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COMMON FIXED POINT THEOREMS IN
PROBABILISTIC METRIC SPACES

*S.S. KIM, Y.J. CHO anbp S.5. CHANG

1. INTRODUCTION

K. Menger ([22]) introduced the concept of probabilistic metric sp-
aces , which is a generalization of metric spaces. Since K. Menger, a
number of authors, especially, B. Schweizer and A. Sklar ([24], {25]),
A.N. Serstnev ([27]) and H. Sherwood ([29]), etc., have extensively
developed these spaces. For the detailed discussions of these spaces
and their applications, refer to {5}, [11], [35] and [39].

Recently, since V.M. Sehgal and A.T. Bharucla—Reid ([26]) have
shown the existence and uniqueness of fixed points of contraction map-
pings on PM-spaces, a number of generalizations of the results of V.M.
Sehgal and A.T. Bharucha-Reid were obtained in PM-spaces ({2]-[7],
{9, [10], {12]-{186], (23], [32]}-[34], [36]-[38]). On the other hand, G.
Jungck ([18]) introduced the concept of conpatible mappings on met-
ric spaces and proved some fixed point theorems for such mappings. Of
course, commuting and weakly commuting mappings are compatible,
but the converse is not true ([20]. [25], (30]). Recently, in [6], Y.J. Cho,
P.P. Murthy and M. Stojakovic newly introduced the concept of com-
patible mappings of type (A) on PM-spaces, which extends the concept
of compatible mnappings of type (A} on metric spaces ({20}), and proved
that the concepts of compatible mappings and compatible mappings of
type (A) on PM-spaces are equivalent under some conditions.

In this paper, we prove some fixed point theorems for compatible
mappings of type (A) on PM-spaces and nse our results to prove some
fixed point theorems in metrice spaces and uniform spaces. Our results
also extend, generalize and improve a number of fixed point theorems
in metric spaces and PM-spaces.
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2. PRELIMINARIES

Let R denote the set of real numbers and R* the non-negative re-
als. A mapping F : R — R% is called a distribution function if it is
nondecreasing left continuous with inf F = 0 and sup F = 1. We will
denote £ by the set of all distribution functions.

A probabilistic metric space (beriefly, a PM-space) is a pair (X, F),
where X is a nonempty set and F is a mapping from X x X to L. For
(u,v) € X x X the distribution function F(u,v) is denoted by F,, .
The functions F, , are assumed to satisfy the following conditions:

(P1) Fyp(z) =1forall z > 0if and only if u = v,

(Py) Fy»(0) =0 for all u,v € X,

(P3) Fy(z) = Fy u(z) for all u,v € X,

(Pg) X Fy o(z) =1 and F, ,(y) = 1, then Fy (z +y) = 1 for all

w,v,w € X.

In a metric space (X, d), the metric d induces a mapping 7 : X X
X - L such that F(u,v)(z) = F, (z) = H(z — d(u,v)), where H is a
specific distribution function defined by

0, zL£0
1, z>0.

H(z)= {

A function ¢ : [0,1] x [0, 1} — [0,1] is called a T-norm if it satisfies
the following conditions:

(Ty) t(a,1) = a for every a € [0,1] and ¢(0,0) = 0,

(T2) t{a,b) = t(b,a) for every a,b € [0,1}],

(T3) If a > ¢ and b > d, then t(a,b) > t(c,d),

(Ty) t(t(a,b),c) = t(a,t(b,c)) for every a, b,c € [0,1].

A Menger space is a triplet (X, F,t), where (X, F) is a PM-space
and ¢ is a T-norm with the following condition:

(Ps) Fywlz+y) > HF, (z), Fouwly)) forall u,v,w € X and z,y €
R*.

