CHARACTRIZATION OF EXTREME

 $GTT - (0, \frac{1}{2}, 1) - MATRICES$

GEUM SUG HWANG

1. Introduction and basic definitions

A tournament matrix of order n is a (0,1)-matrix $M = [m_{ij}]$ which satisfies

(1)
$$m_{ii} = 0$$
, $(i = 1, ..., n)$ and $m_{ij} + m_{ji} = 1$ $(i \neq j)$.

The tournament matrix M is transitive, say a TT-matrix, provided it also satisfies

(2)
$$m_{ij} + m_{jk} + m_{ki} \ge 1 \ (i, j, k \ \text{distinct}).$$

A generalized tournament matrix, GT-matrix, of order n is a nonnegative matrix M which satisfies (1). A generalized transitive tournament matrix, is a generalized tournament matrix satisfing (2). The set of all GT-matrices of order n forms a convex polytope \mathcal{G}_n whose extreme points are the tournament matrices of order n. The set of all GTT-matrices of order n also forms a convex polytope T_n , while the TT-matrices are extreme points of T_n there are in general other extreme points. We say that a GTT -matrix is extreme provided it is an extreme point of \mathcal{T}_n . Let \mathcal{T}_n^* denote the convex hull of the TT-matrices of order n. It is known that $T_n = T_n^*$ only for $n \leq 5$ [4,6]. For $n \geq 6$, there is no known charactrazation of T_n by a finite set of linear constraints. For each GT- matrix M, we associate a graph(*-graph of M) whose edges correspond to the non-integral entries of M. A graph Gis GTT-realizable provided there exists a GTT-matrix whose *-graph is isomorphic to G. A graph G is transitively orientable provided it is possible to orient each edge of G so that the resulting digraph satisfies the transitive law:

$$a \to b$$
, $b \to c$ implies $a \to c$.

Received April 30, 1993

A graph with transitive orientation is called a comparability graph.

2. Preliminaries

Theorem 1 A graph G is GTT-realizable if and only if the compliment \tilde{G} is a comparability graph.

Proof Let $M = \{m_{ij}\}$ be a GTT-matrix of order n and let G denote its *-graph. Choosing for each edge $\{i,j\}$ of \bar{G} the orientation $i \to j$ if $m_{ij} = 1$ we obtain a transitive orientation of \bar{G} . Conversely, suppose \bar{G} has a transitive orientation. We define a GT-matrix $M = [m_{ij}]$ by:

$$m_{ij} = \left\{ egin{array}{l} rac{1}{2} ext{ if } \{i,j\} ext{ is an edge of } G, \ 1 ext{ if } \{i,j\} ext{ is an edge of } ar{G} ext{ with orientation } i
ightarrow j, \ 0 ext{ otherwise.} \end{array}
ight.$$

If $m_{ij} = m_{jk} = 1$, then the transitive orientation of \bar{G} implies that $\{i, k\}$ is an edge of \bar{G} and $m_{ik} = 1$. It now follows that M is a GTT-matrix with *-graph equal to G.

Comparability graphs have been charactrized by Gillmore and Hoffman[3] (see Theorem 3), so we get the charactrization of GTT-realizable graphs by appling to the \tilde{G} .

Let G be a graph with edge set E. Let

$$\hat{E} = \{ (a,b), (b,a) | (a,b) \in E \}.$$

Define binary relation Γ on \hat{E} as follows.

$$(a,b) \Gamma (a',b') \text{ iff} \quad \left\{ \begin{array}{l} \text{either } a=a' \text{ and } \{b,b'\} \notin E \\ \text{or } b=b', \text{ and } \{a,a'\} \notin E. \end{array} \right.$$

The reflexive transitive closure Γ^* of Γ is an equivalence relation on \hat{E} and equivalence class is called *implication class* of G. For each implication class I, define

$$I^{-1} = \{(a,b) : (b,a) \in I\}.$$

Lemma 2 Let I be a implication class of a graph G. Exactly one of the following holds;

$$i)\ I\cap I^{-1}=\emptyset$$

$$ii) I = I^{-1}$$
.

Proof Assume $I \cap I^{-1} \neq \emptyset$. Let $(a,b) \in I \cap I^{-1}$, so $(a,b)\Gamma^*(b,a)$. For any $(c,d) \in I$, $(c,d)\Gamma^*(a,b)$ and $(d,c)\Gamma^*(b,a)$. Since Γ^* is an equivalence relation, $(c,d)\Gamma^*(d,c)$ and $(d,c) \in I$. Thus $I = I^{-1}$.

