A FREIHEITSSATZ FOR SEMIGROUPS

JUNG RAE CHO

1. Introduction

The Freiheitssatz for one-relator groups states that if G is the group defined by the presentation $\langle a_1, a_2, a_3, \dots; r \rangle$, where r is a cyclically reduced word in $\{a_1, a_2, a_3, \dots\}$ containing a_1 , then the subgroup of G generated by $\{a_2, a_3, \dots\}$ is a free group. We can restate it as follow: if G is the group defined by the presentation $\langle X; r \rangle$, where r is a cyclically reduced word in X containing x_0 in X, then the free group generated by $X \setminus \{x_0\}$ is embedded in G by the natural homomorphism extending the map $x \mapsto x$ for all $x \in X \setminus \{x_0\}$. This Freiheitssats for one-related groups is true ([7]).

One may want to generalize the Freiheitssatz to groups with more than one relators as follow: if G is the group defined by the presentation $\langle X; R \rangle$, where each r in R is a cyclically reduced word in X, and if X_0 is a subset of X and R_0 is the subset of R consisting of all elements which involves only the variables in X_0 , then the group defined by the presentation $\langle X_0; R_0 \rangle$ is embedded in G by the natural homomorphism. But this is not true in general as the following example shows.

Example 1. Let G be the group defined by the presentation $(x, y, z; xy^{-1}, yz)$ and put $X_0 = \{x, z\}$. Then R_0 is empty and the group G_0 defined by the presentation $(X_0; R_0)$ is the free group on X_0 . However, the subgroup of G generated by $\{x, z\}$ is not a free group. In fact, in G, we have $xz = xy^{-1}yz = 1 \cdot 1 = 1$, and so $x = z^{-1}$. Thus the natural homomorphism is not an embedding.

In this paper, we want to state a Freiheitssatz for semigroups and provide a couple of conditions for this Freiheitssatz to hold.

By a semigroup presentation P, we mean a pair [X;R] where X is a set of generators and R is a set of relations. Thus X consists of symbols x_1, x_2, \cdots and R consists of pairs (u_i, v_i) , $(i \in I)$, where u_i and v_i are

Received March 31,1993.

semigroup words in X. It is customary to write u = v instead of (u, v). We denote by S(P) the semigroup defined the presentation P = [X; R].

A FREIHEITSSATZ FOR SEMIGROUPS. Let P = [X; R] be a semi-group presentation. Suppose X_0 is a subset of X, R_0 the subset of R consisting of all relations involving only the variables in X_0 . Then, for $P_0 = [X_0; R_0]$, $S(P_0)$ is embedded in S(P) by the natural homomorphism, $x \mapsto x$ for all x in X_0 .

The main results of this paper are the following two theorems.

THEOREM 1. Let P = [X; u = v] be an one-relator semigroup presentation. Then the Freiheitssatz holds for S(P). That is, if X_0 is the subset of X which does not contain a variable appearing in the relation u = v, then the subsemigroup of S(P) generated by X_0 is free.

THEOREM 2. Let P = [X; R] where the left and right sides of each relation u = v in R involve the same variables. Then the Freiheitssatz holds for S(P).

We will prove Theorem 1 algebraically in §2 and introduce semigroup diagrams in §3, which will be used in §4 for a geometric proof of Theorem 2. At the end of the paper, we will show by an example that the condition in Theorem 2 can not be weaken.

2. Proof of Theorem 1

For a semigroup presentation $P = \{X; u = v\}$, let $\bar{P} = \langle X; uv^{-1} \rangle$ be the corresponding group presentation, and let $G(\bar{P})$ denote the group defined by \bar{P} . The following lemmas are trivial

LEMMA 1. The map $S(P) \longrightarrow G(\bar{P})$ such that $x \mapsto x$ for all $x \in X$ can be extended to a homomorphism.

LEMMA 2. For any set X, the free semigroup on X can be embedded in the free group on X by the natural homomorphism such that $x \mapsto x$ for all $x \in X$.

Now let P = [X; u = v] be an one-relator semigroup presentation. Suppose X_0 is the subset of X which does not contain a variable appearing in the relation u = v. To prove Theorem 1, we need to show that subsemigroup of S(P) generated by X_0 is free.