The concept of neighbourhoods in PM-spaces was introduced by B.
Schweizer and A. Sklar ([24]). Hu € X,e > 0 and A € (0,1) , then an
(e, A)—neighbourhood of u, U,(¢, A), is defined by

Uule, ) ={ve X :Fy.(e)>1- A}
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If (X, F,1) is a Menger space with a continuous T-norm ¢, then the
family
{Uu(e,X):ue X,e> 0,1 € (0,1)}

of neighbourhoods induces a Hausdorff topology 7 on X.

The following definitions and theorems are well-known:

DEFINITION 2.1. Let (X, F,t) be a Menger space. A mapping
S from X into itself is said to be continuous at a point p € X if for
every € > 0 and A > 0 there exist ¢ > 0 and A; > 0 such that if
g € Up(er, A1), then Sq € Ugy(e, A), that is, if Fp (1) > 1 — Ay, then
FSp,Sq(f) >1-—A

DEFINITION 2.2. Let (X,F,t) be a Menger space with the
continuous T-norm ¢. A sequence {p,} in X is said to be convergent
to a point p € X if for every ¢ > 0 and A > 0, there exists an integer
N = N{¢ A} such that p,, € U{e L) for all. n > N or eqmivalently

SV RIS B N

FP:Pn(E) > 1 - '\
for all n > N. We write p,, — p as n — oo or lim,, oo pp = p.

Since the (¢, A)-topology 7 on a Menger space { X, F,t) satisfies the
first axiom of the countability, we have the following:

THEOREM 2.1. Let (X, F,t) be a Menger space with the con-
tinuous T-norm t and S be a mapping from X into itself. Then S is
continuous at a point p if and only if for every sequence {p,} in X
converging to p, the sequence {Sp,} converges to the point Sp.

THEOREM 2.2. Let (X, F,t) be a Menger space with the con-
tinuous T-norm t. Then F is a lower semi—continuous function on X,
that is, for every fixed z € R, if ¢, — q and p,, — p as n — oo, then

Um inf F, o (z) = F, ,(z).
n—oc

DEFINITION 2.3. Let (X,F,t) be a Menger space with the
continuous T-norm ¢. A sequence {p,} in X is said to be a Cauchy
sequence if for every € > 0 and A > 0 there exists an integer N =
N(e, A) > 0 such that

Fyopmle) >1 =X
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for all m,n > N.

DEFINITION 2.4. A Menger space (X, F,t) with the continu-
ous T-norm ¢ is said to be complete if every Cauchy sequence in X
converges to a point in X.

The following theorems establish the relations between a metric
space and a Menger space. Recall that the Menger space (X, F,¢)
induced by the metric d in a metric space (X, d) is called an induced
Menger space.

THEOREM 2.3. Lett be a T-norm defined by t(a, b} = min{a, b}.
Then an induced Menger space (X, F,t) is complete if a metric space
(X, d) is complete.

THEOREM 2.4. Let (X, F,t) be an induced Menger space by the
metric d. Let {p,} be a sequence in X amd S be 2 mapping from X
into itself. Then for every ¢ > 0 and A > 0, F},, ,(¢) > 1 — X if and only
if there exists an integer N such that d(p,,p} < ¢ foralln > N , and
S is continuous at p in the sense of the Menger space if and only if S
is continuous at p in the sense of the metric space.

3. COMPATIBLE MAPPINGS OF TYPE (A)

In this section, motivated with the concepts of compatible mappings
of type {A) in metric spaces ([6]) and compatible mappings in PM~
spaces ({23]), we introduce the concept of compatible mappings of type
(A) in Menger spaces and some properties of these mapping ({6]).

DEFINITION 3.1. Let (X,F,t) be a Menger space with the
continuous T-norm ¢ and let §,7 be mappings from X into itself. S
and T are said to be compatible if

lim Fsr,, 78:,.(2) =1

for all > 0, whenever {z,} is a sequence in X such that lim, .o, Sz, =
lim, oo Tz, = z for some 2 € X.