Theorm 3 Let G be a undirected graph with edge set E. \hat{E} is defined as above. The following statements are equivalence:

- i) G is a comparability graph.
- ii) $I \cap I^{-1} = \emptyset$ for all implication classes I of \hat{E} .
- iii) Every circuit of edges $\{a_1, a_2\}, \{a_2, a_3\}, \dots, \{a_n, a_1\} \in E$ such that $\{a_{n-1}, a_1\}, \{a_n, a_2\}, \dots, \{a_{i-1}, a_{i+1}\} \notin E$ $(i = 2, \dots, n-1)$ has even length.

3. Main Results

Theorem 4 Let $M = [m_{ij}]$ be a GTT-matrix whose *-graph is a G with at least one edge. M is a extreme $GTT - (0, \frac{1}{2}, 1)$ - matrix if and only if $I \cap I^{-1} \neq \emptyset$ for all implication classes I.

Proof Suppose that $I \cap I^{-1} = \emptyset$ for some implication class I of G. Let $M(\epsilon) = [m_{ij}(\epsilon)]$ be obtained from M by adding ϵ to m_{ij} if $(i,j) \in I$ and subtracting ϵ from m_{ji} if $(j,i) \in I^{-1}$. We claim that $M(\epsilon)$ is a GTT- matrix. Because $I \cap I^{-1} = \emptyset$, $M(\epsilon)$ is a GT-matrix. It suffices that $M(\epsilon)$ satisfies

$$(4) \quad 1 \leq m_{ij}(\epsilon) + m_{jk}(\epsilon) + m_{ki}(\epsilon) \leq 2$$

for all distinct i, j, k. If none of (i, j), (j, k) and (k, i) is in I then $M(\epsilon)$ satisfies transitive inequality (4). Assume that at least one of (i, j), (j, k) and (k, i), say (i, j) is in I and thus m_{ij} is strictly between 0 and 1. One of the following holds:

- (i) Both of m_{jk} and m_{ki} are integers (0 or 1). Since M is a GTT-matrix, both of them can not be 0(or 1) and thus $1 < m_{ij} + m_{jk} + m_{ki} < 2$.
- (ii) Only one of m_{jk} and m_{ki} , say m_{jk} , is an integer. Since $(i, j) \in I$ and $\{j, k\}$ is not an edge of G, we have $(i, k) \in I$. $I \cap I^{-1} = \emptyset$ implies $(k, i) \in I^{-1}$.

(iii) Neither m_{jk} nor m_{ki} is integer. Since $m_{ij} = m_{jk} = m_{ki} = \frac{1}{2}$, $1 < m_{ij} + m_{jk} + m_{ki} < 2$.

It follows from (i),(ii) and (iii) that for ϵ a small positive number, $M(\epsilon)$ satisfies (4). By same argument $M(-\epsilon)$ is a GTT- matrix. We have

(5)
$$M = \frac{1}{2}(M(\epsilon) + M(-\epsilon)),$$

so M is not extreme.

Conversely, suppose that $I \cap I^{-1} \neq \emptyset$ for all implication class I of G and let $M = \frac{1}{2}(A+B)$ for some GTT-matrices $A = [a_{ij}]$ and $B = [b_{ij}]$. We have

$$m_{ij} = a_{ij} = b_{ij} (= 0 \text{ or } 1) \text{ if } \{i, j\} \text{is not an edge of } G$$

$$m_{ij} = \frac{1}{2} = \frac{1}{2} (a_{ij} + b_{ij}), \ b_{ij} = 1 - a_{ij} \text{ if } \{i, j\} \text{ is an edge of } G.$$

Suppose that (i,j) Γ (i,k) for some distinct i,j,k. Then $\{j,k\}$ is not an edge of G, and so $m_{jk} = a_{jk} = b_{jk}$ is an integer (0 or 1). Without loss of generality assume that $m_{jk} = 1$. Then we have $a_{ij} + a_{ki} \le 1$ and $b_{ij} + b_{ki} \le 1$. If $a_{ij} + a_{ki} < 1$ then $b_{ij} + b_{ki} = 2 - (a_{ij} + a_{ki}) > 1$, contradicting the fact that B is GTT-matrix. Hence $a_{ij} + a_{ki} = 1$, and so $a_{ij} = 1 - a_{ki} = a_{ik}$. Therfore $a_{ij} = a_{ik}$ whenever (i,j) Γ (i,k). Now

$$(i,j) \Gamma^* (i',j') \text{ iff}$$

$$\exists \Gamma - \text{chain } (i,j) = (i_1,j_1)\Gamma(i_2,j_2)\Gamma \cdots \Gamma(i_k,j_k) = (i',j').$$

