ON CLASSES OF MULTIVALENT FUNCTIONS DEFINED BY CERTAIN DIFFERENTIAL OPERATOR

MAN DONG HUR, TAE HWA KIM AND NAK EUN CHO

1. Introduction

Let A_p denote the class of functions

(1.1)
$$f(z) = z^p + \sum_{k=1}^{\infty} a_{k+p} z^{k+p} (p \in N = \{1, 2, 3, \dots\})$$

which are analytic in the unit disk $U = \{z | |z| < 1\}$. For $0 \le \alpha < 1$, we denote by $S_p^*(\alpha)$ and $K_p(\alpha)$ the classes of p-valent starlike functions of order α and p-valent convex functions of order α , respectively [1]. For $f \in A_p$, we define

$$(1.2) D^0 f(z) = f(z),$$

(1.3)
$$D^1 f(z) = z \left(\frac{f(z)}{p}\right)'$$

and

$$(1.4) Dn f(z) = D \left(D^{n-1} f(z)\right) (n \in N).$$

Now we introduce the following classes by using the differential operator D^n .

Received April 9, 1993.

Definition. A function $f \in A_p$ is said to be p-valently n- starlike functions of order α if f satisfies the condition

(1.5)
$$Re\left\{\frac{D^{n+1}f(z)}{D^nf(z)}\right\} > \alpha \quad (0 \le \alpha < 1, \ z \in U).$$

We denote by $S_{n,p}(\alpha)$ the class of *p*-valently *n*-starlike functions of order α . We note that $S_{0,p}(\alpha) = S_p^*(\alpha)$ and $S_{1,p}(\alpha) = K_p(\alpha)$. For p = 1, the class $S_{n,1}(\alpha)$ is considered by Salagean [7].

In this paper, we give certain inequalities for $f \in A_p$ which satisfies the condition

(1.6)
$$Re\left\{\frac{D^n f(z)}{z^p}\right\} > \alpha \quad (0 \le \alpha < 1, \ z \in U)$$

and for the following integral (1.7) of functions satisfying (1.5)

(1.7)
$$F(z) = \frac{p+c}{z^c} \int_0^z u^{c-1} f(u) du \quad (c > -p).$$

These inequalities include or improve several results given by Bernardi [2], Jack [3], Libera [4], Obradovic [5,6] and Strohacker [8].

2. Main results

We need the following lemma due to Jack [3] for the proofs of the comming results.

Lemma 1. Let w be a nonconstant and analytic function in |z| < r < 1, w(0) = 0. If |w| attains its maximum value on the circle |z| = r at z_0 , then $z_0w'(z_0) = kw(z_0)$, where k is a real number and $k \ge 1$.

Theoem 1. Let $f \in S_{n,p}(\alpha)$ and let

(2.1)
$$F(z) = \frac{p+c}{z^c} \int_0^z u^{c-1} f(u) du \quad (c > -p).$$

Then

(2.2)
$$Re\left\{\frac{D^{n+1}F(z)}{D^nF(z)}\right\} > \beta(\alpha, p, c),$$

where $c \geq 2p(1-\alpha) - (p+1)$ and

(2.3)
$$\beta(\alpha, p, c) = \frac{-(2c - 2\alpha p + 1) + \sqrt{(2c - 2\alpha p + 1)^2 + 8p(2\alpha c + 1)}}{4p}.$$

Proof. Suppose that $f \in S_{n,p}(\alpha)$ satisfies the conditions in the theorem and write

(2.4)
$$\frac{D^{n+1}F(z)}{D^nF(z)} = \frac{1 + (2\beta - 1)w(z)}{1 + w(z)},$$

where $\beta = \beta(\alpha, p, c)$. Then w(z) is analytic, w(0) = 0 and $w(z) \neq -1$ in U. Using the identity

$$(2.5) (p+c)D^n f(z) = cD^n F(z) + pD^{n+1} F(z),$$

the equation (2.4) may be written as

(2.6)
$$\frac{D^n f(z)}{D^n F(z)} = \frac{c(1+w(z)) + p(1+(2\beta-1)w(z))}{(p+c)(1+w(z))}.$$

