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ON THE EQUIVALENCES OF 
TWO TYPE CONDITIONS 

CONCERNING FUNCTIONS

Gue Myung Lee, Do Sang Kim And Kuk Hyeon Son

1. Introduction.

Recently, Hanson [4], and Kaul and Kaur [7] defined a new class 

of functions, called invex, pseudo invex and quasi invex. They have 

established Kuhn-Tucker sufficient optimality criteria and duality the­

orems for nonlinear programming problems involving these functions. 

Jeyaknmar. [6] defined p-invex. p-pseudo inyexLand- />-quasi invex func­

tions which are generalized forms of invex, pseudo invex, and quasi 

invex functions respectively. His functions also generalize Vial's p- 

convex functions [8]. On the other hand, Hanson and Mond [5], and 

Egudo and Mond [3] introduced a class of functions, called P-convex, 

F-psevidoconvex and F-quasiconvex. They also have 아又ained Ktdm- 

Tucker sufficient optimality criteria and duality theorems for nonlinear 

programming problems concerning these functions. By using the fact 

that invex functions can be characterized as functions whose station­

ary points are global minima, Craven and Glover [2], and Ben-Israel 

and Mond [1] showed that the invex condition is equivalent to the 

pseudo invex condition, and that the invex condition is equivalent to 

the F-convex condition. Our object of this brief paper is to show that 

the quasi invex condition is equivalent to F-quasiconvex conditions, 

by using a simple 호nethod. Moreover, we give conditions equivalent to 

p-invex, p-pseudo invex and p-quasi invex conditions.

2. Equivalences

Now we define invexity type functions and F-convexity type func­

tions.
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Definition 2.1 ([4],[7]). Let f be a differentiable numerical func­

tion defined on a set C C

(1) f is said to be tnvex w.r.t 7/ if there exists a vector function 

?7(a;, u) defined on C x C such that f(x) — J(u) > 7/t(x, u)V/(u) for all 

xyu E C.

(2) f zs said to be pseudo invex w.r.t. tj if there exists a vector func­

tion r/(x,u) defined on C x C such that u)V/(u) > 0 => J(z) > 

J(u) for all x^u E C.

(3) f is said to be quasi invex w, r. L rj if there exists a vector function

?7(x, u) such that 으 f(u) => u)V/(u) < 0 for all x^u E C.

Definition 2.2. A functwnal F zs said to be sublinear on Rn 寸

F(x + y) < F(x) + F(y) for all G IV1.

F(ax) = aF(x) for all a G jR, a > 0 and x G Rn.

Definition 2.3 ([3],[5]). Let f be a differentiable numerical func~ 

tion defined on a set C C JJn.

(1) f is said to be F-convex if there exist sublinear functionals FXfU 

such that /(X)— /(u) > ^,u[V/(u)] for all x^u E C,

(2) f is said to be F-pseudoconvex if there exist sublinear functionals 

FXjU such that Fm[▽/(")] 2 0 二》/(x) > /(u) for all x^u E C.

(3) f zs said to be F~quasiconvex if there exist sublinear functwnals 

FXiU such that f(x) < /(u) => FriU[V/(u)] < 0 forall x, u G C.

Now we show the equivalences among the above functions.

Theorem 2.1. Let / be a differentiable numerical function defined 

on a set C C -Rn. Then the following statements are equivalent.

(a) there exists a vector function t/(x,u) defined on C xC such that 

/ is quasi invex w.r.t. 77.

(b) there exist sublinear functionals Fx u such that / is J^-quasicon 

vex.

Proof.
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(a) => (b) : By assumption, J(x) < /(u) => u)V/(u) < 0 for

all x,u E C, Let 7/e(x,u)z =for all xyu E C and z € 7?n. Then 

FXiU is sublinear and hence f is F-quasiconvex.

(b) => (a) : By assumption, f(x) < /(u)二》FXjU\y f(u)] < 0 for 

all x,u G C. If V/(u) = 0, let ?/(x5u) = 0. If V/(u)尹 0, let

伦，“)= 氣雋뮤普거‘(们 and hence 叭")V/(u) = 玲시叩划. 

Thus we obtain /(x) < /(u) => < 0 for all x, u € C.

The following theorems are established in a manner similar to Theorem 

2.1.

Theorem 2.2. Let f be a differentiable numerical function defined 

on a set C C R". Then the following statements are equivalent.

(a) there exists a vector function t/(z, u) defined on C xC such that 

f zs invex w.r,t. 7].

(b) there exist sublinear functionals Fx u such that f zs 甘ex.

THEOREM 2.3. Let f be a differentiable numerical function defined 

on a set C C Rn. then the following statements are equivalent.

(a) there exists a sector funcMon //(x, u) defined on C xC such that 

f is pseudo invex w.r.t rj.

(b) there exist sublinear functionals FXiU such that f is F-pseudocon- 

vex.

The following definitions were suggested by Jeyakumar [6].

Definition 2.4. Let f be a differentiable numerical function de­

fined on a set C C R11 ■

(1) f ts said to be p-znvex w.r. t. t] and 0 if there exist vector func­

tions r/(x,u) and。(工、u、) defined on C x C, and a real number p such 

that /(x) — y(u) > 护(灼u)V/(w) + u)||2 for all x^u E C.

(2) f is said to be p-pseudo 27加ez w r.t. 7/ and 0 if there exist vector 

functions u) and ^(z, u) defined on CxC, and a real number p such 

that ?/f(x,iz)V/(u) > —p|j0(x, u)||2 => /(j:) > /(u) for all x, u £ C.

(3) f said to be p-quasi znvex w.r.t. rj and 0 if there exist vector 

functions u) and u) defined on CxC, and a real number p such 

that /(x) < J(u)=> 勺'(糾u)V/(u) < —p||^(j*, u)||2 for all x.u E C.
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It is easy for us to obtain the following theorems.

Theorem 2.4. Let f be a differentiable numeric시 九me友defined 

on a set C C Rn Then the following statements are equivalent.

(<h) There exist vector functions and 0(x^ u) defined on CxC

,and a real number p such that f is p-mvex w.r.t. r/ and 0.

(b) There exist sublinear functionals FXyU such that

f (끼 一 /(u) > 死,u[V/(u)] + p||0(z, u)||2 for all x,u eC.

Theorem 2.5. Let f be a differentiable numerical function defined 

on a set C C Rn^ Then the following statements are equivalent

(a) There exist vector functions t/(x, u) and ^(x, u) defined on CxC, 

and a real number p such that f is p-pseudo invex w. r. t. 7 and 6.

(b) There exist sublinear functionals Fx^u such that 

^,u[V/(u)] > -p||0(T,u)||2 => f(x) > f(u)for all x,u E C.

Theorem 2.6. Let f is be a differentiable numerical function de- 

fined on a set C C 7?n. Then the following statements are equivalent.

(a) There exist vector functions and ^(x, u) defined on CxC,

and a real number p such that f is p-quasi invex w.r.t r) and 0.

(b) There exist a sublinear functionals FXjU such that

/(®) < /(w) => Fr,u[W(u)j < 一冲雄,u)||2 for all x,ueC.
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