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ON THE EQUIVALENCES OF
TWO TYPE CONDITIONS
CONCERNING FUNCTIONS

GUE MyunG LEE, Do SANG KiM AND KUK HYEON SON
1. Introduction.

Recently, Hanson [4], and Kaul and Kaur 7] defined a new class
of functions, called invex, pseudo invex and quasi invex. They have
established Kuhn-Tucker sufficient optimality criteria and duality the-
orems for nonlinear programming problems involving these functions.
Jeyakumar {6] defined p-invex, p-psendo invex and p-quasi invex funec-
tions which are generalized forms of invex, pseudo invex, and quasi
invex functions respectively. His functions also generalize Vial’s p-
convex functions {8]. On the other hand, Hanson and Mond [5}, and
Egudo and Mond {3] introduced a class of functions, called F-convex,
F-pseudoconvex and F-quasiconvex. They also have obtained Kuhn-
Tucker sufficient optimality criteria and duality theorems for nonlinear
programming problems concerning these functions. By using the fact
that invex functions can be characterized as functions whose station-
ary points are global minima, Craven and Glover {2}, and Ben-Israel
and Mond (1} showed that the invex condition is equivalent to the
pseudo invex condition, and that the invex condition is equivalent to
the F-convex condition. Our object of this brief paper 1s to show that
the quasi invex condition is equivalent to F-quasiconvex conditions,
by using a simple method. Moreover, we give conditions equivalent to
p-invex, p-pseudo invex and p-quasi invex conditions.

2. Equivalences

Now we define invexity type functions and F-convexity type func-
tions.
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DeFINITION 2.1 ([4],[7]). Let f be a differentiable numerical func-
tion defined on a set C C R™.

(1) f is said to be wmvex w.r.t. n if there emsis a vector funclion
n{z,u) defined on C x C such that f(z)— f(u) 2 n*(z,u)Vf(u) for all
z,u € C.

(2) f 13 said to be pseudo snvex w.r.t. 0 if there exists a vector func-
tion n{z,u) defined on C x C such that p'(z,u)Vf(u) >0 = f(z)>
f(u) for ellz,u € C.

(8) f is sasd to be quast inver w.r.t. 1 if there exists a vector function
n{x,u) such that f(z) < f(u) = 9'{(z,v)Vf(u) <0 for all z,u € C.

DEFINITION 2.2. A functional F 13 said to be sublinear on R™ 3f

F(z +y) < F(z)+ F(y) for all z,y € R™.
Flaz) = aF(z) forall a € R, a >0 and z € R".

DerinrTioN 2.3 ([3),[5])). Lei f be a differentiable numerical func-
tion defined on a set C C R".

(1) f is said to be F-convez if there exsst sublinear functionals F, ,,
such that f(x) — f(u) > Fpo[Vf(u)] for all z,u € C.

(2) f is said to be F-pseudoconves if there exist sublinear functionals
Fru such that Fy ,[Vf(u)} 20 = f(z) > f(u) for allz,u € C.

(3) f 13 said to be F-quasiconvez if there exist subhinear functionals

F, . such that f(z) < f(u) = F;4{Vf(u)} £0 forall z,u € C.
Now we show the equivalences among the above functions.

THEOREM 2.1. Let f be a differentiable numerical function defined
on a set C' C R". Then the following statements are equivalent.

(a) there exists a vector function n(z,u) defined on C x C such that
f is quasi invex w.r.t. .

{b} there exist sublinear functionals F; , such that f is F-quasicon
vex.

PROOF.
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(a) = (b): By assumption, f(x) < f(u) = n'(x,u)Vf(u) <0 for
all z,u € C. Let p'(z,u)z = F, ,(z) forall z,u € C and = € R". Then
F, ., is sublinear and hence f is F-quasiconvex.

(b) = (a): By assumption, f(z) < f(u) = F;.[Vf(u)] £0 for
all c,u € C. U Vf(u)=0, let p(z,u)=0. If Vf(u)#0, let

n{z,u) = f—;ﬁ%—%’%vﬂu) and hence p'(z,u)V f(u) = Fy [V f(u)l.

Thus we obtain f(z) < f(u) = n'(z,u)Vf(u) <0 forall z,ue C.

The following theorems are established in a manner similar to Theorem

2.1.

THEOREM 2.2. Let f be a differentiable numerical function defined
on a set C C R™. Then the following statements are equivalent.

(a) there exists a vector funciion n(xz,u) defined on C x C such that
f 18 wnvex w.r.t. 7.

(b} there exist sublinear functionals F; , such thet f 1s F-convez.

THEOREM 2.3. Let f be a differentsable numerical funclion defined
on a set C C R". then the following statements are equivalent.

(a) there exists a vector function n(z,u) defined on C x C such that
f 1s pseudo wnvez w.r.t. 7.

(b) there ezsst sublinear functionals F , such that f 1 F-pseudocon-
vez.

The following definitions were suggested by Jeyakumar [6)].

DEeFiNITION 2.4. Let f be a differentiable numerical function de-
fined on a set C C R".

(1) f 1s said fo be p-invez w.r.t. 7 and 8 if there ezist vector func-
tions n{z,u) and O(z,u) defined on C x C, and a real number p such
that f(x) — f(u) > n'(z, v}V f(x) + p|i6{z,u)||* for all z,u € C.

(2} f 1s said to be p-pseudo invez w r.t. n and 8 if there exist vector
functions n(x,u) and 6(x,u) defined on CxC, and a real number p such
that n'(z,u)Vf(u) > —pllb(z,w)||* = f(z) > f(u) for dl z,u € C.

(8) f s saxd fo be p-quas: mver w.r.t. 1 and 6 of there exast vector
functions n{z,u) and 8(z,u) defined on CxC, and a real number p such
that f(z) < f(u) = n'{z,u)Vf(u) < —p||8(x, )|} for all z.u € C.
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It is easy for us to obtain the following theorems.

THEOREM 2.4. Let f be a differentrable numerscal function defined
on a set C C R" Then the follounng statements are equivalent.

(@) There ezist vector functions n(z,u) and 6(z, u) defined on CxC
, and a real number p such that f is p-invezr w.r.t. 1 and 6.

{b) There exist sublinear functionals Fy 4 such that

f(&) — f(u) 2 Fe o[V f(u)] + pl|8(z,w)l|? for all z,u € C.

THEOREM 2.5. Let f be a differentiable numerical function defined
on a set C C R™. Then the following statements are equivalent.

(a) There exist vector functrons n{z,u) and 8(x,u) defined on CxC,
and a real number p such that f 1s p-pseudo inver w.r.t.  and 8.

(b) There exist sublinear functionals F, , such that

Fyo[V()] > —pllf(z, w)]2 = f(z) > f(u)for all z,u € C.

THEOREM 2.6. Let f is be a differentiable numerical funetion de-
fined on a set C C R™. Then the following statements are equivalent.

(e) There ezsst vector functions n(z,u) and §(x,u) defined on CxC,
and a real number p such that f is p-quast invez w.r.t. n and §.

(b) There ezist a sublinear funciionals F; , such that

f(2) < f(u) = Fe[Vf(u)] < —pllb(z,u)||? for all z,u € C.
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