Differentiating (2.6) logarithmically, we obtain

$$\frac{D^{n+1}f(z)}{D^n f(z)} = \frac{1 + (2\beta - 1)w(z)}{1 + w(z)} - \frac{2(1-\beta)zw'(z)}{(1 + w(z))(c + p + (c + p(2\beta - 1))w(z))}.$$

We claim that |w(z)| < 1. For otherwise, by Lemma 1, there exists $z_0 \in U$ such that

$$(2.8) z_0 w'(z_0) = k w(z_0),$$

where $|w(z_0)| = 1$ and $k \ge 1$. Writing $w(z_0) = u + iv$, the equation (2.7) in conjuction with (2.8) yields

$$(2.9) Re \left\{ \frac{D^{n+1} f(z_0)}{D^n f(z_0)} - \alpha \right\}$$

$$= \beta - \alpha - 2(1-\beta)kRe \left\{ \frac{u+iv}{(1+u+iv)(c+p+(c+p(2\beta-1))(u+iv))} \right\}$$

$$= \beta - \alpha - 2(1-\beta)k \left\{ \frac{(1+u+iv)(a+bu-ibv)}{2(1+u)((a+bu)^2+b^2v^2)} \right\}$$

$$= \beta - \alpha - \frac{(1-\beta)k(a+b)}{a^2+2abu+b^2},$$

where a = c + p and $b = c + p(2\beta - 1)$. Put

(2.10)
$$g(u) = \frac{(a+b)}{a^2 + 2abu + b^2}.$$

The condition $c \geq 2p(1-\alpha) - (p+1)$ and the definition of $\beta(\alpha, p, c)$ imply $b \geq 0$ and $\beta < 1$. Then g(u) is decreasing and thus $\frac{1}{a+b} = g(1) \leq g(u)$. We have, from (2.9) and $k \geq 1$, that

(2.11)
$$Re\left\{\frac{D^{n+1}f(z_0)}{D^nf(z_0)} - \alpha\right\} \le \beta - \alpha - \frac{(1-\beta)}{a+b}$$
$$= 2p\beta^2 + (2c - 2\alpha p + 1)\beta - (2\alpha c + 1) = 0,$$

since β is a root of the polynomial

$$(2.12) 2px^2 + (2c - 2\alpha p + 1)x - (2\alpha c + 1) = 0.$$

This contadicts the assumption $f \in S_{n,p}(\alpha)$ and so the proof is completed.

From (2.1), for p = 1, we note that

(2.13)
$$\frac{zF'(z)}{F(z)} = \frac{DF(z)}{F(z)} = -c + \frac{z^{c}f(z)}{\int_{0}^{z} u^{c-1}f(u)du}.$$

Taking p = 1 and n = 0 in Theorem 1, we obtain the following corollary which was proved by Obradovic [6].

Corollary 1. Let $f \in S_1^*(\alpha)$ and let $c > max\{-1, -2\alpha\}$. Then we have

$$Re\left\{\frac{z^{c}f(z)}{\int_{0}^{z}u^{c-1}f(u)du}\right\} > \frac{2c + 2\alpha - 1 + \sqrt{(2c + 2\alpha - 1)^{2} + 8(c+1)}}{4}$$

$$(z \in U).$$

Theorem 2. Let $f \in S_{n,p}(\alpha)$ and $\gamma \geq 1$. Then

$$(2.15) Re\left\{\frac{D^n f(z)}{z^p}\right\}^{\frac{1}{2p(1-\alpha)\gamma}} > \frac{\gamma}{\gamma+1} \quad (z \in U).$$

Proof. Let $\beta = \frac{\gamma}{1+\gamma}$ and let w(z) be an analytic function such that

(2.16)
$$\left\{ \frac{D^n f(z)}{z^p} \right\}^{\frac{1}{2p(1-\alpha)\gamma}} = \frac{1 + (2\beta - 1)w(z)}{1 + w(z)}.$$

Then w(0) = 0 and $w(z) \neq -1$ in U. The theorem will follow if we can show that |w(z)| < 1 in U. Now by differentiating (2.16) logarithmically, we get

