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GEOMETRIC CHARACTERIZATIONS
OF JOHN DISKS

KIWON KiM

1. Introduction

We say that a domain D in C is a K- quasidisk if it is the image
of the unit disk B under a K-quasiconformal self mapping of C. Qua-
sidisks have been extensively studied and can be characterized in many
different ways [1], [2].

We say that a domain D in C is ¢- uniform if there is a constant
¢ 2 1 such that each two points z; and z, in I can be joined by an
arcy m IJ such that

€(7) < clzy — 2]

and
(1.1) min(€(y1), &(y2)) < cd(2,0D)

for all z € 4, where v, and 7, are the components of v\ {z}. We say
D is uniform if it is c- uniform for some ¢ > 1. A Jordan domain D in
C is uniform if and only if it is a quasidisk [8}.

A bounded domain D in C is said to be a ¢-John domain if there
exist a point z5 € D and a constant ¢ > 1 such that each point z; € D
can be joined to zy by an arc v in D satisfying

Uy(z1,2)) < cd(z,8D)

for each z € v. We call zy a John center, ¢ a John constant and v a
c-John arc.

There are several equivalent definitions for John domains. For ex-
ample, a bounded domain D in C is a ¢-John domain if and only if
each two points z,,29 € D can be joined by an arc 4 which satisfies
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(1.1). This definition can be used to define the unbounded John do-
mains D in C as well {10, 2.26]. Therefore the class of uniform domains
is properly contained in the class of John domains {4], [6], [10].

We say that a domain D C Cis a c¢-John disk if it is a simply
connected c-John domain.

Gehring and Osgood show in [6] that a domain D in C is uniform if
and only if it 1s quasiconformally decomposable, i.e., for each z;, 22 €
D there exists a K-quasidisk Gp in D such that z;, zp € Gy where
K = K(D). In section 2, we give a geometric characterization of John
disks which 1s the analogue of the above property of uniform domains.

We say that a domain D in C has the quasidisk property if for some
fixed point zg = 29(D) € D and for each 2, € D, there exists a K-
quasidisk G; in D with 29,2, € G|, where K = K(D).

THEOREM 1.2. A bounded Jordan domain D in C is a ¢-John disk
if and only if it has the quasidisk property.

In section 3, using the above result we obtam ancther geometric
characterization of John disks which is also the analogue of a property
of uniform domains. In particular, Gehring and Martio show in (5]
that a finitely connected domain D in C is uniform if and only if D is
a QED domain, i.e., if and only if there exists a constant M such that

mod(T") < M mod(T'p),

for the families of curves I' and T'p which join any pair of continua F)
and F, in € and D, respectively. Here mod(I') is the modulus of T' (see
2l, 12]).

We say that a domain D in C is M-QED with respect to E C D,
1 < M < oo, if for each pair of disjoint continua Fy,#, C £

(1.3) mod(T") £ Mmod(Fp),
where [ and I'p are the families of curves joining Fy and F; in C and
in D, respectively.

THEOREM 1.4. Suppose that D is a bounded Jordan domain in C.
Then D is M-QED with respect to all hyperbolic geodesics in D with
given zg € D as an end point if and only if D is a ¢-John disk.
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2. Quasidisk Property of John disks

LEMMA 2.1. [4, Theorem 4.1} If D is a c-John disk with a John
center zo and if ¥ is a hyperbolic geodesic which joins z; to zy for
zy € D, then -y is a b-John arc for some constant b which depends only
on c.

LEMMA 2.2. [3] and [7] Suppose that D is a Jordan domain in C
If v is a hyperbolic geodesic in D and if & is any curve which joins the
end points of v in D, then

) < ké(a),

where k is an absolute constant, 4.5 < k < 17.5.

LEMMA 2.3. Let D be a c-John disk with a John center zy and let
v be a hyperbolic geodesic with zy as one of its endpoints. If zy, 29 €
and If zy separates zg and z3, then

Uy(z1,22)) < b min|z1 — z2l,d(z1,8D))

where b is a constant which depends only on ¢

Proof. Fix 21,22 € 7. By Lemma 2.1,
(2.4) €v(z1,22)) < by d(z,8D)

for some counstant b which depends only on c.
If IZ} — ZQI Z d(zl,aD) N then by (2~4)

(2.5) Uy(z1,22)) < by |21 — 22)-

If |21 — 23] < d(z1,0D), then the segment [2y, z;] joining z; and 2,
Les in D and

(2.6) €v(z1,22)) < (32‘2([21, z2)) = ealzy ~ 23],

by Lemma 2.2 for an absolute constant c; > 0. Hence (2.4), (2.5) and
(2.6) complete the proof of Lemma 2.3 with b = max(h,¢). O
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Proof of Theorem 1.2. Suppose that a bounded Jordan domain D
in C is a c-John disk with a John center z,. Fix z; € D and let v be
the hyperbolic geodesic joining 25 and 2; in D. Fix w;,w; € v labeled
so that w, separates z; and w; in 4. Then by Lenuna 2.3,

€v(w1,wy)) < blwy — wyf

where b is a constant which depends only on c. Next if z € v, then z
separates 29 and z; in 7 and by Lemma 2.3

min £v(z),2)) < £1(z,21)) < bd(z,0D).

