ON CLASSES OF MULTIVALENT FUNCTIONS DEFINED BY CERTAIN DIFFERENTIAL OPERATOR

Man Dong Hur, Tae Hwa Kim and Nak Eun Cho

1. Introduction

Let A_{p} denote the class of functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in N=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z| | z \mid<1\}$. For $0 \leq \alpha<1$, we denote by $S_{p}^{*}(\alpha)$ and $K_{p}(\alpha)$ the classes of p-valent starlike functions of order α and p-valent convex functions of order α, respectively [1].

For $f \in A_{p}$, we define

$$
\begin{equation*}
D^{0} f(z)=f(z) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
D^{1} f(z)=z\left(\frac{f(z)}{p}\right)^{\prime} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N) \tag{1.4}
\end{equation*}
$$

Now we introduce the following classes by using the differential operator D^{n}.

Received April 9, 1993.

Definition. A function $f \in A_{p}$ is said to be p-valently n-starlike functions of order α if f satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>\alpha \quad(0 \leq \alpha<1, \quad z \in U) \tag{1.5}
\end{equation*}
$$

We denote by $S_{n, p}(\alpha)$ the class of p-valently n-starlike functions of order α. We note that $S_{0, p}(\alpha)=S_{p}^{*}(\alpha)$ and $S_{1, p}(\alpha)=K_{p}(\alpha)$. For $p=1$, the class $S_{n, 1}(\alpha)$ is considered by Salagean [7].

In this paper, we give certain inequalities for $f \in A_{p}$ which satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n} f(z)}{z^{p}}\right\}>\alpha \quad(0 \leq \alpha<1, \quad z \in U) \tag{1.6}
\end{equation*}
$$

and for the following integral (1.7) of functions satisfying (1.5)

$$
\begin{equation*}
F(z)=\frac{p+c}{z^{c}} \int_{0}^{z} u^{c-1} f(u) d u \quad(c>-p) . \tag{1.7}
\end{equation*}
$$

These inequalities include or improve several results given by Bernardi [2], Jack [3], Libera [4], Obradovic [5,6] and Strohacker [8].

2. Main results

We need the following lemma due to Jack [3] for the proofs of the comming results.

Lemma 1. Let w be a nonconstant and analytic function in $|z|<r<1, w(0)=0$. If $|w|$ attains its maximum value on the circle $|z|=r$ at z_{0}, then $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where k is a real number and $k \geq 1$.

Theoem 1. Let $f \in S_{n, p}(\alpha)$ and let

$$
\begin{equation*}
F(z)=\frac{p+c}{z^{c}} \int_{0}^{z} u^{c-1} f(u) d u \quad(c>-p) \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} F(z)}{D^{n} F(z)}\right\}>\beta(\alpha, p, c) \tag{2.2}
\end{equation*}
$$

where $c \geq 2 p(1-\alpha)-(p+1)$ and

$$
\begin{equation*}
\beta(\alpha, p, c)=\frac{-(2 c-2 \alpha p+1)+\sqrt{(2 c-2 \alpha p+1)^{2}+8 p(2 \alpha c+1)}}{4 p} \tag{2.3}
\end{equation*}
$$

Proof. Suppose that $f \in S_{n, p}(\alpha)$ satisfies the conditions in the theorem and write

$$
\begin{equation*}
\frac{D^{n+1} F(z)}{D^{n} F(z)}=\frac{1+(2 \beta-1) w(z)}{1+w(z)} \tag{2.4}
\end{equation*}
$$

where $\beta=\beta(\alpha, p, c)$. Then $w(z)$ is analytic, $w(0)=0$ and $w(z) \neq-1$ in U. Using the identity

$$
\begin{equation*}
(p+c) D^{n} f(z)=c D^{n} F(z)+p D^{n+1} F(z) \tag{2.5}
\end{equation*}
$$

the equation (2.4) may be written as

$$
\begin{equation*}
\frac{D^{n} f(z)}{D^{n} F(z)}=\frac{c(1+w(z))+p(1+(2 \beta-1) w(z))}{(p+c)(1+w(z))} \tag{2.6}
\end{equation*}
$$

