Pusan Kyŏngnam Math. J 9(1993), No. 1, pp 157-165

BETWEEN FUZZY STRONG Θ -CONTINUITY AND FUZZY WEAK Θ -CONTINUITY

BU YOUNG LEE, JIN HAN PARK AND OUG KIM

1. Introduction and preliminaries

Weaker and stronger forms of fuzzy continuous mappings on fuzzy topological spaces have been considered by many authors [1,3,4,7,8,11] by using the concept of q-coincidence. Rencently, J.H. Park et al. [11] studied some characterizing theorems for fuzzy strong θ -continuity, fuzzy θ -continuity and fuzzy weakly θ -continuity in fuzzy topological spaces by using the concepts of fuzzy δ -closure [4] and fuzzy θ -closure [8].

In this paper, we study some properties of fuzzy strong θ -continuous, fuzzy almost strong θ -continuous and fuzzy weakly θ -continuous mappings by using the concepts of fuzzy δ -interior and fuzzy θ -interior, and invetigate the relationships among them under suitably conditions.

Throughout this paper, by (X, τ) (or simply X) we mean a fuzzy topological space in Chang's [2] sense. A fuzzy point in X with support $x \in X$ and value $\alpha(0 < \alpha \leq 1)$ is denoted by x_{α} . For a fuzzy set A in X, ClA, IntA and 1 - A will respectively denote the closure, interior and complement of A, whereas the constant fuzzy sets taking on the values 0 and 1 on X are denoted by 0_X and 1_X , respectively. A fuzzy set A of X is said to be q-coincident with a fuzzy set B, denoted by AqB, if there exists $x \in X$ such that A(x) + B(x) > 1[6]. It is known [6] that $A \leq B$ iff A and 1 - B are not q-coincident, denoted by $A\bar{q}(1-B)$. For definitions and results not explained in this paper, the reader is referred to [1,2,6] in the assumption they are well known. The words 'fuzzy', 'neighborhood' and 'fuzzy topological space' will be abbreviated as 'f.', 'nbd' and 'fts', respectively.

Received April 30, 1993

DEFINITION 1.1 [4, 8]. A f.point x_{α} is said to be a f. δ -cluster point (θ -cluster point) of a f.set A in X iff f.interior of the closure (resp. closure) of every f.open q-nbd U of x_{α} is q-coincident with A. The union of all f. δ -cluster (θ -cluster) points of A ia called the f. δ -closure (resp. θ -closure) and is denoted as $\operatorname{Cl}_{\delta}A$ (resp. $\operatorname{Cl}_{\theta}A$). A ia called f. δ closed (θ -closed) iff $A = \operatorname{Cl}_{\delta}A$ (resp. $A = \operatorname{Cl}_{\theta}A$) and the complement of a f. δ -closed (resp. θ -closed) set is f. δ -open (resp. θ -open).

LEMMA 1.1 [9, 12]. Let A be a fiset of a fts X. (a) $Cl_{\delta}A = \cap \{B \mid B \text{ is fregularly closed and } A \leq B\}.$ (b) $Cl_{\theta}A = \cap \{ClB \mid B \text{ is fopen and } A \leq B\}.$

DEFINITION 1.2. Let A be any f.set of a fts X. Then $f.\delta$ -interior (Int_{δ}) and $f.\theta$ -interior (Int_{θ}) of A are defined as follows:

 $Int_{\delta}A = \bigcup \{B \mid B \text{ is f.regularly open and } B \leq A \},$ $Int_{\theta}A = \bigcup \{IntB \mid B \text{ is f.closed and } B \leq A \}.$

LEMMA 1.2. For any fiset A in a fts X, $1 - Int_{\delta}A = Cl_{\delta}(1 - A)$ and $1 - Int_{\theta}A = Cl_{\theta}(1 - A)$.

2. Chracterizations

DEFINITION 2.1 [7, 8]. A mapping $f : X \to Y$ is said to be f.strong θ -continuous (f.almost strong θ -continuous, f.weakly θ continuous) if for each f.point x_{α} in X and each f.open q-nbd V of $f(x_{\alpha})$, there exists f.open q-nbd U of x_{α} such that $f(\text{Cl}U) \leq V$ (resp. $f(\text{Cl}U) \leq \text{IntCl}V$, $f(\text{IntCl}U) \leq \text{Cl}V$).