Hence we have $a_{ij} = a_{i'j'}$ if (i,j) Γ^* (i',j'). Let $(i,j) \in I$ for some implication class I. Then $a_{ij} = a_{i'j'}$ for all $(i',j') \in I$. $I \cap I^{-1} \neq \emptyset$ means $I = I^{-1}$, so $a_{ij} = a_{ji}$. Thus $a_{ij} = \frac{1}{2} = b_{ij}$ for $(i,j) \in I$. By the same argument, $a_{ij} = b_{ij} = \frac{1}{2}$ for all edges $\{i,j\}$ of G. Hence M = A = B, so M is an extreme $GTT - \{0, \frac{1}{2}, 1\}$ - matrix.

Corollary 5 The *-graph of any extreme $GTT - (0, \frac{1}{2}, 1) - matrix$ with at least one edge is not a comparability graph, but its compliment is a comparability graph.

We now see the relation between extreme $GTT - (0, \frac{1}{2}, 1)$ - matrices and examples of GTT-nonrealizable graphs.

Lemma 6 If the compliment \bar{G} of a graph G is a even-cycle C_n for $n \geq 6$, then G is *-graph of an extreme $GTT - (0, \frac{1}{2}, 1)$ - matrix.

Proof Suppose that \bar{G} is even-cycle $C_n = (1, 2, \dots, n, 1), n \geq 6$. Since an even-cycle is a comparability graph, G is GTT-realizable graph. Let $M = [m_{ij}]$ be a GTT-matrix whose *-graph is G and $m_{ij} = \frac{1}{2}$ if $\{i, j\}$ is an adge of G. Assume that $M = \frac{1}{2}(A+B)$ for some GTT- matrices $A = [a_{ij}]$ and $B = [b_{ij}]$. Then $m_{ij} = a_{ij} = b_{ij}$ are integers if $\{i, j\}$ is an adge of \bar{G} . We get, after reordering if necessary,

$$A = egin{bmatrix} 0 & * & & & * \ * & 0 & * & & eta \ & & \cdots & & & \ & ar{eta} & & * & 0 & * \ * & & & * & 0 \end{bmatrix}$$

where * is 0 or 1 and $0 \le \beta \le 1$, $\bar{\beta} = 1 - \beta$. Then $a_{13} = a_{3n} = \beta$ and a_{n1} equals 0 or 1. This implies that $a_{13} + a_{3n} = 2\beta = 1$, thus M = A = B. Therefore M is an extreme $GTT - (0, \frac{1}{2}, 1)$ - matrix.

Lemma 7 If the compliment \bar{G} of a graph G contains a chordless $k-cycle(k \geq 5, odd)$ as induced subgraph, then G is GTT-nonrealizable graph.

Proof Suppose that \bar{G} contains a cycle $C_k = (1, 2, \dots, k, 1)$. Assume that $M = [m_{ij}]$ is the GTT-matrix whose *-graph is G and $m_{ij} = \frac{1}{2}$ for all i and j such that $\{i, j\}$ is an adge of G. Let $P = [p_{ij}]$ be the principle submatrix of M of order k, whose *-graph is compliment of C_k . Then p_{ij} are integers if $\{i, j\}$ is an adge of C_k . Whitout loss of generality, assume that $p_{12} = 1$ (the possibility $p_{12} = 0$ is argued in a similar way). Since P is also GTT-matrix we have $p_{ii+1} = 1$ for all odd i, $(i = 1, 3, \dots, k-2)$ and $p_{1k} = 1$. Thus $p_{1k} + P_{k-1k} + p_{k1} = \frac{1}{2} < 1$, contradicting the transitivity of P. Hence G is GTT-nonrealizable graph.

Lemma 8 Let a graph G be the compliment of LB_n in figure 1 for $n \geq 6$. Then G is GTT-realizable graph if n is even, and G is * graph of extreme $GTT - (0, \frac{1}{2}, 1)$ - matrix if n is odd.