Suppose w_1 and w_2 are words in X_0 such that $w_1 = w_2$ in S(P). It is enough to show that $w_1 = w_2$ in the free semigroup on X_0 . By Lemma 1, $w_1 = w_2$ in $G(\bar{P})$. By Lemma 2 and the Freiheitssatz for the one-relator group $G(\bar{P})$, there is an embedding from the free semigroup on X_0 into $G(\bar{P})$. Thus $w_1 = w_2$ in the free semigroup on X_0 . This completes the proof of Theorem 1.

3. Semigroup diagrams

By a semigroup diagram over a set X we mean a labelled oriented map M ([6], p.236]) with the following properties.

- (1) M is connected and simply connected.
- (2) Each edge of D is labelled with an element of X,
- (3) There are two distinguished points on the boundary of M, which are denoted by $\sigma(M)$ and $\tau(M)$ respectively, and the boundary of M consists of two directed paths from $\sigma(M)$ to $\tau(M)$.
- (4) There are two distinguished points on the boundary of each region Δ , which are denoted by $\sigma(\Delta)$ and $\tau(\Delta)$ respectively, and the boundary of Δ consists of two directed paths from $\sigma(\Delta)$ to $\tau(\Delta)$.

We can describe a semigroup diagrams M over X pictorially by drawing a figure. In doing so, we put $\sigma(M)$ at the far left and $\tau(M)$ at the far right of the figure. We also put each $\sigma(\Delta)$ to the left of $\tau(\Delta)$ (See figure 1).

By an obvious reason, the two directed paths from $\sigma(M)$ to $\tau(M)$ which constitute the boundary of M are called the *upper boundary* and the *lower boundary* of M, and denoted by $\mu(M)$ and $\lambda(M)$ respectively. Similarly, we define $\mu(\Delta)$ and $\lambda(\Delta)$ for region each Δ of M.

For each edge e, let $\varphi(e)$ denote the label of e, and extend φ over all directed paths of M, i.e., if $\alpha = e_1 e_2 \cdots e_n$ is a directed path then $\varphi(\alpha) = \varphi(e_1)\varphi(e_2)\cdots\varphi(e_n)$.

Given a semigroup prsentation P = [X; R], a semigroup diagram M over X is called a P-diagram if the following holds.

(5) For each region Δ of M, either $\varphi(\mu(M)) = \varphi(\lambda(M))$ or $\varphi(\lambda(M)) = \varphi(\mu(M))$ is a relation in R.

For example, the semigroup diagram in Figure 1 is a P-diagram over the semigroup presentation

$$P = [x, y, z, t; xxy = yz, xzy = yz, yx = zy].$$

LEMMA 3 ([9]). Let P = [X; R] and w_1 , w_2 be words in X. Then $w_1 = w_2$ in S(P) if and only if there is a P-diagram M such that $\varphi(\mu(M)) = w_1$ and $\varphi(\lambda(M)) = w_2$.

COROLLARY. Let M be a P-diagram and v_1 , v_2 be vertices of M. If α and β are directed paths from v_1 to v_2 then $\varphi(\alpha) = \varphi(\beta)$ in S(P).

For a semigroup diagram M, let #(M) denote the number of regions of M. If α and β are directed paths in M then write $\alpha \subseteq \beta$ to denote that α is a subpath of β .

LEMMA 4 ([4]). Let M be a semigroup diagram and #(M) > 0. Then there is a region Δ such that $\mu(\Delta) \subseteq \mu(M)$. Dually, there is a region Δ such that $\lambda(\Delta) \subseteq \lambda(M)$.

Proof. [Another Proof]. Let Σ be the set of all regions of M. Define a relation '>' on Σ by $\Delta > \Phi$ if $\lambda(\Delta)$ and $\mu(\Phi)$ have a common edge, and let ' \geq ' be the reflexive and transitive closure of '>'. Then it can be seen that ' \geq ' is a partial ordering on Σ . Since Σ is finite, it has a maximal element Δ and a minimal element Φ . Then $\mu(\Delta) \subseteq \mu(M)$ and $\lambda(\Phi) \subseteq \lambda(M)$.

The geometric method using diagrams is well developed for combinatorial group theory and proved to be very useful ([2],[3], [6]). This method is also adapted by many people for the study of word problem and embedding problem of semigroups ([1],[5],[8],[9]).