THEOREM 2.1. A mapping $f : X \to Y$ is f.strong θ -continuous iff $f^{-1}(\operatorname{Int} B) \leq \operatorname{Int}_{\theta} f^{-1}(B)$ for each f.set B in Y.

Proof. Let B be a fiset in Y. Then by Theorem 2.2 in [11] and Lemma 1.2, we have $f^{-1}(\text{Int}B) = 1 - f^{-1}(\text{Cl}(1-B)) \le 1 - \text{Cl}_{\theta}f^{-1}(1-B) = \text{Int}_{\theta}f^{-1}(B).$

Conversely, let B be a fuzzy open in Y. By hypothesis, we have $f^{-1}(B) = f^{-1}(\operatorname{Int} B) \leq \operatorname{Int}_{\theta} f^{-1}(B)$ which implies $f^{-1}(B) = \operatorname{Int}_{\theta} f^{-1}(B)$. Then $f^{-1}(B)$ is f. θ -open and hence f is f.strong θ -continuous from Theorem 2.2 in [11].

158

THEOREM 2.2. For a mapping $f : X \to Y$, the following are equivalent:

(a) f is f.almost strong θ -continuous. (b) $f(Cl_{\theta}A) \leq Cl_{\delta}f(A)$ for each f.set A in X. (c) $f^{-1}(Int_{\delta}B) \leq Int_{\theta}f^{-1}(B)$ for each f.set B in Y.

Proof. (a) \Rightarrow (b): Let $x_{\alpha} \in \operatorname{Cl}_{\theta}A$ and V be a f.open q-nbd of $f(x_{\alpha})$. Then there exists a f.open q-nbd U of x_{α} such that $f(\operatorname{Cl}U) \leq \operatorname{Int}\operatorname{Cl}V$. Now we have

$$\begin{aligned} x_{\alpha} \in \mathrm{Cl}_{\theta}A \Rightarrow \mathrm{Cl}U\mathrm{q}A \Rightarrow f(\mathrm{Cl}U)\mathrm{q}f(A) \Rightarrow \mathrm{Int}\mathrm{Cl}V\mathrm{q}f(A) \\ \Rightarrow f(x_{\alpha}) \in \mathrm{Cl}_{\delta}f(A) \Rightarrow x_{\alpha} \in f^{-1}(\mathrm{Cl}_{\delta}f(A)). \end{aligned}$$

Hence $\operatorname{Cl}_{\theta} A \leq f^{-1}(\operatorname{Cl}_{\delta} f(A))$ and so $f(\operatorname{Cl}_{\theta} A) \leq \operatorname{Cl}_{\delta} f(A)$.

(b) \Rightarrow (c): Taking the complement implies the proof.

(c) \Rightarrow (a): It is similar to the proof of Theorem 2.1 by using Theorem 2.12 in [8].

THEOREM 2.3. For a mapping $f : X \to Y$, the following are equivalent:

(a) f is f.weakly θ -continuous.

(b) $f^{-1}(B) \leq \operatorname{Int}_{\delta} f^{-1}(ClB)$ for each f open set B of Y.

(c) $Clf^{-1}(Int_{\delta}B) \leq f^{-1}(B)$ for each f closed set B of Y.

(d) $f^{-1}(\operatorname{Int}_{\theta} B) \leq \operatorname{Int}_{\delta} f^{-1}(B)$ for each f.set B of Y.

Proof. (a) \Rightarrow (b): It is clear from Theorem 2.5 in [11] and Lemma 1.2.

(b) \Rightarrow (a): Let x_{α} be a f.point in X and V be a f.open q-nbd of $f(x_{\alpha})$. By (b), we have $x_{\alpha}qf^{-1}(V) \leq \text{Int}_{\delta}f^{-1}(\text{Cl}V)$. Then by lemma 1.2 we have

$$x_{\alpha} \operatorname{qInt}_{\delta} f^{-1}(\operatorname{Cl} V) \Rightarrow x_{\alpha} \notin 1 - \operatorname{Int}_{\delta} f^{-1}(\operatorname{Cl} V) = \operatorname{Cl}_{\delta}(1 - f^{-1}(\operatorname{Cl} V)).$$

Hence there exists a f.open q-nbd U of x_{α} such that $\operatorname{IntCl} U\bar{q}1 - f^{-1}(\operatorname{Cl} V)$ so that $\operatorname{IntCl} U \leq f^{-1}(\operatorname{Cl} V)$. This shows that f is f.weakly θ -continuous.