Proof Let \bar{G} be an LB_n in Figure 1. Assume that n is even and $M = [m_{ij}]$ is a GTT-matrix whose *-graph is G and $m_{ij} = \frac{1}{2}$

for each edge $\{i, j\}$ of G. Without loss of generality, assume that $m_{12} = 1$. Repeated use of the transitive inequality gives that $m_{1k} = 1$ for $k = 3, \dots, n-3, n-1$ and $m_{kk+1} = 0$ for even $k, k \le n-3$ and $m_{kk+1} = 1$ for odd $k, k \le n-3$. Hence $m_{1n-3} = m_{n-3n-2} = 1$ and $m_{n-21} = \frac{1}{2}$, contradicting the transitivity of M.

Now assume that n is odd. Let $M = [m_{ij}]$ be a GT-matrix such that $m_{1k} = 1$ for $k = 2, \dots, n-3, n-1$ and $m_{kk+1} = 1$ for odd k where $k \leq n-3$, otherwise $m_{ij} = \frac{1}{2}$. Then it is easy to check that M satisfies transitive inequality. Assume that $M = \frac{1}{2}(A+B)$ for some GTT-matrices A and B. We get M = A = B by the same argument in Lemma 6. Hence M is an extreme $GTT - (0, \frac{1}{2}, 1)$ mareix.

Theorem 9. The compliment of *-graph of any extreme $GTT - (0, \frac{1}{2}, 1)$ - matrix of order 6 is isomorphic to C_6 or G_1 in figure 1. Therefore M_1 and M_2 are the only extreme $GTT - (0, \frac{1}{2}, 1)$ - matrices of order 6 up to isomorphism.

Proof. If G is a *-graph of an extreme $GTT - (0, \frac{1}{2}, 1)$ - matrix, then \bar{G} is GTT-nonrealizable. Note that C_5, C_6, LB_6 and two graphs G_1, G_2 are the only minimal GTT-nonrealizable graphs of order at most 6. If \bar{G} contains C_5 or $\bar{G} = LB_6$, then G is GTT- nonrealizable by Lemma 7 and 8. Hence the only possible compliments of *-graph of any extreme $GTT - (0, \frac{1}{2}, 1)$ - matrix of order 6 are C_6 and G_1 , and these two are compliment of *-graphs of M_1 and M_2 .

$$M_1 = egin{pmatrix} 0 & rac{1}{2} & 1 & 1 & rac{1}{2} & rac{1}{2} \ rac{1}{2} & 0 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & rac{1}{2} & rac{1}{2} & 0 \ 0 & 0 & rac{1}{2} & 0 & 0 & rac{1}{2} \ rac{1}{2} & 0 & 1 & rac{1}{2} & rac{1}{2} & 1 \ \end{pmatrix} \hspace{0.2cm} M_2 = egin{pmatrix} 0 & rac{1}{2} & rac{1}{2} & 1 & 1 & rac{1}{2} \ rac{1}{2} & 0 & rac{1}{2} & rac{1}{2} & 1 & 1 \ rac{1}{2} & rac{1}{2} & 0 & 0 & rac{1}{2} & rac{1}{2} & 1 \ rac{1}{2} & 0 & 0 & rac{1}{2} & rac{1}{2} & 1 \ rac{1}{2} & 0 & 0 & rac{1}{2} & rac{1}{2} \ rac{1}{2} & 0 & 1 & rac{1}{2} & rac{1}{2} \ rac{1}{2} & 0 & 1 & rac{1}{2} & rac{1}{2} \ 0 & 0 & rac{1}{2} & rac{1}{2} & 0 & rac{1}{2} \ rac{1}{2} & 0 & 0 & rac{1}{2} & rac{1}{2} \ 0 & 0 & rac{1}{2} & rac{1}{2} & 0 \ \end{pmatrix}$$

Figure 1

Referance

- [1] S.N.Afriat, On sum-symmetric matrices, Linear Aigebra appl. 8, 1974
- [2] A.B.Cruse, On removing a vertex from the assignment polytope, Linear Algebra Appl. 26, 1979
- [3] P.C.Gilmore and A.J.Hoffman, A characterization of comparability graphs and interval graphs, Canad. J. Math. 16, 1964
- [4] M.C.Golumbic, Algorithmic Graph Theory and Perfect Graphs.

 Academic, New York., 1980
- [5] L.Mirsky, Results and problems in the theory of doubly-stochastic matrices, Z. Wahrscheinlichkeitstheori 1.,1963
- [6] G.Reinelt, The Linear Ordering Problem: Algorithems and Applications, *Heldermann, Berlin*, 1985

Department of Mathematics Pusan University of Foreign Studies, Pusan, 608-738, Korea