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ON CLASSES OF MULTIVALENT 
FUNCTIONS DEFINED BY 

CERTAIN DIFFERENTIAL OPERATOR

Man Dong Hur, Tae Hwa Kim and Nak Eun Cho

1. Introduction
Let Ap denote the class of functions

8
(1.1) f(z) = + £ ak+pzk+P (pe7V = {l,2,3,••-})

which are analytic in the unit disk U = {z\ 聞 V 1}. For 0 < a < 1, 
we denote by S；(Q)and the classes of p-valent starlike functions
of order a and p -valent convex functions of order a, respectively [1].

For f E wq define

(1-2) "f(z) = f(z),

(1-3) D'f(z) = z

and

(1.4) Dnf(z) = D (Q。】六z)) (n G N\

Now we introduce the following classes by using the differential op­
erator Dn,
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84 CLASSES OF MULTIVALENT FUNCTIONS

Definition. A function f E Ap is said to be p-valently n- starlike 
functions of order a if / satisfies the condition

(1-5) Re { } > " (0 < a < 1, G £7).

We denote by SniP(a) the class of p-valently n-starlike functions of 
order a. We note that 5o,p(a) = S；(a) and S—少)=K"a). For 
p = 1, the class &」(<』)is considered by Salagean [7].

In this paper, we give certain inequalities for f E Ap which satisfies 
the condition

(1.6) "으兰⑵} > a (0<a<l, zeU)

and for the following integral (1.7) of functions satisfying (1.5)

(1-7) F(z)=己斗f f uc~lf(u)du (c > -p).
z Jo

These inequalities include or improve several results given by Bernardi 
[2], Jack [3], Libera [4], Obradovic [5,6] and Strohacker [8].

2. Main results

We need the following lemma due to Jack [3] for the proofs of the 
comming results.

Lemina 1. Let w be a nonconstant and analytic function in 
|z| < r < 1, w(0) = 0. If |w| attains its 호naximum value on the cir시e 
\z\ = r at zq^ then = kw(zQ)^ where A: is a real number and
k>l.

Theoem 1. Let f C Sn,,(a) and let

(2.1) F(z)=/ uc~xf(u)du (c > -p).
Z Jo
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Then

(2-2) 찌需普"心，点

where c > 2p(l — a) — (p + 1) and

(2.3)
—(2c — 2ap + 1) + y/(2c — 2ap + l)2 + 8p(2ac + 1) 

4p

Proof. Suppose that f E Sn(p(a) satisfies the conditions in the 
theorem and write

z2 4) Df z) = l + (2/8 — l)m(z)
DnF(z) 1 + w(2) ，

where g = c). Then w(z) is analytic, w(0) = 0 and w(z) + —1
in U. Using the identity

(2-5) (p + c)Dnf(z) = cDnF(z} + pDn+i

the equation (2.4) may be written as

(2-6)
_ c(l + U*z)) + p(l + (2/3 - l)u>(z)) 

DnF{z} (p + c)(l + W(2))

Differentiating (2.6) logarithmically, we obtain

(2-7)
Dn+1f(z)
W(z)
_ 1 + (部-l)w(z)2(1一幻硕z)

1 + w(z) (1 + w(2))(c + p + (c + p(2/3 - l))w(z))
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We 시aim thet |w(z)| < 1. For otherwise, by Lemma 1, there exists 
Zo E U such that

(2.8) 2()u/(zo) = fcw(z0),

where |s(z())| = 1 and A: > 1. Writing — u + ivy the equation
(2.7) in conjaction with (2.8) yields

(2.9)

찌钦罗
u + iv

—B a P)kRe i(i + “ + 讪)(£ + p +。+ 卩(20 - 1))(四 + w)

(61 4- 4- iv}(a 4-bu — ibv})

(1 — 8、)版(a + b) 
a2 + 2abu + 62

where a = c + p and b = c + p(20 — 1). Put

(2.10) / x (a + b)
戒们=a2 + 2abu + b2 .

The condition c > 2p(l — a) — (p 4-1) and the definition of c) 
imply b > 0 and /3 < 1. Then g(u) is decreasing and thus 看& = g(l) < 
g(u). We have, from (2.9) and fc > 1, that

(2.11) 瓜比/끄 品<1—巳二흐

V ) I Z宵(％) J a + b
=2p(32 + (2c — 2ap + 1)0 一 (2ac +1) = 0,

since /3 is a root of the polynomial

(2.12) 2px2 + (2c — 2ap + l)x — (2otc + 1) = 0. 
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This contadicts the assumption f E Sn)p(a) and so the proof is com­
pleted.

From (2.1), for p == 1, we note that

(213) 芝也一끄回.+ ——츼纹一
3이 F(z) - F⑵ - c十们cTf(们血.

Taking p = 1 and n — 0 in Theorem 1, we obtain the following 
corollary which was proved by Obradovic [6].