DEFINITION 3.2. Let (X,F,t) be a Menger space with the
continuous T-norm ¢ and let S,7 be mappings from X into itself. §
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and T are sald to be compatible of type (A) if
Iim FTS::,,,ST::,. =1 and lim FSTz,,,TSz,, =1
n—c n—Qo

forall z > 0, whenever {x, } is a sequence in X such that lim, o Sz, =
my oo T2, = 2z for some z € X.

The following Proposition 3.1 and 3.2 show that Definitions 3.1 and
3.2 are equivalent under some conditions ([6]):

PROPOSITION 3.1. Let (X,F,t) be a Menger space with the
continuous T-norm t and t(z,z) > z for all z € [0,1], and S, T : X —
X be continuous mappings. If 5§ and T are compatible, then they are
compatible of type (A).

PROPOSITION 3.2. Let (X,F,t) be a Menger space with the
continuous T-norm ¢ and {(z,x) > = for all z € {0,1] and let S,T :
X — X be compatible mappings of type (A). If one of S and T is
continuous, then S and T are compatible

The following is a direct consequence of Proposition 3.1 and 3.2:

PROPOSITION 3.3. Let (X, F,t) be a Menger space with the
continuous T-norm t and t(z,z)} > z for all x € [0,1}, aud S, T : X —
X be continuous mappings. Then § and T are compatible if and only
if they are compatible of type (A).

REMARK 1. In {19}, we can find two examples that Proposotion
3.3 is not true if S and T are not continuous on X.

Next, we give properties of compatible mappings of type (A) on a
Menger space for our main theorems ([6]):

PROPOSITION 3.4. Let (X, F,t) be a Menger space with the
continuous T-norm t and t(z,z) > z for all z € [0,1], and §,7 : X —
X be mappings If S and T are compatible of type (A) and Sz = Tz
for some z € X, then ST: =TTz =TSz =85Sz

PROPOSITION 3.5. Let (X,F,t) be a Menger space with the
continuous T-norm t and (e, z) > z forall z € (0,1}, and 5,7 : X —
X be mappings Let S and T be compatible mappings of type (A) and
limy, oo STp = liMpoo T = z for some z € X. Then we have the
following:
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(1) im, o TSz, = Sz if § is continuous at z.
(2) 5Tz =TS8z and Sz =Tz if § and T are continuous at z.

4. COMMON FIXED POINT THEOREMS

In this section, we give a common fixed point theorem for compatible
mappings of type (A) in Menger spaces.

Let A, B, S and T be mappings from a PM-space (X, F) into itself.
If there exists a point %, in X and a sequence {u,} in X such that

ATUQ,, = TSu2"+1 and Bsu2n+1 = T.S'ug,,+2

for n = 0,1,2,..., then the space X is said to be (A4, B; ST(u,))-
orbitally complete if the closure of {STu, : n =1,2,...} is complete.
A mapping on X is said to be (A, B; ST(u,)}-orbitally continuous if
the restrrction of the mapping on the closure of {STu, :n=1,2,...}

1S continuous.

We need the following lemma for our main theorem.

LEMMA 4.1([32]). Let {y.} be a sequence in a Menger space
(X, F,t) with the continuous T-norm t and t(z,z) > z for every z €
[0,1]). If there exists a constant h € (0,1) such that

Fynyyn-l-l(hm) 2 Fyn-;.yn (x)
forall z > 0 andn =1,2..., then {yn} is a Cauchy sequence in X.

THEOREM 4.2. Let (X, F,t) be a Menger space with the con-
tinuous T-porm t and t(zx,z) > z for all z € [0, 1] and let A, B, S and
T be mappings from X into itself such that

(1) ST =TS,

{4.2) the pairs A, S and B, T are compatible mappings of type (A},

(4.3) there exists a constant h € (0,1) such that

FAu,Bv(hx) > min{FSu,Tv(x)a FAu,Su (.‘II), FT’v,Bv(x):
FSu,Bv(2$)a FAu,Tu(2I)}

forallz >0 and u,v € X
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(4.4) there exists a point u, € X such that X 1s (A, B; 5T (u,))-
orbitally complete and 5, T are (A, B; ST(1,))--orbitally continuous
Then A, B, S and T have a unique common fixed point z in X and the
sequence {T'S,,} converges to the common fixed point z.

