Pusan Kyöngnam Math. J 9(1993), No 1, pp 127-132

FUZZY CHARACTERISTIC SUBALGEBRAS/IDEALS OF A BCK-ALGEBRA

Y. B. JUN, S. M. HONG AND E. H. ROH

In this paper we introduce the concept of fuzzy characteristic subalgebras/ideals of a BCK-algebra. A fuzzy characteristic subalgebra/ ideal is characterized in terms of its level subalgebras/ideals.

Recall that a BCK-algebra is a non-empty set X with a binary operation * and a constant 0 satisfying the axioms

BCK-1 ((x * y) * (x * z)) * (z * y) = 0, BCK-2 (x * (x * y)) * y = 0,

BCR-2(x + (x + y)) + y = 0

BCK-3 x * x = 0,

BCK-4 0 * x = 0,

BCK-5 x * y = 0 and y * x = 0 imply x = y,

for all $x, y, z \in X$. We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. A mapping $f : X \to Y$ of BCK-algebras is called a homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$. A BCKalgebra X is said to be bounded if there exists an element $1 \in X$ such that $x \leq 1$ for all $x \in X$. Throughout X will denote a BCK-algebra and Aut(X) the set of all automorphisms of X. A nonempty subset S of X is called a subalgebra of X if $x * y \in S$ for any $x, y \in S$. An ideal of X is a subset I containing 0 such that if x * y and y are in I then so is x.

We now review some fuzzy logic concepts. We refer the reader to [3] and [5] for complete details. A fuzzy subset of X is a function μ : $X \to [0,1]$. It is a fuzzy subalgebra of X if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$, and it is a fuzzy ideal of X if $\mu(0) \ge \mu(x)$ and $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$. Given a fuzzy subset μ and $t \in [0,1]$, let $\mu_t = \{x \in X | \mu(x) \ge t\}$. This could be an empty set. It was shown in [5] that a fuzzy subset μ of X is a fuzzy subalgebra/ideal of X if and only if for each $t \in [0,1], \mu_t$ is either empty or a subalgebra/ideal of X. The subalgebras/ideals $\mu_t, t \in [0,1]$, are called level subalgebras/ideals of μ .

Received April 23, 1993.

DEFINITION 1. If μ is a fuzzy subalgebra/ideal of X and θ is a map from X into itself, we define a map $\mu^{\theta} : X \to [0,1]$ by $\mu^{\theta}(x) = \mu(\theta(x))$ for every $x \in X$.

If μ is a fuzzy subalgebra of X and θ is an endomorphism of X, then

$$\mu^{\theta}(x * y) = \mu(\theta(x * y)) = \mu(\theta(x) * \theta(y))$$
$$\geq \min\{\mu(\theta(x)), \mu(\theta(y))\}$$
$$= \min\{\mu^{\theta}(x), \mu^{\theta}(y)\}$$

for all $x, y \in X$. Hence we have the following theorem.

THEOREM 1. If μ is a fuzzy subalgebra of X and θ is an endomorphism of X, then μ^{θ} is a fuzzy subalgebra of X.

PROPOSITION 1. If μ is a fuzzy subalgebra of X and θ is an endomorphism of X, then $\mu^{\theta}(0) \geq \mu^{\theta}(x)$ for all $x \in X$.

Proof. We have that $\mu^{\theta}(x) = \mu(\theta(x)) = \min\{\mu(\theta(x)), \mu(\theta(x))\} \le \mu(\theta(x) * \theta(x)) = \mu(\theta(x * x)) = \mu^{\theta}(0)$ for any $x \in X$.

PROPOSITION 2. Let μ be a fuzzy ideal of X and $\theta : X \to X$ an onto homomorphism. Then the following hold for all $x, y, z \in X$,

(1) if $x \leq y$ then $\mu^{\theta}(x) \geq \mu^{\theta}(y)$. (2) $\mu^{\theta}(x * y) \geq \min\{\mu^{\theta}(x * z), \mu^{\theta}(z * y)\}.$ (3) if $\mu^{\theta}(x * y) = \mu^{\theta}(0)$ then $\mu^{\theta}(x) \geq \mu^{\theta}(y).$ (4) $\min\{\mu^{\theta}(x * y), \mu^{\theta}(y)\} = \min\{\mu^{\theta}(x), \mu^{\theta}(y)\}.$ (5) if X is bounded then $\min\{\mu^{\theta}(x), \mu^{\theta}(1 * x)\} = \mu^{\theta}(1).$ (6) if $x \leq y$ then $\mu^{\theta}(y) = \min\{\mu^{\theta}(y * x), \mu^{\theta}(x)\}.$

