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ON CLASSES OF MULTIVALENT
FUNCTIONS DEFINED BY
CERTAIN DIFFERENTIAL OPERATOR

MAN DoNG HuRr, TAE Hwa KiMm AND NAK EuN CHO

1. Introduction
Let 4, denote the class of functions

(1.1) f(zy=22+ Zakﬂ,z“” (pe N={1,2,3,---})
k=1

which are analytic in the unit disk U = {z] |z] < 1}. For 0 € oo < 1,
we denote by S;(a) and Kp(«a) the classes of p-valent starlike functions

of order a and p -valent convex functions of order a, respectively [1].
For f € A,, we define

(1.2) D°f(2) = f(2),

(1.3) D) == (12)

and

(1.4) D"f(s)=D(D"'f(2)) (n€ W),

Now we introduce the following classes by using the differential op-
erator D",

Received Apnl 9, 1993 |

83



84 CLASSES OF MULTIVALENT FUNCTIONS

Definition. A function f € A, is said to be p-valently n- starlike
functions of order « if f satisfies the condition

(1.5) Re{%{g)}>a (0<axl, zeU)

We denote by S, ,(a) the class of p-valently n-starlike functions of
order a. We note that Sp,(a) = S;(a) and S p(a} = Kp(a). For
p = 1, the class S, 1{«) is considered by Salagean {7].

In this paper, we give certain inequalities for f € A, which satisfies
the condition

(1.6) Re{%p(z)}>a 0<a<l, z€U)

and for the following integral (1.7) of functions satisfying (1.5)

pte
ZC

(1.7) F(z) = /: u“flu)du (¢ > —p).

These inequalities include or improve several results given by Bernardi
[2], Jack [3], Libera [4], Obradovic [5,6] and Strohacker [g].
2. Main results

We need the following lemma due to Jack {3] for the proofs of the
comming results.

Lemma 1. Let w be a nonconstant and analytic function in
|z] < r <1, w(0) = 0. If [w]| attains its maximum value on the circle
|z{ = r at 2o, then zow'(20) = kw(z0), where k is a real number and
k> 1.

Theoem 1. Let f € 5, ,(a) and let

ptc
ZC

/0 "t fu)du (¢ > —p).
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Then
Dn+lF(z)
) Re{ T } > Alape)
where ¢ 2 2p(1 — @) — (p +1) and
(2.3)
Bla,p,c) = ~(2c—2ap+ 1)+ \/(20 —2ap + 1)? + 8p(2ac + 1)’

4p

Proof.  Suppose that f € S, ,(a) satisfies the conditions in the
theorem and write

D"F(2) 1+ (28 - Dw(2)

(2:4) DrF(z) 1+ w(z) ’

where # = f(a,p,c). Then w(z) is analytic, w(0)} = 0 and w(z) # -1
in U. Using the identity

(2.5) (p+c)D"f(2) = cD"F(z) + pD*T ' F(z),

the equation (2.4) may be written as

D"f(z) _ el +w(z)) +p(L + (26 — 1)u(2))
D" F(z) (p+ N1+ w(z)) |

(2.6)
Differentiating (2.6) logarithmically, we obtain

(2.7)
D™ f(z)
D= f(z)
_ 1+ (28 —1jw(z) 2(1 - Bzw'(z)
1+ w(z) (L +w(2))c+p+(c+p(28 - Dho(z))
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We claim thet |w(z)] < 1. For otherwise, by Lemma 1, there exists
zp € U such that

(2.8) zow'(20) = kw(2),

where |w(2p)] = 1 and k > 1. Writing w(z¢) = u + v, the equation
(2.7) in conjuction with (2.8) yields

(2.9)

U+ v
=ﬁ_a_z(l_ﬂ)kRe{(l+u+iv)(c+p+(c+p(2ﬁ—1))(u+i-v)}
( (1 +u+tv¥a+bu—ibv)}
PE o+ w)((a + )2 + 5207)
(1= B)k(at+b)
a? + 2abu + b2’

=pf—-—a—-2(1-

=p-

where a = c+ p and b = ¢+ p(28 — 1). Put

(a + b)
a? + 2abu + b2’

(2.10) g(u) =

The condition ¢ > 2p(1 — a) — (p + 1) and the definition of B(«a,p,c)
imply & > 0 and 8 < 1. Then g{u) is decreasing and thus a1+b =¢(1) <
g(u). We have, from (2.9} and £ > 1, that

n+1 P _
(2.11) RE{%"_)‘J{E(O)_)_“}Sﬁ_a_(iJj)

= 2pA® +(2c — 2ap+ 1)8 — (2ac+1) =0,

since f3 is a root of the polynomial

(2.12) 2pz* +(2¢ ~ 2ap + 1)z ~ (2ac + 1) = 0.
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This contadicts the assumption f € 5, p(«) and so the proof is com-

pleted.
From (2.1), for p = 1, we note that

zF'(z)  DF(z) _ 2°f(2)

(2.13) F(z) =~ F(z) ~ —¢ JEue T f(w)du’

Taking p = 1 and n = 0 in Theorem 1, we obtain the following
corollary which was proved by Obradovic [6]

Corollary 1. Let f € S{{«) and let ¢ > maz{—-1,~2a}. Then
we have

(2.14)
Re { 2 f(z) }>2C+2a—1+\@+2a_1)2 F8(c+1)

fo w1 f(u)du 4
(z € U).