Differentiating (2.6) logarithmically, we obtain

$$
\begin{align*}
& \frac{D^{n+1} f(z)}{D^{n} f(z)} \tag{2.7}\\
& =\frac{1+(2 \beta-1) w(z)}{1+w(z)}-\frac{2(1-\beta) z w^{\prime}(z)}{(1+w(z))(c+p+(c+p(2 \beta-1)) w(z))}
\end{align*}
$$

We claim thet $|w(z)|<1$. For otherwise, by Lemma 1, there exists $z_{0} \in U$ such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.8}
\end{equation*}
$$

where $\left|w\left(z_{0}\right)\right|=1$ and $k \geq 1$. Writing $w\left(z_{0}\right)=u+v v$, the equation (2.7) in conjuction with (2.8) yields
$\operatorname{Re}\left\{\frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}-\alpha\right\}$
$=\beta-\alpha-2(1-\beta) k R e\left\{\frac{u+i v}{(1+u+i v)(c+p+(c+p(2 \beta-1))(u+i v)}\right\}$
$=\beta-\alpha-2(1-\beta) k\left\{\frac{(1+u+i v)(\alpha+b u-i b v)}{2(1+u)\left((a+b u)^{2}+b^{2} v^{2}\right)}\right\}$
$=\beta-\alpha-\frac{(1-\beta) k(a+b)}{a^{2}+2 a b u+b^{2}}$,
where $a=c+p$ and $b=c+p(2 \beta-1)$. Put

$$
\begin{equation*}
g(u)=\frac{(a+b)}{a^{2}+2 a b u+b^{2}} . \tag{2.10}
\end{equation*}
$$

The condition $c \geq 2 p(1-\alpha)-(p+1)$ and the definition of $\beta(\alpha, p, c)$ imply $b \geq 0$ and $\beta<1$. Then $g(u)$ is decreasing and thus $\frac{1}{a+b}=g(1) \leq$ $g(u)$. We have, from (2.9) and $k \geq 1$, that

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}-\alpha\right\} \leq \beta-\alpha-\frac{(1-\beta)}{a+b} \tag{2.11}\\
& =2 p \beta^{2}+(2 c-2 \alpha p+1) \beta-(2 \alpha c+1)=0
\end{align*}
$$

since β is a root of the polynomial

$$
\begin{equation*}
2 p x^{2}+(2 c-2 \alpha p+1) x-(2 \alpha c+1)=0 \tag{2.12}
\end{equation*}
$$

This contadicts the assumption $f \in S_{n, p}(\alpha)$ and so the proof is completed.

From (2.1), for $p=1$, we note that

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=\frac{D F(z)}{F(z)}=-c+\frac{z^{c} f(z)}{\int_{0}^{z} u^{c-1} f(u) d u} \tag{2.13}
\end{equation*}
$$

Taking $p=1$ and $n=0$ in Theorem 1 , we obtain the following corollary which was proved by Obradovic [6].

Corollary 1. Let $f \in S_{1}^{*}(\alpha)$ and let $c>\max \{-1,-2 \alpha\}$. Then we have

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z^{c} f(z)}{\int_{0}^{z} u^{c-1} f(u) d u}\right\}>\frac{2 c+2 \alpha-1+\sqrt{(2 c+2 \alpha-1)^{2}+8(c+1)}}{4} \tag{2.14}\\
& \quad(z \in U)
\end{align*}
$$

Theorem 2. Let $f \in S_{n, p}(\alpha)$ and $\gamma \geq 1$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n} f(z)}{z^{p}}\right\}^{\frac{1-\alpha)}{2 p(1-\alpha)}}>\frac{\gamma}{\gamma+1} \quad(z \in U) \tag{2.15}
\end{equation*}
$$

Proof. Let $\beta=\frac{\gamma}{1+\gamma}$ and let $w(z)$ be an analytic function such that

$$
\begin{equation*}
\left\{\frac{D^{n} f(z)}{z^{p}}\right\}^{\frac{1}{2 p(1-\alpha) \gamma}}=\frac{1+(2 \beta-1) w(z)}{1+w(z)} \tag{2.16}
\end{equation*}
$$

Then $w(0)=0$ and $w(z) \neq-1$ in U. The theorem will follow if we can show that $|w(z)|<1$ in U. Now by differentiating (2.16) logarithmically, we get

