now see the relation between extreme $G T T-\left(0, \frac{1}{2}, 1\right)$-matrices and examples of GTT-nonrealizable graphs.

Lemma 6 If the compliment \bar{G} of a graph G is a even-cycle C_{n} for $n \geq 6$, then G is $*$-graph of an èxtreme $G T T-\left(0, \frac{1}{2}, 1\right)$-matrix.

Proof Suppose that \bar{G} is even-cycle $C_{n}=(1,2, \cdots, n, 1), n \geq 6$. Since an even-cycle is a comparability graph, G is $G T T$-realizable graph. Let $M=\left[m_{t}\right]$ be a $G T T$-matrix whose *-graph is G and $m_{i j}=\frac{1}{2}$ if $\{i, j\}$ is an adge of G. Assume that $M=\frac{1}{2}(A+B)$ for some $G T T$ - matrices $A=\left\{a_{i y}\right]$ and $B=\left[b_{i j}\right]$. Then $m_{2 j}=a_{i y}=b_{i j}$ are integers if $\{2, j\}$ is an adge of \bar{G}. We get, after reordering if necessary,

$$
A=\left[\begin{array}{ccccccc}
0 & * & & & & * \\
* & 0 & * & & \beta & \\
& & \cdots & & & \\
& \bar{\beta} & & * & 0 & * \\
* & & & & * & 0
\end{array}\right]
$$

where $*$ is 0 or 1 and $0 \leq \beta \leq 1, \bar{\beta}=1-\beta$. Then $a_{13}=a_{3 n}=\beta$ and $a_{n 1}$ equals 0 or 1 . This implies that $a_{13}+a_{3 n}=2 \beta=1$, thus $M=A=B$. Therefore M is an extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - matrix.

Lemma 7 If the compliment \bar{G} of a graph G contanns a chordless $k-c y c l e(k \geq 5$, odd $)$ as induced subgraph, then G is $G T T$-nonreallzable graph.

Proof Suppose that \bar{G} contains a cycle $C_{k}=(1,2, \cdots, k, 1)$. Assume that $M=\left[m_{i_{7}}\right]$ is the $G T T$-matrix whose $*$-graph is G and $m_{\imath j}=\frac{1}{2}$ for all \imath and \jmath such that $\{\imath, j\}$ is an adge of G. Let $P=\left[p_{\imath j}\right]$ be the principle submatrix of M of order k, whose *-graph is compliment of C_{k}. Then p_{\imath} are integers if $\{2, \jmath\}$ is an adge of C_{k}. Whitout loss of generality, assume that $p_{12}=1$ (the possibility $p_{12}=0$ is argued in a similar way). Since P is also $G T T$-matrix we have $p_{a+1}=1$ for all odd $\imath,(\imath=1,3, \cdots, k-2)$ and $p_{1 k}=1$. Thus $p_{1 k}+P_{k-1 k}+p_{k 1}=\frac{1}{2}<1$, contradicting the transitivity of P. Hence G is $G T T$-nonrealizable graph.

Lemma 8 Let a graph G be the compliment of $L B_{n}$ in figure 1 for $n \geq 6$. Then G is $G T T$-realizable graph of n is even, and G is $*$ graph of extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - matrux if n is odd.

Proof Let \bar{G} be an $L B_{n}$ in Figure 1. Assume that n is even and $M=\left[m_{23}\right]$ is a $G T T$-matrix whose $*$-graph is G and $m_{i j}=\frac{1}{2}$
for each edge $\{\imath, j\}$ of G. Without loss of generality, assume that $m_{12}=1$. Repeated use of the transitive inequality gives that $m_{1 k}=1$ for $k=3, \cdots, n-3, n-1$ and $m_{k k+1}=0$ for even $k, k \leq n-3$ and $m_{k k+1}=1$ for odd $k, k \leq n-3$. Hence $m_{1 n-3}=m_{n-3 n-2}=1$ and $m_{n-21}=\frac{1}{2}$, contradicting the transitivity of M.

Now assume that n is odd. Let $M=\left[m_{z^{2}}\right]$ be a $G T$-matrix such that $m_{1 k}=1$ for $k=2, \cdots, n-3, n-1$ and $m_{k k+1}=1$ for odd k where $k \leq n-3$, otherwise $m_{i j}=\frac{1}{2}$. Then it is easy to check that M satisfies transitive inequality. Assume that $M=\frac{1}{2}(A+B)$ for some $G T T$-matrices A and B. We get $M=A=B$ by the same argument in Lemma 6. Hence M is an extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - mareix.

Theorem 9. The compliment of *-graph of any extreme GTT $\left(0, \frac{1}{2}, 1\right)$-matrix of order 6 as isomorphac to C_{6} or G_{1} in figure 1. Therefore M_{1} and M_{2} are the only extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - matrices of order 6 up to asomorphism.

Proof. If G is a *-graph of an extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - matrix, then \bar{G} is $G T T$-nonrealizable. Note that $C_{5}, C_{6}, L B_{6}$ and two graphs G_{1}, G_{2} are the only minimal $G T T$-nonrealizable graphs of order at most 6. If \bar{G} contains C_{5} or $\bar{G}=L B_{6}$, then G is $G T T$ - nonrealizable by Lemma 7 and 8 . Hence the only possible compliments of $*$-graph of any extreme $G T T-\left(0, \frac{1}{2}, 1\right)$ - matrix of order 6 are C_{6} and G_{1}, and these two are compliment of $*$-graphs of M_{1} and M_{2}.

$$
M_{1}=\left(\begin{array}{cccccc}
0 & \frac{1}{2} & 1 & 1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 1 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 1 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \quad M_{2}=\left(\begin{array}{cccccc}
0 & \frac{1}{2} & \frac{1}{2} & 1 & 1 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 1 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & 1 & \frac{1}{2} & 1 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

Figure 1

Referance

[1] S.N.Afriat, On sum-symmetric matrices, Linear Aıgebra appl. 8, 1974
[2] A.B.Cruse, On removing a vertex from the assignment polytope, Linear Algebra Appl. 26, 1979
[3] P.C.Gilmore and A.J.Hoffman, A characterization of comparability graphs and interval graphs, Canad.J.Math.16, 1964
[4] M.C.Golumbic,Algorithmic Graph Theory and Perfect Graphs. Academıc, New York., 1980
[5] L.Mirsky, Results and problems in the theory of doubly-stochastic matrices, Z. Wahrschennlıchkeitstheori 1., 1969
[6] G.Reinelt, The Linear Ordering Problem:Algorithems and Applications, Heldermann, Berlan, 1985

Department of Mathematics
Pusan University of Foreign Studies, Pusan, 608-738, Korea