Proof. By (4.3), we have

Frsus s, TSusas2(7T) =FATu,, BSuy, ;1 (RT)
2 min{Frsu,, TSusap1 () FATuz0,5Tuz. (2),
I Susnsn BSuzn s (E)s FSTurn, BSuzn s (22),
Fatu,, T Sugp 40 (2z)}
=min{Frsu,,, PSuznsi (£)s FTSusn 41, TSuzn (2}
PrSuyn i, TSuzni2(®), FTSupn TSupni-(22),

FTSu;.,.;., ,TSu2n+; (23:)},

which gives

FrSusmgr, TSusns2(RT) 2 Frou,, T5uzmy, (T)

since we have

FTSuzn.’.g,TSuzn (258) ..>.. nlin{FT$u2”+2,TSu2”+| (I), FI'SHQ".H‘TSuzn(x)}'

Similarly, we have Froy,, o TSusnia{A%) 2 Frsus,p) TSusmy. (). Thus,
in geneal, we have

FTSun.}.l ,TSu..,.H(hx) Z FTS!LH,TSH,.+| (I)

forn =10,1,2,.... So, by Lemma 4.1, {T'Su,} is a Canchy sequence in
X. Since X is (A, B; ST(u,))-orbitally complete, {TSu,} converges
is a point z in X and hence the subsequences {ATusn}, {TSus,},
{TSuspy1} and {BSuzn4y} of {TSu,} also converges to the same
point z.

First, we shall prove that Tz = 2. Suppose that T 1s (A, B; ST'(1,))-
orbitally continuous. Then {TTSuzn41} converges to Tz and, since
B and T are compatible mappings of type (A), by Proposition 3.5,
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{BT Suzn41} also converges to Tz. Putting u = T'uy,, and v = T'Sugnqq
in {4.3), we have

FATuy, BT Suzny, (RT)
2 H)in{FSTug,, ,TTSu;,,*.g ("E)} FATu:n ,STug,‘ (3),
(4.5)
Frrsuins1,BTSuzn s (2)s FSTusn, BTS 43,4, {27),

FATuzn, TTSu2n4. (22)}.

Letting n — oo in 4.5, we have
Fz,Tz(hx) 2 min{Fz,Tz(x)y Fz,z(x), FTz,z(x)Fz.Tz(2x)a Fz,T:(2x)}a

which implies that z = Tz. Again, replacing u and v by Tug, and z in
(4.3), respectively, we have

FaATu,, B:(hz)
(4.6) > min{Fsru,, 7:(2), FaTuzn 5Tusn (2), Frz,8:(2),
Fsrus,,B:(22), FaTu,, T:(22)}.

Thus, letting n — oo in (4.6), we have also

Fz,Bz(h-T) 2 Inin{Fz,Tz(x)a Fz.z(x)s Fz,Bz(x)sz,Bz(zx)a Fz,Tz(?‘x)}a

which also implies that z = Bz. Therefore, we have Bz = Tz = 2.
Similarly, in case S is (A4, B; ST(u,))-orbitally continuous, since A and
S are compatible mappings of type (A}, by (4.3), we have Az = Sz =
z. Secondly, from (4.3), we can show easily that A2 = Bz and so
Az = Bz =8z =Tz = 2, that is, z is a common fixed point of A, B, S
and T

Finally, the uniquenees of the fixed point z follows easily from (4.3).
This completes the proof.

REMARK 2.(1) From Proposition 3.3, the conclusions of Theorem
4.2 are still true even though the condition (4.2} is replaced by the
following condition:

(4.7) the pairs A, S and B, T are compatible mappings.
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(2) If A= B and § = T = 1x(: the identity mapping on X} in
(4.3), then the contraction condition introduced by Lj.B. Ciric ([7]) is
obtained and Theorem 4.2 extends his theorem.

