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CONTINUATION AND VANISHING THEOREM
FOR COHOMOLOGY OF
INFINITE DIMENSIONAL SPACES

Jol1 KaJiwara* aAND KwaNGg Ho SHON*¥

1. Introduction

The aim of the present paper is to extend S.Dineen{7}’s cohomology
vanishing theorem H'(D, Q) = 0 obtained for the cohomology of de-
gree 1 of pseudoconvex open sets in infinite dimensional vector spaces
equipped with the finite open topology to the cohomology vanishing
theorem-H?(D, 0) = 0 for cohomology of higher degree p and to ex-
tend Scheja{21]’s Theorem HP(D — A, Q) = H?(D, O) of continuation
of cohomology classes to complex spaces of dimension infinite equipped
with the finite open topology. We join the latter results with the for-
mer and obtain the infinite dimensional cohomology vanishing theorem
HP(D — A,0) = 0 for cohomology of degree p < codim A — 2 of the
complement D — A of analytic set A with respect to pseudoconvex open
sets D of vector space F with the finite open topology.

The authors would like to express their hearty gratitute to Profes-
sor P.Lelong in Paris who ordered the first author to study Infinite
Dimensional Complex Analysis during his stay 1973/74 in Paris and
transfered Infinite Dimensional Complex Analysis to Asia in this way.

2. Finite open topology

Let E be a complex vector space with a locally connected Hausdorff
topology T and A be the set of C-linear subspaces of E. A complex
valued function f on an open subset D of (£, T} is said to be Géteaus
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66 Continuation and vanishing theorem for cohomology

holomorphic if, for any L € A, the restriction of f to DN L is holomoz-
phic on the open subset D N L of dimension finite. A complex valued
Gateaux holomorphic function f on an open subset D of (E, T') is said
to be holomorphic if f is continuous on D. The sheaf O of germs of
holomorphic functions over E is called the structural sheaf of (E,T).
An open subset D of (F,T) is said to be finitely pseudoconvez if, for
any L € A, the intersection D N L is a pseudoconvex domain of the
C-linear space L of dimension finite for any L € A. The topology Tp
on FE is said to be finite open if the family of open sets consists of
subsets O of E such that, for any L € A, the intersections O 1 L are
open in the finite dimensional Hausdorff C-linear spaces L. A Gateaux
holomorphic function on an open subset of (E,Ty) is unconditionally
holomorphic.

The finite open topology is the strongest and the product topology is
the weakest among topologies with which we can do Function Theory.

3. Work’s of Scheja and Works®' of Dineen and Gruman
Let X be a complex space of dimension finite, @ be its structural

sheaf and A be an analytic subset of X. Then G.Scheja[21] proved
that the canonical homomorphosim ¥ : H?(D,0) — H?(D — A,0)
is isomorphic if p < codim A — 2.

About twenty years ago and when the first author begun to in-
vestigate the theory of functions of infinite complex variables under
Professor Lelong in Paris, S.Dineen[7] proved the vanishing theorem
H'(D,0) = 0 of the cohomology of degree 1 of a pseudoconvex do-
main D with coefficients in the structural sheaf O of the C-linear
space (E, Ty) equipped with the finite open topology and L.Gruman[10]
solved the Levi problem proving that any finitely pseudoconvex D of

the space (E,Tp) is the existence domain of a holomorphic function on
D.

4. Cohomology vanishing theorem

PROPOSITION,. Let E := {z = (21,29, - ,2a)} € C%z, € C(7 €
{1,2,...,n})} be the finite n dimensional C-linear space C" equipped
with the Hausdorff topology and F be the reducible analytic space
which is 1 codimensional reducible analytic subset of E defined by