Proof. (1) If $x \leq y$ then x * y = 0. Hence

$$\begin{split} \mu^{\theta}(y) &= \mu(\theta(y)) \\ &= \min\{\mu(0), \mu(\theta(y))\} \\ &= \min\{\mu(\theta(0)), \mu(\theta(y))\} \\ &= \min\{\mu(\theta(x * y)), \mu(\theta(y))\} \\ &= \min\{\mu(\theta(x) * \theta(y)), \mu(\theta(y))\} \\ &\leq \mu(\theta(x) = \mu^{\theta}(x). \end{split}$$

(2) From BCK-1 and (1), it follows that $\mu^{\theta}((x*y)*(x*z)) \ge \mu^{\theta}(z*y)$. Hence

$$\begin{split} \mu^{\theta}(x * y) &= \mu(\theta(x * y)) \\ &= \mu(\theta(x) * \theta(y)) \\ &\geq \min\{\mu((\theta(x) * \theta(y)) * (\theta(x) * \theta(z))), \mu(\theta(x) * \theta(z))\} \\ &= \min\{\mu^{\theta}((x * y) * (x * z)), \mu^{\theta}(x * z)\} \\ &\geq \min\{\mu^{\theta}(z * y), \mu^{\theta}(x * z)\}. \end{split}$$

(3) Assume that $\mu^{\theta}(x * y) = \mu^{\theta}(0)$. Then

$$\begin{split} \mu^{\theta}(x) &= \mu(\theta(x)) \\ &\geq \min\{\mu(\theta(x) * \theta(y)), \mu(\theta(y))\} \\ &= \min\{\mu(\theta(x * y)), \mu(\theta(y))\} \\ &= \min\{\mu^{\theta}(x * y), \mu^{\theta}(y)\} \\ &= \min\{\mu^{\theta}(0), \mu^{\theta}(y)\} \\ &= \min\{\mu(\theta(0)), \mu(\theta(y))\} \\ &= \min\{\mu(0), \mu(\theta(y))\} \\ &= \mu(\theta(y)) = \mu^{\theta}(y). \end{split}$$

(4) Since $x * y \leq x$, we have $\mu^{\theta}(x * y) \geq \mu^{\theta}(x)$ by (1). Hence

$$\begin{split} \mu^{\theta}(x) &= \mu(\theta(x)) \\ &\geq \min\{\mu(\theta(x) * \theta(y)), \mu(\theta(y))\} \\ &= \min\{\mu(\theta(x * y)), \mu(\theta(y))\} \\ &= \min\{\mu^{\theta}(x * y), \mu^{\theta}(y)\} \\ &\geq \min\{\mu^{\theta}(x), \mu^{\theta}(y)\} \end{split}$$

and so $\min\{\mu^{\theta}(x), \mu^{\theta}(y)\} = \min\{\mu^{\theta}(x * y), \mu^{\theta}(y)\}.$ (5) If X is bounded then by (1),

$$\mu^{\theta}(1) \leq \min\{\mu^{\theta}(x), \mu^{\theta}(1 * x)\}.$$

On the other hand,

$$\mu^{\theta}(1) = \mu(\theta(1))$$

$$\geq \min\{\mu(\theta(1) * \theta(x)), \mu(\theta(x))\}$$

$$= \min\{\mu(\theta(1 * x)), \mu(\theta(x))\}$$

$$= \min\{\mu^{\theta}(1 * x), \mu^{\theta}(x)\}.$$

Thus (5) is true.

(6) is obtained from (1) and (4).

THEOREM 2. If μ is a fuzzy ideal of X and $\theta: X \to X$ is an onto homomorphism, then μ^{θ} is a fuzzy ideal of X.