(3) If S = T is in (4.3), then the contraction condition introduced
by S.L. Singh and B.D. Part ([33]) is obtained and so Theorem 1 in
[33] is a special case of Theorem 4.2.

(4) If A= Bin (4.3), then the contraction condition introduced by
S.L. Singh and B.D. Part ([32)) is obtained and so Theorem 1 of S.L.
Singh and B.D. Part is contained in Theorem 4.2 as a special case.

{5) Theorem 4.2 extends also Theorem 1 of S.L. Singh, S.N. Mishra
and B.D. Pant ([(34]).

Let (X, d) be a metric space. Then the metric d induces a mapping
F : X x X — L defined by F(p,q) = H(z — d(p,q)) for p,g € X
and ¢ € R. By Theorem 2.3, if {(a,b) = min{a, b}, then (X, F,t) is a
Menger space. Further, (X F. 1) is cemplete I (X, d) is complete.

Hence, by using Theorem 4.2, we have the following:

THEOREM 4.3. Let (X, d) be a metric space and let A, B. S and
T be mappings from X into itself such that

(4.8) X is (A, B; ST(u,))-orbitally complete,

(4.9) S and T are (A, B; ST(u,))-orbitally continnous,

(4.10) the pairs A, S and B, T are compatible mappings of type (A},

(4.11) ST =TS,

(4.12) there exists a constant h € (0,1} such that

d{ Au, Bv) < max{d(Su,Tv),d( Au, Su),d(Tv, Bv),
%d(Su,Bv), %d(Au,Tv)}

for all u,v € X.
Then A,B,S and T have a unique common fixed pont 2z in X and
{TS,.} converges to the common fixed point z.

REMARK 3. (1) The concept of compatible mappings of type
(A) in metric spaces and some fixed point theorems for such mappings
are given in [6]. From Theorem 3.3 in [6], the conclusions of Theorem
4.3 are still true even though the condition {4.10} of Theorem 4.3 is
replaced by (4.7).
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(2) A number of fixed point theorems in metric spaces may be
obtained as spacial cases of Theorem 4.3. For example, Theorem
4.3 extends, generalizes and improves some theorems of Lj.B. Ciric
({7]), K.M. Das and K.V. Naik ([8]), G. Jungck ({17]) and S.L. Singh
({30],{31}) for a pair of commuting mappings.

5. EXTENSION TO UNIFORM SPACES

Throughout this section, X is assumed to be a set and D = {d,} is
a nonempty collection of pseudo—metrics on X. It is well-known that
the uniformity U generated by D is obtained by taking as a subbase of
all sets of the form

Uﬁr,é = {(x,y) € X x X : doz(xay) < 6}1

where d, € D and € > 0. In fact, the topology T determined by the
uniformity U has all d,—spheres as a subbase. In [3], G.L. Cain and
R.H. Kasriel have shown that a collection of pseudo-metrics {d,} can
be defined which generates the usual structures for Menger spaces.

Hence, the following theorem is a direct consequence of Theorem
4.2.
THEOREM 5.1. Let X be a sequentially complete Hausdorff
space and let A, B, S, and T' be mappings from X into itself such that

(5.1) AT(X)U BS(X) c TS(X),

(5.2) ST =TS8,

(5.3) the pairs A, S and B,T are compatible mappings of type (A},

(5.4) S and T are continuous,

(5.5) for every do € D there exists a constant h € (0,1) such that

do(Au, Bv) < b max{d,(Su,Tv), ds(Au, Su),d.(Tv, Bv),
% o(Su, Bv), %da(Bu,Av)}

for allu,v € X.
Then A, B, S and T have a unique common fixed point in X.

REMARK 4. Theorem 5.1 includes a number of fixed point theo-
rems in metric spaces, Menger spaces and uniform spaces, which may

be obtained by choosing A, B, S and T suitably ({20}, [31)-{33]).
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