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=1-\frac{4(1-\alpha) \gamma(1-\beta) z w^{\prime}(z)}{(1+w(z))(1+(2 \beta-1) w(z))} . \tag{2.17}
\end{equation*}
$$

If $|w(z)| \nless 1$ in U, by Lemma 1 , there exists $z_{0} \in U$ such that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where $\left|w\left(z_{0}\right)\right|=1$ and $k \geq 1$. Let $w\left(z_{0}\right)=u+i v$. Then

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z_{0} w^{\prime}\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left(1+(2 \beta-1) w\left(z_{0}\right)\right)}\right\} \tag{2.18}\\
& =\frac{\beta k}{2\left(2 \beta^{2}-2 \beta+1+(2 \beta-1) u\right)} .
\end{align*}
$$

Put

$$
\begin{equation*}
g(u)=\frac{1}{2 \beta^{2}-2 \beta+1+(2 \beta-1) u} . \tag{2.19}
\end{equation*}
$$

Since $\gamma \geq \frac{1}{2}$ implies $g(u)$ is an decreasing function of $u, \frac{1}{2 \beta^{2}}=g(1) \leq$ $g(u)$. Applying (2.17) and (2.18), we obtain

$$
\begin{align*}
\operatorname{Re}\left\{\frac{D^{n+1} f\left(z_{0}\right)}{D^{n} f\left(z_{0}\right)}-\alpha\right\} & =1-\alpha-\frac{4(1-\alpha) \gamma(1-\beta) \beta k}{2\left(2 \beta^{2}-2 \beta+1+(2 \beta-1) u\right)} \tag{2.20}\\
& =1-\alpha-2(1-\alpha) \gamma(1-\beta) \beta k g(u) \\
& \leq 1-\alpha-\frac{(1-\alpha) \gamma(1-\beta)}{\beta}=0,
\end{align*}
$$

which contradicts the assumption. Thus the theorem is proved.
Putting $p=1, \gamma=\frac{1}{1-\alpha}$ and replacing n by $n+1$ in Theorem 2 , we obtain the following corollary.

Corollary 2. Let $f \in S_{n+1,1}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{z}\right\}^{\frac{1}{2(1-\alpha)}}>\frac{1}{2-\alpha}(z \in U) \tag{2.21}
\end{equation*}
$$

Under the condition of Corollary 2 , taking $n=0$ and $\alpha=0$, we have the known result of Strohacker [8], that is, $f \in K_{1}(0)$ implies $\operatorname{Re}\left\{\sqrt{f^{\prime}(z)}\right\}>\frac{1}{2}$.

By considering $p=1, n=0$ and $\gamma=1$ in Theorem 2, we have the following result of Jack [3].

Corollary 3. Let $f \in S_{\mathbf{1}}^{*}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}^{\frac{1}{z(1-a)}}>\frac{1}{2}(z \in U) . \tag{2.22}
\end{equation*}
$$

Recently Obradovic [5] proved the following result which can be derived from Theorem 2 by taking $p=1, n=0$ and $\gamma=\frac{1}{2(1-\alpha)}$.

Corollary 4. Let $f \in S_{1}^{*}(\alpha)$ Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\frac{1}{3-2 \alpha}(z \in U) \tag{2.23}
\end{equation*}
$$

Theorem 3. Let $\operatorname{Re} c>-p, 0 \leq \alpha<1$ and $f \in A_{p}$. If

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{z^{p}}\right\}>\alpha(z \in U) \tag{2.24}
\end{equation*}
$$

then

$$
\begin{equation*}
R e\left\{\frac{D^{n+1} F(z)}{z^{P}}\right\}>\beta(\alpha, p, c)(z \in U) \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta(\alpha, p, c)=\frac{\alpha+\frac{1}{2} \operatorname{Re}\left\{\frac{1}{c 4 p}\right\}}{1+\frac{1}{2} \operatorname{Re}\left\{\frac{1}{c+p}\right\}} \tag{2.26}
\end{equation*}
$$

and $F(z)$ is defined as in (2.1).
Proof. As Theorem 1, we assume that the function f satisfies the conditions in the theorem and write

$$
\begin{equation*}
\frac{D^{n+1} F(z)}{z^{p}}=\frac{1+(2 \beta-1) w(z)}{1+w(z)} \tag{2.27}
\end{equation*}
$$

where $\beta=\beta(\alpha, p, c)$. Then $w(z)$ is analytic, $w(0)=0$ and $w(z) \neq-1$ in U. It is sufficient to show that $|w(z)|<1$ for $z \in U$. From (2.5) and (2.27), we have