Theorem 2. Let f € Sy () and v > 1. Then

Df(z)| 7Ty
(2.15) Re { 5 } > :{-_4'—1 (z€U).
Proof. Let g = —”— and let w(z) be an analytic function such
that
Dn l—o ¥ P, ?
o16) (DA} T 1 38 D)
zP 1+ w(z)

Then w(0) = 0 and w(z) # —1 in U. The theorem will follow if
we can show that jw(z)}] < 1 in U. Now by differentiating (2.16)
logarithmically, we get
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i DTG L 41-ah(-p()

' D f(z) (1+w(2))(1+ (28 — L)w(z))

If jw(z)] £ 1 in U, by Lemma 1, there exists zg € U such that
zow'{zg) = kw(zq), where |w(z)] =1 and k > 1. Let w(z) = u + tv.
Then

zow'(2p)
(2.18) Re {(1 + w(zo)(1 + (28 — l)w(zo))}
T 220228+ 1+ (26— u)
Put
2.19 = 1
(2.19) 9(“)“2ﬁ2—2ﬁ+1+(2ﬂ—1)u'

Since v > } implies g(u) is an decreasing function of «, a7 = 9(1) <
g(u). Applying (2.17) and (2.18), we obtain

(2.20)
D™*f(z) N\ _,_ . __ 4l-an(l-p)sk

R‘{ D" (z0) “} ST e 2ar 14 (20 ~ 1))
=1~a~2(1-an(l - A)Bkg(u)

L (1—ap(-p)

S 1 - ﬂ s 01
which contradicts the assumption. Thus the theorem is proved.
Puttingp=1, y= 1—:‘; and replacing n by n+ 1 in Theorem 2, we

obtain the following corollary.

Corollary 2. Let f € S,41.1(a). Then
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Lad Y RS

z

(2.21) Re { >3

Under the condition of Corollary 2, taking n = 0 and o = 0, we
have the known result of Strobacker [8], that is, f € K;(0) implies

Re{+/f'(2)} > ;.

By considering p =1, n =0 and 4 = 1 in Theorem 2, we have the
following result of Jack (3].

Corollary 3. Let f € S7{«). Then

f(2)| T
z

(2.22) Re { > = (zeU)

No | b=

Recently Obradovic [5] proved the following result which can be

derived from Theorem 2 by taking p=1, n=0and v = il"l-_cﬁ

Corollary 4. Let f € S7{a) Then

z

f(z) 1
2. .
(2.23) Re{ >3—2a (z € U)
Theorem 3. Let Re ¢> —p, 0<a<land f€ A4, If

D™ ()

zP

(2.24) Re { } > (z €U),

then

(2.25) Re {w} > Bla,p,c) (z € U},

2P
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where

a+ %Re {
(2.26) Bla,p,c} = {

-
t:‘!-p}
1+ 1Re {5}

and F(z) is defined as in (2.1).

Proof. As Theorem 1, we assume that the function f satisfies the
conditions in the theorem and write

D" FR(z)  1+(28- I)w(z)‘

(2.27) )

where # = f(a,p,c). Then w(z) is analytic, w(0) = 0 and w(z) # —1
in U. It is sufficient to show that {w(z)| < 1 for z € U. From (2.5) and
(2.27), we have

Drtif(z) _ 1+(28-Nw(z) 21— Blaw'(z)
(2.28) 22 1+4w(z)  (p+edl+w(z)?

fw(z)} £ 1, there exists zg € U so that |w(z)| < jw(z)| =1forz € U.
Then, by Lemma 1, there exists & > 1 such that

(2.29) zow'(2g) = kw(zg).

Let w(zp) = u + v so that

zow'(zg) _ k
(2:30) Re {(1 T w<20)>2} = aitw

and take the the real part of (2.28). Then we cbtain
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(2.31)
R 2S )

2

oot tn ()

cpoa-50n (1)

2 c+p

1 1 1 1
=5 (s {ez)) e la)

=0,

which contradicts the assumption. So |w(z)] < 1 for z € U. This
conrpletes theprooi-of -theorem.

Remarks. (i) Taking n = @ =0 and p = 1 in Theorem 3, we have
Bernardi’s results {2]: If Re{f'(z)} > 0, then Re{F'(2)} > 0.

(i) Putting n = a« =0, p =1 and ¢ = 1 in Theorem 3, we have a
result of Libera [4].

For p = 1, Obracdovic [5,6] recently gave the following two results
which can also be obtained from Theorem 3 by n = ¢ = o = 0 and
n = —1, respectively.

Corollary 5. Let f € A,. Then Re{f'(z)} > 0implies Re{—%{l} >
3 (zel).

Corollary 6. Let f € 4,0 < a < 1and ¢ > —1. Then
Re{@} > « implies

e+l % ., 1-a
(2.32) Re{zc.H ](; u f(u)du}>a+3+2c (z € U).

We state the following theorem which is proved by a stmilar method.

Theorem 4. Let f € A, and
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n+2
(2.33) Re{¥}>a 0<a<l,zel)
Then
D™t f(z) 2ap +1
(2.34) Re{ zp } > 52 Gev)
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