Proof. We have that $\mu^{\theta}(x) = \mu(\theta(x)) \le \mu(0) = \mu(\theta(0)) = \mu^{\theta}(0)$ for all $x \in X$. Next for any $x, y \in X$,

$$\mu^{ heta}(x)=\mu(heta(x))\geq\min\{\mu(heta(x)st y),\mu(y)\},$$

because μ is a fuzzy ideal. Since θ is onto, there exists $z \in X$ such that $\theta(z) = y$. Hence

$$\mu^{\theta}(x) \ge \min\{\mu(\theta(x) * y), \mu(y)\}$$

= min { $\mu(\theta(x) * \theta(z)), \mu(\theta(z))\}$
= min { $\mu(\theta(x * z)), \mu(\theta(z))\}$
= min { $\mu^{\theta}(x * z), \mu^{\theta}(z)$ }.

As y is an arbitrary element of X, the above result is true for any $z \in X$, i. e., $\mu^{\theta}(x) \ge \min\{\mu^{\theta}(x * z), \mu^{\theta}(z)\}$ for all $x, z \in X$. Hence μ^{θ} is a fuzzy ideal of X.

DEFINITION 2. A subalgebra/ideal K of X is called a characteristic subalgebra/ideal if $\theta(K) = K$ for all $\theta \in Aut(X)$.

DEFINITION 3. A fuzzy subalgebra/ideal μ of X is called a fuzzy characteristic subalgebra/ideal of X if $\mu(\theta(x)) = \mu(x)$ for all $x \in X$ and all $\theta \in Aut(X)$.

130

THEOREM 3. Let μ be a fuzzy characteristic subalgebra of X. Then each level subalgebra of μ is a characteristic subalgebra of X.

Proof. Let $t \in Im(\mu), \theta \in Aut(X)$ and $x \in \mu_t$. Since μ is a fuzzy characteristic subalgebra of X, we have $\mu(\theta(x)) = \mu(x) \ge t$. It follows that $\theta(x) \in \mu_t$ and hence $\theta(\mu_t) \subseteq \mu_t$. To prove the reverse inclusion, let $x \in \mu_t$ and let $y \in X$ be such that $\theta(y) = x$. Then $\mu(y) = \mu(\theta(y)) = \mu(x) \ge t$, whence $y \in \mu_t$. It follows that $x = \theta(y) \in \theta(\mu_t)$, so that $\mu_t \subseteq \theta(\mu_t)$. Thus $\mu_t, t \in Im(\mu)$, is a characteristic subalgebra of X.

The following lemma is obvious, and we omit the proof.

LEMMA 1. Let μ be a fuzzy subalgebra/ideal of X and let $x \in X$. Then $\mu(x) = t$ if and only if $x \in \mu_t$ and $x \notin \mu_s$ for all s > t.

Now we prove the converse of Theorem3.

THEOREM 4. Let μ be a fuzzy subalgebra of X. If each level subalgebra of μ is a characteristic subalgebra of X, then μ is a fuzzy characteristic subalgebra of X.

Proof. Let $x \in X, \theta \in Aut(X)$ and $\mu(x) = t$. Then $x \in \mu_t$ and $x \notin \mu_s$ for all s > t, by Lemma 1. Since $\theta(\mu_t) = \mu_t$ by hypothesis, we have $\theta(x) \in \mu_t$ and hence $\mu(\theta(x)) \ge t$. Let $s = \mu(\theta(x))$. If possible, let s > t. Then $\theta(x) \in \mu_s = \theta(\mu_s)$. Since θ is one-one, it follows that $x \in \mu_s$, which is a contradiction. Hence $\mu(\theta(x)) = t = \mu(x)$, showing that μ is a fuzzy characteristic subalgebra of X.

The proofs of the following theorems are similar to that of Theorems 3 and 4.

THEOREM 5. If μ is a fuzzy characteristic ideal of X then each level ideal of μ is a characteristic ideal of X

THEOREM 6. Let μ be a fuzzy ideal of X. If each level ideal of μ is a characteristic ideal of X then μ is a fuzzy characteristic ideal of X.

References

- 1. V. N. Dixit, R. Kummar and N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems 37 (1990), 359-371
- 2 K Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math Japon 23 (1978), 1-26.

- 3. Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK(BCI)algebras, Math. Japon 38 (1993), 67-71.
- 4. N. P. Mukherjee and P. Bhattacharya, Fuzzy groups: some group theoretic analogs, Inform. Sci. 39 (1986), 247-268.
- 5. O G. Xi, Fuzzy BCK-algebra, Math. Japon 36 (1991), 935-942.

Department of Mathematics Gyeongsang National University Chinju 660-701, Korea