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{z^{p}}=\frac{1+(2 \beta-1) w(z)}{1+w(z)}-\frac{2(1-\beta) z w^{\prime}(z)}{(p+c)(1+w(z))^{2}} \tag{2.28}
\end{equation*}
$$

$|w(z)| \nless 1$, there exists $z_{0} \in U$ so that $|w(z)| \leq\left|w\left(z_{0}\right)\right|=1$ for $z \in U$. Then, by Lemma 1 , there exists $k \geq 1$ such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.29}
\end{equation*}
$$

Let $w\left(z_{0}\right)=u+u v$ so that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z_{0} w^{\prime}\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)^{2}}\right\}=\frac{k}{2(1+u)} \tag{2.30}
\end{equation*}
$$

and take the the real part of (2.28). Then we obtain

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{D^{n+1} f\left(z_{0}\right)}{z_{0}^{p}}-\alpha\right\} \tag{2.31}\\
& =\beta-\alpha-\frac{(1-\beta) k}{(1+u)} \operatorname{Re}\left\{\frac{1}{c+p}\right\} \\
& \leq \beta-\alpha-\frac{(1-\beta)}{2} \operatorname{Re}\left\{\frac{1}{c+p}\right\} \\
& =\beta\left(1+\frac{1}{2} R e\left\{\frac{1}{c+p}\right\}\right)-\alpha-\frac{1}{2} R e\left\{\frac{1}{c+p}\right\} \\
& =0
\end{align*}
$$

which contradicts the assumption. So $|w(z)|<1$ for $z \in U$. This comrlates the proof of theonem.

Remarks. (i) Taking $n=\alpha=0$ and $p=1$ in Theorem 3, we have Bernardi's results [2]: If $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$, then $\operatorname{Re}\left\{F^{\prime}(z)\right\}>0$.
(ii) Putting $n=\alpha=0, p=1$ and $c=1$ in Theorem 3, we have a result of Libera [4].

For $p=1$, Obracdovic $[5,6]$ recently gave the following two results which can also be obtained from Theorem 3 by $n=c=\alpha=0$ and $n=-1$, respectively.

Corollary 5. Let $f \in A_{1}$. Then $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$ implies $\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>$ $\frac{1}{3} \quad(z \in U)$.

Corollary 6. Let $f \in A_{1}, 0 \leq \alpha<1$ and $c>-1$. Then $\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\alpha$ implies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{c+1}{z^{c+1}} \int_{0}^{z} u^{c-1} f(u) d u\right\}>\alpha+\frac{1-\alpha}{3+2 c} \quad(z \in U) \tag{2.32}
\end{equation*}
$$

We state the following theorem which is proved by a similar method.
Theorem 4. Let $f \in A_{p}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+2} f(z)}{z^{P}}\right\}>\alpha \quad(0 \leq \alpha<1, z \in U) . \tag{2.33}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{z^{p}}\right\}>\frac{2 \alpha p+1}{2 p+1} \quad(z \in U) . \tag{2.34}
\end{equation*}
$$

References

[1] M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 4(1987), 733-744.
[2] S. D. Bernardi, Convex and starlike functions, Trans. Amer. Math. Soc. 135(1969), 429-446.
[3] I. S. Jack, Functıons starlike and convex of order α, J. London Math. Soc. (2)3(1971), 469-479.
[4] R. J. Libera, Some classes of regular unvvalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.
[5] M. Obradovic, Estimates of the real part of $\frac{f(z)}{z}$ for some classes of univalent functions, Mat. Vesnick 36(4)(1984), 266-270.
[6] M. Obradovic, On certain inqualities for some regular functions in $|z|<1$, Internat. J. Math. Sci. 8(1985), 677-681.
[7] S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1031(1983), 362-372.
[8] E. Strohacker, Bettrage zur theorie der schluchten funkitone, Math. Z. 37(1933), 256-280.
[9] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8(1957), 869-874.

Department of Applied Mathmatics
National Fisheries University of Pusan
Pusan 608-737, Korea