(b) \Leftrightarrow (c): Taking the complement implies the proof.

(a) \Leftrightarrow (d): Similar to the proof of Theorem 2.1.

THEOREM 2.4. Let the mapping $f: X \to Y$ f.strong θ -continuous and $g: Y \to Z$ be f.continuous. Then the composite mapping $g \circ f$ is f.strong θ -continuous.

Proof. Let V be a f.open set in Z. Then $g^{-1}(V)$ is f.open set in Y so that $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is f. θ -open set in X by Theorem 2.1 in [11]. Thus $g \circ f$ is f.strong θ -continuous.

COROLLARY 2.5. Let the mapping $f : X \to Y$ f.strong θ continuous and $g: Y \to Z$ be f.strong θ -continuous. Then the composite mapping $g \circ f$ is f.strong θ -continuous.

THEOREM 2.6. Let X and Y be fts's such that X is product related to Y. Let $f: X \to Y$ be a mapping and $g: X \to X \times Y$, given by g(x) = (x, f(x)) for each x of X, be the graph mapping. Then the following are true:

(a) f is f.weakly θ -continuous. if and only if g is f.weakly θ -continuous.

(b) If g is f.strong θ -continuous, then f is f.strong θ -continuous.

Proof. (a): Let x_{α} be a f.point in X and V be any f.open q-nbd of $f(x_{\alpha})$. Then $1_X \times V$ is f.open q-nbd of $g(x_{\alpha})$. Since g is f.wealky θ -continuous, there exists a f.open q-nbd U of x_{α} such that $g(\text{IntCl}U) \leq \text{Cl}(1_X \times V) = 1_X \times \text{Cl}V$. By Lemma 2.9 in [7], we have $f(\text{IntCl}U) \leq \text{Cl}V$. Hence f is f.weakly θ -continuous.

Conversely, let x_{α} be a f.point in X and W be any f.open q-nbd of $g(x_{\alpha})$ in $X \times Y$. By Lemma 2.9 in [7], there exist f.open q-nbd U of x_{α} and f.open q-nbd V of $f(x_{\alpha})$ such that $g(x_{\alpha})q(U \times V) \leq W$. Since f is f.weakly θ -continuous, there exists f.open q-nbd G of x_{α} such that $G \leq U$ and $f(\operatorname{Int} ClG) \leq ClV$. Now we have

$$g(\operatorname{Int} \operatorname{Cl} G) = \operatorname{Int} \operatorname{Cl} G \times f(\operatorname{Int} \operatorname{Cl} G)$$
$$\leq \operatorname{Cl} U \times \operatorname{Cl} V = \operatorname{Cl} (U \times V)$$
$$\leq \operatorname{Cl} W.$$

Hence g is f.weakly θ -continuous.

(b): Similar to the proof of (a).

DEFINITION 2.2. A mapping $f: X \to Y$ is said to be f.weakly continuous [7] (f. θ -continuous [8], f.almost continuous [8], f. δ -continuous [4], f.super continuous [7]) if for each f.point x_{α} in X and each f.open q-nbd V of $f(x_{\alpha})$, there exists f.open q-nbd U of x_{α} such that $f(U) \leq$ ClV (resp. $f(\text{Cl}U) \leq \text{Cl}V$, $f(U) \leq \text{IntCl}V$, $f(\text{IntCl}U) \leq \text{IntCl}V$, $f(\text{IntCl}U) \leq V$).

It is clear that f.strong θ -continuity implies f.almost strong θ -continuity and f.super continuity, and f.super continuity implies f.continuity. But f.almost strong θ -continuity need not be f.continuity (see [8]). From following example and Examlpe 3.10 in [8], we know that f.almost strong θ -continuity and f.super continuity (f.continuity) are independent concepts.

EXAMPLE. Let X = [0, 1] and $\tau = \{1_X, 0_X, A\}$, where $A(0) = \frac{1}{3}$ and A(x) = 0 for $x \neq 0$.