(2.17)
$$\frac{D^{n+1}f(z)}{D^nf(z)} = 1 - \frac{4(1-\alpha)\gamma(1-\beta)zw'(z)}{(1+w(z))(1+(2\beta-1)w(z))}.$$

If $|w(z)| \not\leq 1$ in U, by Lemma 1, there exists $z_0 \in U$ such that $z_0w'(z_0) = kw(z_0)$, where $|w(z_0)| = 1$ and $k \geq 1$. Let $w(z_0) = u + iv$. Then

(2.18)
$$Re\left\{\frac{z_0w'(z_0)}{(1+w(z_0))(1+(2\beta-1)w(z_0))}\right\} = \frac{\beta k}{2(2\beta^2-2\beta+1+(2\beta-1)u)}.$$

Put

(2.19)
$$g(u) = \frac{1}{2\beta^2 - 2\beta + 1 + (2\beta - 1)u}.$$

Since $\gamma \geq \frac{1}{2}$ implies g(u) is an decreasing function of u, $\frac{1}{2\beta^2} = g(1) \leq g(u)$. Applying (2.17) and (2.18), we obtain

$$(2.20) Re \left\{ \frac{D^{n+1} f(z_0)}{D^n f(z_0)} - \alpha \right\} = 1 - \alpha - \frac{4(1-\alpha)\gamma(1-\beta)\beta k}{2(2\beta^2 - 2\beta + 1 + (2\beta - 1)u)}$$

$$= 1 - \alpha - 2(1-\alpha)\gamma(1-\beta)\beta k g(u)$$

$$\leq 1 - \alpha - \frac{(1-\alpha)\gamma(1-\beta)}{\beta} = 0,$$

which contradicts the assumption. Thus the theorem is proved.

Putting p=1, $\gamma=\frac{1}{1-\alpha}$ and replacing n by n+1 in Theorem 2, we obtain the following corollary.

Corollary 2. Let $f \in S_{n+1,1}(\alpha)$. Then

(2.21)
$$Re\left\{\frac{D^{n+1}f(z)}{z}\right\}^{\frac{1}{2(1-\alpha)}} > \frac{1}{2-\alpha} \ (z \in U).$$

Under the condition of Corollary 2, taking n=0 and $\alpha=0$, we have the known result of Strohacker [8], that is, $f \in K_1(0)$ implies $Re\{\sqrt{f'(z)}\} > \frac{1}{2}$.

By considering p = 1, n = 0 and $\gamma = 1$ in Theorem 2, we have the following result of Jack [3].

Corollary 3. Let $f \in S_1^*(\alpha)$. Then

(2.22)
$$Re\left\{\frac{f(z)}{z}\right\}^{\frac{1}{2(1-\alpha)}} > \frac{1}{2} \quad (z \in U).$$

Recently Obradovic [5] proved the following result which can be derived from Theorem 2 by taking p = 1, n = 0 and $\gamma = \frac{1}{2(1-\alpha)}$.

Corollary 4. Let $f \in S_1^*(\alpha)$ Then

(2.23)
$$Re\left\{\frac{f(z)}{z}\right\} > \frac{1}{3-2\alpha} \ (z \in U).$$

Theorem 3. Let $Re \ c > -p, \ 0 \le \alpha < 1$ and $f \in A_p$. If

(2.24)
$$Re\left\{\frac{D^{n+1}f(z)}{z^p}\right\} > \alpha \ (z \in U),$$

then

$$(2.25) Re\left\{\frac{D^{n+1}F(z)}{z^p}\right\} > \beta(\alpha,p,c) \ (z \in U),$$

where

(2.26)
$$\beta(\alpha, p, c) = \frac{\alpha + \frac{1}{2} Re\left\{\frac{1}{c+p}\right\}}{1 + \frac{1}{2} Re\left\{\frac{1}{c+p}\right\}}$$

and F(z) is defined as in (2.1).