(1) F:={2=(21,20,...,2p) E E; 2322+ - 2o = 0}
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equipped with the usual structural sheaf Op = Ofz125---2,0. Let
D be its pseudoconvex open set containing the origin 0, O be the
structural sheaf over D, U = {U,;1 € I} be a Stein covering of D,
i.e. all open set U, is a domain of holomorphic for ©+ € I, such that
the origin 0 is contained in one and only one open set of . Let Dp
be the trace DN F of D to F, reducible analytic set of D with the
restriction of O to Dp which is denoted by the same symbol Or. Let
Up ;= {U,N F;1 € I} be the trace of the covering U of the open set D
to the analytic set Dp of D. Let Zp be a p-cocycle of the covering U
with coefficients in the structural sheaf Op of the reducible analytic
set D of D. Then, there exists a (p — 1)-cochain C = {cg; 8 € I"'}
of the covering U with coeflicients in the sheaf O such that the trace
of the coboundary §(C) of C to D concides with the p-cocycle Zp.

Proof. In case p = 1, Proposition; was proven as Lemima 2.2 in
L.Gruman[10]. So we may assume that p > 2.

Since the sheaf (/2129 -+ - 2,0 over E is an analytic coherent sheaf
over E and it is supported by the reducible analytic set F' of E. Hence
its restriction Of to the reducible Stein space Dy is also an analytic
coherent sheaf over the space Dp. Since Up is a Stein covering of
the Stein space Dy, any cohomology with positive degree of the open
set, which is a support of a simplex of I, vanishes, by Lemma L, of
G.Schejaf21], any cohomology with positive degree of the open set Dp
with values in the analytic coherent sheaf Op coincides with that of
the covering Ur. Since the former vanishes by the theorem of Oka-
Cartan-Serre, any p-cocycle of iy with values in the sheaf Op is a
coboundary of a (p — 1)-cochain Cr = {cpg; B € I?"!} of the covering
Up with coefficients in the sheaf Op. Here (p — 1)-simplex § of I is an
element B = (81, B2,-..,8,) of I”™! and its support Uy is the open set
Ug:=Ug NUg, N---NUg,.

We have the short exact sequence

(2) 0— 21290 2,0 >0 >0/z120-2,0 = 0

of sheaves over D. For any (p — 1) simplex # of I and for its support
Ug, we have the long exact sequence of cohomology modules

(3) 0 — HYUg, 2129+ 250) — H(Us,0) —
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HO(UB’O/ZIZQ ”’Z”O) — Hl(Uﬂ,ZIZZ"‘ Z,‘O) —_— v

of the open set Ug of D. Since the above cohomology of the Stein space
Ug of the analytic coherent sheaf z,z5 - - - 2,0 vanishes by the theorem
Oka-Cartan-Serre, the canonical mapping

(4) ws : H'(Upg,0) = HUg, O/ 2123 - - 2,0)

is surjective. Since our ¢fg can be regarded as an element of the group
H®(Upg,Ofz1 23 - - - 2, O), there exists an element cg of H*(Up, O) with
pgcp = cpg. Then the restriction to the reducible analytic set D g of the
coboundary of the (p—1)-cochain C := {cg; 8 € IP"1} of the covering U
with coefficients in the structural sheaf O of the pseudoconvex open set
D coincides with the said p-cocycle of the covering Up with coefficients
in the structural sheaf Op of the reducible analytic set Dp of D.

THEOREM 1. Let E be a C-vector space with a locally commected
Hausdorff and finite open topology, O be its structural sheaf and D be
a finitely pseudoconvex open set of E. Then, for any positive integer
p, we have HP(D,0) = 0.

Proof. In case that p = 1,the theorem is proved by S.Dineen[7]. So
we may assume that p > 2. and the origin 0 is contained in D.