Thus v satisfies conditions in (4.1) of {6] with a; = & = & and the
construction given on (6, pp.67-68] yields a A-quasidisk G| with desired
properties, where K = K(ay,b) = K{¢).

Comversely, we assume that there-exdist apant zp-€ Dand a constant
K such that for each z; € D, there is a K-quasidisk G, in D with
29,21 € Gy. Fix z; € D, choose a quasidisk Gy in D corresponding to
z; and let -y be the hyperbolic geodesic joining 2o and z, in Gy. Then
for all z € -y we have 2 constant a = a(K) such that

(2.7) Uy(z,z1)) < alz — ]

and

(2.8) m(i)nl Uv(z,,2)) < ad(z,0G,) < ad(z,0D)
=0,

[6, Corollary 4]. Next let

_ dia(D) <

= d(z,0D) ~

and let ¢ = 2a*b. We will show that
€x(2,21)) < ed(z,3D)

for all z € y and hence that D is a c-John disk. We consider two cases.
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Suppose first that
1
|z — 2| < §d(zg,aD).

Then )
d(z,0D) > d(29,0D) — |z — z| > éd(zg,aD)

and hence by (2.7)

U(y(2,21)) < a)z — 71| < adia(D) = abd(z,8D)
< 2abd(2,0D) < cd(z,3D).

Suppose next that
|z — zo| > éd(zo,BD).
If ¢(y(z20,2)) < #(v(2,21)), then as above

(y(z,21)) <€ adia( D) < abd(zy,8D) < 2ablz — z|

< 2abl{y(z,20)) < 2a*bd(z,0D) = cd(z, 8D).

If £(y(20,2)) 2 #1(z,21)), then by (2.8)

Uv(z,21)) € ad(2,0D) < ed(z,8D). O

3. QED property of John disks

151

In [5], Gehring and Martio show that a simply connected proper
subdomain D in C is a QED domain if and only if it is a quasidisk.

Now we will consider the QED property for John disks in C.

LEMMA 3.1. [5, Remark 2.23] Suppose that D is a simply connected
proper subdomain in C. Then D is a QED domain if and only if D is

a guasidisk.
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LEMMA 3.2. {12, Theorem 10.12] Suppose that 0 < a < b and that
E and F are disjoint sets such that every circle S(t), a < t < b, meets
both E and F. If G contains the annulus A = B(0,5)\ B(0,e) and if T
is a family of curves joining E and F in G, then

2, b
> - =
mod(T') > - log -

LEMMA 3.3. Suppose that D is a Jordan domain in C and that v
is a hyperbolic line joining wy,w; € D in D. Then

d{z Oq)
< =
b_d(mz) b, b=3+2V2

for all z € ¥ where a; and ay are two components of 8D \ {w;,w,}.

Lerama 3.3 shows that each hyperbolic line in D which jmims two
points on 9D lies in the middle of D. (See [11, Exercise 1, p. 318].)

Proof of Lemma 3.8. Fix z € 4. Then by symmetry it is sufficient
to show that
dy < bd,,

where d, = d(z,a,), 7 = 1,2. For this we may clearly assume that
dy < d; and hence that d; = d(z,8D). Next by performing preliminary
similarity mapping we may further assume that z = 0 and d; = 1.
Choose 23 € @, such that |z — 23] = dy, let u denote the harmonic
measure of @z in D and set

flz) = —

222‘

Then v = wo f~! is positive and harmonic in I = f(D). Next fix
w € D' with |w| < 1 and let { = f~'(w). Then ¢ € 3D, || < 1 and
thus

[ —0] < 1=d(0,a;).