Consider the identy mapping $f: (X, \tau) \to (X, \tau)$. We show that f is f.super continuous but not f.almost strong θ -continuous. Let x_{α} be a f.point in X. If $x \neq 0$, then $V = \mathbf{1}_X$ is the only f.open q-nbd of $f(x_{\alpha})$, and then $U = \mathbf{1}_X$ is a f.open q-nbd of x_{α} such that $f(\text{IntCl}U) \leq V$. Suppose x = 0 and V is f.open q-nbd of $f(x_{\alpha})$. If $V = \mathbf{1}_X$, the case becomes trivial. So let V = A. Then $\alpha > \frac{2}{3}$ so that A is a f.open q-nbd of x_{α} such that f(IntClA) = A. Hence f is f.super continuous.

Now consider the f.point x_{α} , where x = 0 and $\alpha = \frac{5}{6}$. Then A is a f.open q-nbd of $f(x_{\alpha})$. Let U be any f.open q-nbd of x_{α} . Then U = A or 1_X , and $f(\operatorname{Cl} U) = 1 - A$ or $1_X \not\leq \operatorname{IntCl} A = A$. Hence f is not f.almost strong θ -continuous.

DEFINITION 2.3 [8]. A fts X is said to be

(a) for each for each for each for x_{α} in X and each for for q-nbd U of x_{α} , there exists a for q-nbd V of x_{α} such that $\operatorname{Cl} V \leq U$.

(b) f.almost regular if for each f.regularly open set V in X and each f.point $x_{\alpha}qV$, there exists a f.regularly open set U such that $x_{\alpha}qU \leq ClU \leq V$.

(c) f.semi-regular if for each f.open set V in X and each f.point $x_{\alpha}qV$, there exists a f.open set U such that $x_{\alpha}qU \leq \text{IntCl}U \leq V$.

It is easy to see that every f.regular space is f.semi-regular as well as f.almost regular [8].

THEOREM 2.7. Let X and Y be fts's such that X is product related to Y and g be the graph mapping of $f: X \to Y$. If g is f.strong θ -continuous, then X is f.regular.

Proof. Let f be f.strong θ -continuous and x_{α} be any f.point in X. Then for f.open q-nbd V of x_{α} , $V \times 1_Y$ is f.open q-nbd of $g(x_{\alpha})$. Since g is f.strong θ -continuous, there exists f.open q-nbd U of x_{α} such that $g(\operatorname{Cl} U) \leq V \times 1_Y$. This implies that $x_{\alpha} q U \leq \operatorname{Cl} U \leq V$. Hence X is f.regular.

THEOREM 2.8. If Y is f.regular and $f: X \to Y$ is f.continuous mapping, then f is f.strong θ -continuous.

Proof. Let x_{α} be a f.point in X and V be f.open q-nbd of $f(x_{\alpha})$. Then there exists f.open set W such that $f(x_{\alpha})qW \leq ClW \leq V$. Since f is f.continuous, there exist f.open q-nbd U such that $f(U) \leq W$. This implies that $f(ClU) \leq Clf(U) \leq ClW \leq V$. Hence f is f.strong θ -continuous.

THEOREM 2.9. Let $f: X \to Y$ be a mapping. Then the following are true:

(a) If f is fuzzy weakly continuous and X is f.semi-regular, then f is f.weakly θ -continuous.

(b) If f is f.almost strong θ -continuous and Y is f.semi-regular, then f is f.strong θ -continuous.

THEOREM 2.10. Let $f : X \to Y$ be a mapping. Then the following are true:

(a) If $f: X \to Y$ is f.weakly θ -continuous and X is f.almost regular, then f is f. θ -continuous.

(b) If $f: X \to Y$ is f.weakly continuous and Y is f.almost regular, then f is f.almost strong θ -continuous.

Proof. (a): Easy.

(b) Let x_{α} be a f.point in X and V ba any f.regularly open q-nbd of $f(x_{\alpha})$. Then there exists f.regularly open q-nbd W such that $\operatorname{Cl} W \leq V$. Since f is f.weakly continuous, there exists f.open q-nbd U of x_{α} such that $f(U) \leq \operatorname{Cl} W \leq V$. Thus f is f.almost continuous. By Theorem 3.1 in [3] and Theorem 3.8 (b) in [8], f is f.almost strong θ -continuous.

COROLLARY 2.11 [8]. If X is f.regular and $f: X \to Y$ is f.weakly continuous, then f is f. θ -continuous.

Proof. Clear from Theorem 2.9 and Theorem 2.10.

The following two theorems are easily proved and the proofs are omitted.