Corollary 1. Let f E S；(。) and let c > max{—ly —2a). 모hen 
we have

(Nig ______________________
zc/(2) 1 2c + 2a — 1 +、/(2c + 2 a — 1)? + 8(c +1)

e、J、j uc~xf{u)du J > 4

(z 6 uy

Theorem 2・ Let f E Sn,p(Q)and 7 > 1. Then

（冲 찌"广十（"

Proof. Let /3 = 느= and let w(z) be an analytic function such 
that

(2.16)
Dnf(z) 1 2p<T-a)7 1 + ⑵3 一 l)w(^)
―zP — J _ 1 + 3(z)

Then w(0) = 0 and w(z)丰—1 in U. The theorem will follow if 
we can show that |w(^)| < 1 in 17. Now by differentiating (2.16) 
logarithmically, we get
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z2 17) 刀‘나”(z) = [ _ 4(1-Q)頂 ")如0)
I •) W(z) - (l + s(z))(l + (2/3 — l)u，(z))・

If |w(z)| 1 in Uf by Lemma 1, there exists zQ E U such that
zqw\zq) = fcw(zo)j where |w(^o)| = 1 and k > 1. Let w(zq) = u + w. 
Then

Z2 18) Re J_________ 邵以㈤_____________1
1 (1 + 讽御))(1 + (20 — l)w(zo)) j

_ /3k
=2(202 一2疗 + 1+ (20-l)u)・

I rm

Q,'幻 = 2/?2-2/?+l + (2/?- l)u'

Since 7 > I implies g(u) is an decreasing function of u, ^2 = g(l) < 
g(u). Applying (2.17) and (2.18), we obtain

(2.20)
卬서勺㈤ 1 4(1 - 叫(1 - 幻侏

R l Dnf(z0) / ~ 2(2^2 - 2/? + 1 + (2/? - l)u)

=1 — a — 2(1 — a)7(l — /3)/3kg(u)

< 1 -«------------ 0--------- = o,

which contradicts the assumption. Thus the theorem is proved.

Putting p = 1, 7 =亍二占 and replacing n by n + 1 in Theorem 2, we 
obtain the following corollary.

Corollary 2. Let f e &+损(。)・ Then
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(2.21) 氏学兰四广〉宀心).
[ z J 2 — a

Under the condition of Corollary 2, taking n = 0 and a = 0, we 
have the known result of Strohacker [8], that is, f € Ki(0) implies 
血｛/页9｝ > F

By considering p = 1, n = 0 and 7 = 1 in Theorem 2, we have the 
following result of Jack [3].

Corollary 3. Let f 6 Then

(fl I 2(1 - a) 1
(2.22) Re ｛ 스丄 j> > j € t7).

Recently Obradovic [5] proved the following result which can be 
derived from Theorem 2 by taking p = 1, n = 0 and 7 = 2(1-a) *

Corollary 4. Let / 6 S；(a) Then

(2.23) 依｛普｝〉孑늤 "YU).

Theorem 3. Let Re c > —p, 0 < a < 1 and f 6 Ap, If

(2.24) 屁｛。三宫｝ > @ j £ 0),

then

(2.25) Re I -- -----) > 0(%p,c、) (z € U\
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a +排｛志｝

1 +饷｛击］

where

(2.26) /3(a,p, c)=

and F(z) is defined as in (2.1).

Proof, As Theorem 1, we assume that the function f satisfies the 
conditions in the theorem and write

(2.27)
刀"+1尸(2)_ 1 + (2月—l)u*z) 

zP 1 + w(z)

where g = c). Then w(z) is analytic, w(0) = 0 and w{z) ■丰 —1
in U. It is sufficient to show that |w(2)| < 1 for z CU. From (2.5) and
(2.27),  we have 

(2 28) 刀= 1 + (2/3 - l)s(z) _ 2(1 - 0"(z)
' zp 1 + w(^) (p + c)(l + w(z))2"

|w(z)| < 1, there exists E U so that |w(z)| < |w(2o)| = 1 for z E U.
Then, by Lemma 1, there exists A: > 1 such that 

(2.29) 2"(%) = kw(zo).

Let w(zq) = u + tv so that

(2.30) (zow'M 1 = 代 
l(l+w(2o))2/-2(l + u)

and take the the real part of (2.28). Then we obtain
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(2.31)

I ZQ

=0,

which contradicts the assumption. So |w(z)| < 1 for z E U. This 
ccmx夙淺迫矿 tte*声gfpf 선.

Remarks. (i) Taking n — a = 0 and p = 1 in Theorem 3, we have 
Bernardi^ results [2]: If Re{f\z')} > 0, then Re{F\z}} > 0.

(ii) Putting n = a = 0, p — 1 and c = 1 in Theorem 3, we have a 
result of Libera [4]・

For p = 1, Obracdovic [5,6] recently gave the following two results 
which can also be obtained from Theorem 3byn = c = a = 0 and 
n = —1, respectively.

Corollary 5. Let / € Ai，Then Re{fr(z)} > 0 implies Re{^~-} > 
I (*).

Corollary 6. Let / GAi,0<a<l and c > —1. Then 
Ke"의} > a implies

(2.32) 丑e{브”\-1加)싸〉a+느苏 (z G U).

We state the following theorem which is proved by a similar method.

Theorem 4・ Let f E Ap and
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(2.33) Re { 2三脊)} > @ (0<a<l,2el7).

Then

찌F 孕
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