Proof. As Theorem 1, we assume that the function f satisfies the conditions in the theorem and write

(2.27)
$$\frac{D^{n+1}F(z)}{z^p} = \frac{1 + (2\beta - 1)w(z)}{1 + w(z)}.$$

where $\beta = \beta(\alpha, p, c)$. Then w(z) is analytic, w(0) = 0 and $w(z) \neq -1$ in U. It is sufficient to show that |w(z)| < 1 for $z \in U$. From (2.5) and (2.27), we have

(2.28)
$$\frac{D^{n+1}f(z)}{z^p} = \frac{1 + (2\beta - 1)w(z)}{1 + w(z)} - \frac{2(1-\beta)zw'(z)}{(p+c)(1+w(z))^2}.$$

 $|w(z)| \not< 1$, there exists $z_0 \in U$ so that $|w(z)| \le |w(z_0)| = 1$ for $z \in U$. Then, by Lemma 1, there exists $k \ge 1$ such that

$$(2.29) z_0 w'(z_0) = kw(z_0).$$

Let $w(z_0) = u + iv$ so that

(2.30)
$$Re\left\{\frac{z_0w'(z_0)}{(1+w(z_0))^2}\right\} = \frac{k}{2(1+u)}$$

and take the teal part of (2.28). Then we obtain

$$(2.31)$$

$$Re\left\{\frac{D^{n+1}f(z_0)}{z_0^p} - \alpha\right\}$$

$$= \beta - \alpha - \frac{(1-\beta)k}{(1+u)}Re\left\{\frac{1}{c+p}\right\}$$

$$\leq \beta - \alpha - \frac{(1-\beta)}{2}Re\left\{\frac{1}{c+p}\right\}$$

$$= \beta\left(1 + \frac{1}{2}Re\left\{\frac{1}{c+p}\right\}\right) - \alpha - \frac{1}{2}Re\left\{\frac{1}{c+p}\right\}$$

$$= 0,$$

which contradicts the assumption. So |w(z)| < 1 for $z \in U$. This completes the proof of theorem.

Remarks. (i) Taking $n = \alpha = 0$ and p = 1 in Theorem 3, we have Bernardi's results $\{2\}$: If $Re\{f'(z)\} > 0$, then $Re\{F'(z)\} > 0$.

(ii) Putting $n = \alpha = 0$, p = 1 and c = 1 in Theorem 3, we have a result of Libera [4].

For p = 1, Obracdovic [5,6] recently gave the following two results which can also be obtained from Theorem 3 by $n = c = \alpha = 0$ and n = -1, respectively.

Corollary 5. Let $f \in A_1$. Then $Re\{f'(z)\} > 0$ implies $Re\{\frac{f(z)}{z}\} > \frac{1}{3}$ $(z \in U)$.

Corollary 6. Let $f \in A_1$, $0 \le \alpha < 1$ and c > -1. Then $Re\{\frac{f(z)}{z}\} > \alpha$ implies

$$(2.32) Re\left\{\frac{c+1}{z^{c+1}}\int_0^z u^{c-1}f(u)du\right\} > \alpha + \frac{1-\alpha}{3+2c} \quad (z \in U).$$

We state the following theorem which is proved by a similar method.

Theorem 4. Let $f \in A_p$ and

(2.33)
$$Re\left\{\frac{D^{n+2}f(z)}{z^p}\right\} > \alpha \quad (0 \le \alpha < 1, z \in U).$$

Then

(2.34)
$$Re\left\{\frac{D^{n+1}f(z)}{z^p}\right\} > \frac{2\alpha p+1}{2p+1} \quad (z \in U).$$

References

- M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 4(1987), 733-744.
- [2] S. D. Bernardi, Convex and starlike functions, Trans. Amer. Math. Soc. 135(1969), 429-446.
- [3] I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc. (2)3(1971), 469-479.
- [4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.
- [5] M. Obradovic, Estimates of the real part of $\frac{f(z)}{z}$ for some classes of univalent functions, Mat. Vesnick 36(4)(1984), 266-270.
- [6] M. Obradovic, On certain inqualities for some regular functions in |z| < 1, Internat. J. Math. Sci. 8(1985), 677-681.
- [7] S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1031(1983), 362-372.
- [8] E. Strohacker, Bestrage zur theorie der schlichten funktione, Math. Z. 37(1933), 256-280.
- [9] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8(1957), 869-874.

Department of Applied Mathmatics National Fisheries University of Pusan Pusan 608-737, Korea