Let U = {U,;+ € I} be a Stein covering of D and Z = {zo;a € I”} be
a p-cocycle of the covering If with coefficients in the structural sheaf O
of D. We prove the proposition using Zorn’s Lemma which is equivalent
to the transfinite induction used by S.Dineen[7] and L.Graman|10] that
there exists a (p — 1)-cochain € := {cg;8 € I?} of the covering U
with coefficients in the sheaf O such that the coboundary 6(C) of C
coincides with the p-cochain Z. Let ¥ be the set of pairs (5,Cs) of
C-linear subspaces S of E and (p — 1)-cochains Cs = {cgp; 8 € IP™'}
whose cboundary is the rstriction Zs of the Z to DN S. We induce
a partial order in ¥ so that two pairs (S,Cs) and (T,Cr) of C-linear
subspace S and T of E and (p — 1)-cochains Cs = {csg; 3 € I?'} and
Cr = {erp; B € IP 71} satisfy (5,Cs) C(T,Cr)ifandonlyif S C T
and the restriction of Cr to D N S coincides with Cs. The partially
ordered set ¥ is not totally ordered. Let T = {(T,Cr);T € Z} be
a totally ordered subset of the partially ordered set £. We consider
two elements (S,Cs) and (T,Cr) with (5,Cs) € (T,Cr). Then, for any
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B € I" ! the restriction of erg to UsN S coincides with cgg on UgN S.
Let Ty, be the C-linear span of the family = of C-linear subspaces of
E. Since the set T is totally ordered, the set = is also totally ordered
by the usual inclusion C. So the linear span Tsyp coincides with the
union of the family =. We put, for any g € I*7',cr,, g = crp on
Ug N T. Then, for any g € IP~', the mapping c7,, 5 : Ug N Tyyp — O
is well-defined. Since its restriction on any finite dimensional linear
subspace of Ty, is continuous, by the definition of the finite open
topology, it is continuwous on Ug N Ty, too. The collection ¢r,,, =
{eT,.,8:8 € IP7'} defines a (p — 1)-cochain of the covering Ur,,, =
{U, N Tyypsr € I} with coefficients in 0. And its coboundary is the
restriction Zr,,, to of the said p-cocycle Z. Thus we have proved
that any totally ordered subset T of the partially ordered set L has a
supremum. Hence, by Zorn’s Lemma, the partially ordered set £ has
a maximal element (Tyner,Cr, . ) We put Uy, . = {U, N Trazit € 1}
and cha: = {CTmug;ﬁ e-f’_’_‘l}.

If Thhar were a proper C-linear subspace of the said space E, there
would exist an element z,, of the complement £ — T, of Trnas. We
may assume that one and only one set of If contains the point z..
We denote C7,,,, more precisely by {cr, . 5;8 € IP71} We denote by
{200} the 1-dimensional C-linear subspace {{z,;t € C}. We denote by
Tinazee the linear subspace of E spanned by Tiar and {zo].

Let B = {z4;68 € ©} be a Hamel basis for the C-linear space Tp,q:.
As in the proof of Theorem 2.3 of L.Gruman[10], we prove the following
proposition by induction with respect to a non negative integer n:

For any (n + 1) dimensional C-linear subspace L., of E generated
by the vector 2o, and n elements of B of Tyyer, we put U, 0o =
{U.NTimare;t € I}, L= Lo, N\ Trqr. Then the restriction to Ur ..
of the (p — 1)-cochain Cr___ of the covering Ur,_ ., can be continued
to a (p~1)-cochain Cp, = {cp, 4,8 € I"7'} of the covering Ur,, ...
These continuations of the (p — 1)-cochains of the coverings of the
n-dimensional linear C-subspaces L’s to the n-dimensional linear C-
subspaces Lo, are compatible in the following sense : For two these
(n + 1) dimensional C-Linear subspaces L, and M, of E, and for
these continuations Cp = {cp g8 € I?7'} and Cir,, = {car 58 €
IP~1} of the restrictions to Uy, and Uy of the (p - 1)-cochain Cry,,, =
{cT,...8: B € IP71} of the covering Ur,,,, there holds the condition of
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compatibility cy g = em_pg on U N Ly N My, for any g € IP71

In case that n = 0, the target space is only the one dimensional
C-linear space [20] whose trace D N [z5] to D is a Stein manifold.
Hence the restriction to 24, _; of the p-cocycle Z = {za;a € IP} of
the covering U with coefficients in the structural sheaf O of D is a
coboundary of a (p — 1)-cochain of the covering Uj,_j with coefficients
in the structural sheaf of {z,].