Therefore we conclude that ¢ € int(a,) and hence that

lim v(w) = lim( u(z) =1
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for w € D’ and z € D. Finally since 0 € 8D’ and 8D’ contains a point
which lies outside of [w| < 1, we see that each circle jw| = r meets 3D’
for 0 <r < 1. Hence by {9, pp. 104-107],

—
|
g

2
v(w) > - arcsin

for w € D' with |w| < 1. In particular,

1 2 . 1- 2 . 1-4d
5= u(0) = v(~2z) > —aresin ¢ :Z: = ~arcsin . +d:'
Thus
1—d2<sin7l'_ 1
1+d; = 4 2
and hence

d =1<(34+2V2)d,. O

Proof of Theorem 1.4. Suppose that a bounded Jordan domain D
in C is a c-John disk with a John center 2y. Fix a point z; € D and let
v be the hyperbolic geodesic in D with end points zg,2z; € D. Then
by Theorem 1.2 there is a K-quasidisk G; in D such that zy, 2, € G;.
Thus by Lemma 3.1, G, is an M-QED domain where M is a constant
which depends only on K, and hence only on ¢. Hence by [12, Theorem
6.2]

mod(I') < Mmod(Tg, ) £ Mmod(T'p),

where I',T'g,,I'p are the families of curves which join two disjoint
subarcs F1, F, of 4 in C,G, D, respectively. Hence D satisfies (1.3)
for each pair of disjoint continua Fj, F, in the hyperbolic geodesics in
D with given 2z, € D as an end point.

Suppose next that D is M-QED with respect to all hyperbolic
geodesics in D with given 2o € D as an end point. Fix z; € D, 21 # z
and let ¥ be the hyperbolic geodesic in D with end points z¢,2;. We
show first that for each z € «

(3.4) min(|zo — 2,12 — 21]) £ ed(z,8D)
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for some constant @ > 1. Suppose otherwise. Then for each constant
a > 1, there is a point z € ¥ such that

min(|zg — z|,|z — z1|) > ad(z,8D).

Constder the hyperbolic line in D which contains v with end points
wy,we € 8D and let oy, oy be the two components of 3D\ {w;,ws}.
Then

d(z,0D) = Jn_l:n2 d(z, ;)

for z € 7. Thus we may assume that d(z,0D) = d(z,a;) and by
Lemma 3.3

(3.5) d(z,07) < bd(z,8D),  b=3+2V2.
Let r = bd(z,8D) and consider the disks B(z,r),B(z, /ar),B(z,ar).

By means of a preliminary smmilarity mapping we may assume that
z = 0. Let A = B(0,ar) \ B(0, /ar). By hypothesis zy,2, ¢ B(0,ar).
For j = 0,1 let F, denote a component of AN (0, z,) which joins the
boundary circles of 9A. Then by Lemma. 3.2

2
(3.6) mod(T') > mod(T' 4) = - log /e,

where T, ['4 are the families of curves joining Fp and F; in C and in
A, respectively. Now let B = B(0,/ar)\ B(0,r), E = 8B(0,r), and
F = 98(0,/ar). Then by (3.5), Tz < I'p and hence by {12, Theorem
6.4] and [12, 7.5} we have

Ja

mod(T'p) < mod(T'g) = 2n(log ~—f~£)“

27
~ logy/a’

where I'g is the family of curves joining F and F in B and I'p is the
family of curves joining ¥y and F; in D. Then, since D is M-QED
with respect to v, (3.6) and (3.7) imply that

(3.7)

2n M
log \/a

glog va <mod(I') € Mmod(T'p) <
7
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and hence that

M> (log Ve )2
T
which is a contradiction. Therefore for each 2 € v

min({z) — z|, |20 — z|) < ad(z,8D)

for some constant a > 1.

Next to show that D is a ¢-John disk we must prove that for each
ze€,

[z — 2| < ed(2,8D)

for some constant ¢. For this let d = d(z,3D), let L = max{|z, — z{:
z € 3D} and let ¢; = max(%, a).

If |2 — z1| < {2 — 2], then by (3.4)

(3.8) |z — z1] < ad(z,8D).
If |z — z1] > |z — 20|, then |zg — 23| £ L and (3.4) give

[z — z] < [z—zgi+ |z — 21|

(3] C C
Z — 2z 2p — 2
Jle=zl, -l

a L

d
< d(z,0D) + d.
Now by (3.4)
d = d{29,0D) < |z — 20| + d(2,0D)
< ad(z,0D) + d(z,0D)
={a+1)d(z,0D).
Thus
l-z—;:il—‘ < d{z,0D) + (a + 1}d(z,3D).

Hence we get
(3.9) [z — 2| < e1(a + 2)d(z,0D).
Therefore by (3.8) and (3.9)

|z = 21| < ed(z,0D),
where ¢ = ¢;(a + 2). This completes the proof. [
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REMARK 3.10. In [5, Theorem 2.22], Gehring and Martio show that
if D is a simply connected domain in C, then the following conditions
are equivalent:

(1) D is a QED domain.
(2) D is a uniform domain.

Now by using an argument similar to that in the proof of Theorem 1.4
we can replace (1) by the following condition:
(1’) D is M-QED with respect to all hyperbolic geodesics in D.
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