THEOREM 2.12. Let $f: X \to Y$ and $g: Y \to Z$ be mappings. If f and g are satisfied with one of the following, then the composition $g \circ f$ is f.weakly θ -continuous.

(a) f is f.super continuous and g is f.weakly continuous.

(b) f is f. δ -continuous and g is f.weakly θ -continuous.

(c) f is f. weakly θ -continuous and g is f θ -continuous.

THEOREM 2.13. Let $f: X \to Y$ and $g: Y \to Z$ be mappings.

(a) If f is f.weakly θ -continuous and g is f.almost strong θ -continuous, then $g \circ f$ is f. δ -continuous.

(b) If f is f weakly θ -continuous and g is fistrong θ -continuous, then $g \circ f$ is fisuper continuous.

(c) If f is f.almost strongly θ -continuous and g is f.weakly θ -continuous, then $g \circ f$ is f. θ -continuous

(d) If f is f.almost continuous and g is f.weakly θ -continuous, then $g \circ f$ is f.weakly continuous.

DEFINITION 2.4 [10]. A mapping $f: X \to Y$ is said to be f.almost open if f(U) is f.open in Y for each f.regularly open set U of X.

THEOREM 2.14. If a mapping $f: X \to Y$ is f. weakly θ -continuous and f. almost open, then f is f. δ -continuous.

Proof. Let x_{α} be a f.point in X and V be any f.open q-nbd of $f(x_{\alpha})$. Since f is f.weakly θ -continuous, there exists f.open q-nbd U of x_{α} such that $f(\text{IntCl}U) \leq \text{Cl}V$. Since f is f.almost open, f(IntClU) is f.open and hence $f(\text{IntCl}U) \leq \text{IntCl}V$. This shows that f is f. δ -continuous.

COROLLARY 2.15 [8]. If a mapping $f: X \to Y$ is f. θ -continuous and f.almost open, then f is f. δ -continuous.

DEFINITION 2.5 [5]. A fts X is said to be f.extremally disconnected if the closure of each f.open set of X is f.open.

THEOREM 2.16. Let X be a f.extremally disconnected space and $f: X \to Y$ be a mapping.

(a) If f is f. weakly θ -continuous, then f is f. θ -continuous.

(b) If f is f. δ -continuous, then f is f.almost strongly θ -continuous.

(c) If f is f.super continuous, then f is f.strongly θ -continuous.

Proof. We prove only the case that f is f.weakly θ -continuous and then the proofs of the other are similar.

Let x_{α} be a f.point in X and V be any f.open q-nbd of $f(x_{\alpha})$. Since f is f.weakly θ -continuous, there exists a f.open q-nbd U of x_{α} such that $f(\operatorname{Int}ClU) \leq \operatorname{Cl}V$. Since X is f.extremally disconnected, we have $\operatorname{Int}ClU = \operatorname{Cl}U$ and hence $f(\operatorname{Cl}U) \leq \operatorname{Cl}V$. This shows that f is f. θ -continuous.

References

- 1. K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981) 14-32.
- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- J. R. Choi, B. Y. Lee and J. H. Park, On fuzzy θ-continuous mappings, Fuzzy Sets and Systems 54 (1993) 107-114.
- 4. S. Ganguly and S. Saha, A note on δ -continuity and δ -connected sets in fuzzy set theory, Simon Stevin 62 (1988) 127-141.

- 5. B. Ghosh, *Fuzzy extremely disconnected*, Fuzzy Sets and Systems, 46 (1992).
- P. P. Ming and L. Y. Ming, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
- M. N. Mukherjee and B. Ghosh, Some stronger forms of fuzzy continuous mappings on fuzzy topological spaces, Fuzzy Sets and Systems, 38 (1990) 375-387.
- M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990) 245-254.
- 9. M. N. Mukherjee and S. P. Sinha, Fuzzy θ -closure operator on fuzzy topological spaces (Communicated).
- S. Nanda, On fuzzy topological spaces, Fuzzy Sets and Systems 19 (1986) 193-197.
- 11. J. H. Park, B. Y. Lee and J. R. Choi, Fuzzy θ -connectedness, to appear in Fuzzy Sets and Systems.
- 12. Z. Petricevic, On fuzzy semiregularization, separation properties and mappings, Indian J. pure appl. Math. 22 (1991) 971-982.
- 13. H. T. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl. 126(1987) 409-423.

Department of Mathematics Dong-A University Pusan 604-714, Korea