Now assume that the above proposition is valid for a non negative
integer (n — 1). Then, using Proposition, by the arguments in the
proof of Theorem 2.3 of L.Gruman{10}, we can prove the validity of
above proposition for the integer n too.Thus, by induction with respect
to non negative integers n, we have proved the validity of the above
proposition. Let § be any (p — 1)-simplex belonging to I?~! and (
be any point of the support Ur, ..z of the simplex 8. Since B =
{24;6 € O} is a Hamel basis for the C-linearspace T}, 4., there exists a
positive integer n and an n-dimensienal subspace L of E such that L 1s
spanned by n elements of B. We put cr,,, .o p = L p in Ur . Then,
CT,aeo0 g 18 @ Well defined Gateaux holomorphic function on Ut ,, .
which i1s continuous by the cause of the finite open topology of the
space on Tp,,5 and therefore is holomorphic on Uz, . g. In this way,
we established the continuation Cr, . = {c7, .. p5;8 € I?7'} of the
p-cochain Cry,,, = {cr,,.wp;8 € IP7} to the space Tmaze so that
the coboundary of Cr, ... is the restriction of the said p-cocycle Z.
Hence the pair (Tnaz0,CT,. o ) is strictly larger than the maximal pair
(Trmaz,CT,,,. )- This is a contradiction. Thus we have proved Ty, g70 =
E what was to be proved.

5. Continuation theorem

Let E be a C-vector space and D be an open set of E, A be a closed
subset of D and p be a positive integer. We write codim A > p, if, for
any finite dimensional C-linear subspace L of E, there exists a finite
dimensional C-linear subspace M of E such that M is a subspace of L
and that the codimension of the analytic set ANM in DN M is not
smaller than p at each point of A N M.

THEOREM 2. Let E be a C-vector space with a locally connected
Hausdorff and finite open topology, O be its structural sheaf and D
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be an open set of E, A be an analytic subset of D and p be a positive
integer. If p < codvm A — 2, then the canonical homomorphism ¥ :

H?(D,0) - HP(D — A, O) isomorphic.

Proof. Let U = {U;;7 € I} be a Stein covering of D. Then U — A :=
{U, — A;: € I} is an open covering of the open set D — A. Those cov-
erings I — A are cofinal in a collection of open coverings of D — A. Let
Z = {zq; a € I?} be a p-cocycle of the covering U — A with coefficients
in the structural sheaf O of D — A. For any a € I?, z, 1s a holomorphic
function on the support U, — A of the p-simplex a. Let L be any finite
dimensional C-linear subspaces of E. By the definition of codimension
of A, there exists a finite dimensional C-linear subspace M of E such
that M is a superspace of L and that the analytic set AN M is an
analytic set in D N M the codimension of which is at least codim A,
for any a € I?, the restriction zps« of the holomorphic function z, to
the trace Uy, N M — A of D to M — A can be continued to the analytic
set AN U, N M whose codimension > p+ 2 > 2. By the finite dimen-
sional Riemann’s theorem concerning removable singularities, zpr« can
be continued to a holomorphic function z .+ on the open set U, N M.
We denote by 27« the resiriction of zpse to U, N L Then, z7« is inde-
pendent of the special choice of a superspace M of L. Quite similarly
as in the proof of Theorem 1, we can establish a continuation of the
holomorphic function z, on D — A to a holomorphic function z,+ on D.
By the principle of uniqueness of analytic prolongations, the collection
Z* = {zy+;a € I"} is a cocycle of the open covering I — A.

THEOREM 3. Let E be a C-vector space with a locally connected
Hausdorff and finite open topology, O be its structural sheaf and D
be a finitely pseudoconvex open set of E, A be an analytic subset of

D and p be a positive integer. If p < codim A — 2, then we have
H¥(D - A 0)=0.

Proof. By Theorems 2 and 1, we have H?(D - A, Q) = H?(D,0) =
0.
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