4. Proof of Theorem 2

Let P = [X; R] where R consists of relations whose left and right hand sides involve the same variables, and let $P_0 = [X_0, R_0]$ where X_0 is a subset of X and R_0 is a set of relations in R which involve only the variables in X_0 . We need to show the natural homomorphism $S(P_0) \longrightarrow S(P)$ is injective. Suppose w_1 and w_2 are words in X_0 such that $w_1 = w_2$ in S(P). We wish to show $w_1 = w_2$ in $S(P_0)$.

By Lemma 3 there is a P-diagram M such that $\varphi(\mu(M)) = w_1$ and $\varphi(\lambda(M)) = w_2$. We shall show that there is a P_0 -diagram M^* such that $\varphi(\mu(M^*)) = w_1$ and $\varphi(\lambda(M^*)) = w_2$. We proceed by induction on #(M). If M has no region then the conclusion is trivial, because w_1 and w_2 are identical in this case (Figure 2(a)). If M has only one region then M itself is a P_0 diagram (Figure 2(b)).

Figure 2

Assume the conclusion is true for P-diagrams with less than #(M) regions and we will show the conclusion is true for M. By Lemma 4 there is a region Δ such that $\mu(\Delta) \subseteq \mu(M)$ (Figure 3(a)).

Let M' be the P-diagram obtained from M by deleting $\mu(\Delta)$ and the interior of Δ . Note that the lower boundary $\lambda(\Delta)$ of Δ remains a part of the upper boundary $\mu(M')$ of M' (Figure 3(b)). Thus, if $\mu(M) = \alpha \mu(\Delta)\beta$ then $\mu(M') = \alpha \lambda(\Delta)\beta$. Here α and β may be empty. Note that $\varphi(\mu(M))$ is a word in X_0 , and, since $\varphi(\mu(\Delta))$ and $\varphi(\lambda(\Delta))$ involve the same variables, $\varphi(\mu(M'))$ is a word in X_0 . Let this word be w'. Since #(M') < #(M), by induction hypothesis, there is a P_0 diagram M'' such that $\varphi(\mu(M'')) = w_1$ and $\varphi(\lambda(M'')) = w_2$ (Figure 3(c)). Now $\mu(M'') = \alpha'\beta'\gamma'$ for some directed paths α' , β' and γ' , where $\varphi(\beta') = \varphi(\lambda(\Delta))$. Let M^* be the semigroup diagram obtained by gluing Δ to M'' identifying $\lambda(\Delta)$ with β' . Then, M^* is a P_0 -diagram such that $\varphi(\mu(M^*)) = w_1$ and $\varphi(\lambda(M^*)) = w_2$ (Figure 3(d)). This completes the proof.

Figure 3

Remark. Without the condition that every relation in R involves the same variables on both sides, the Freiheitssatz does not holds, as the following example shows.

Example. Let S(P) be defined by the presentation P = [x, y, z, t; xy = tz, xz = zx, xt = tx] and let $S(P_0)$ be the semigroup defined by $P_0 = [x, y, z; xz = zx]$. Then, xyx = xxy in S(P) since xyx = tzx = txz = xtz = xxy (See Figure 4).

Figure 4

However, $xxy \neq xyx$ in $S(P_0)$, since the relation xz = zx can be applied to neither xxy nor xyx. In fact,

$$S(P_0) = < y > * (< x > \oplus < z >).$$

Thus, $S(P_0)$ is not embeddable in S(P) by the natural map.

References

- I Jung R. Cho, E-unitary problem of certain inverse monoids, submitted
- Jung R. Cho & S.J. Pride, Embedding semigroups into groups, and the aspericity of semigroups, Inter. J. of Alg. and Comp. 3 (1993), 1-13
- 3. D J. Collins & J. Huebschmann, Spherical diagrams and identities among relations, Math. Ann. 261 (1982), 155-183.
- 4. James Howie & Stephen J. Pride, A spelling theorem for staggered generalized 2-complexes, Adv. in Math. 36 (1980), 283-296
- 5. S.V. Ivanov, Relation modules and relation bimodules of groups, semigroups and associative algebras, Inter. J. of Alg. and Comp. 1 (1991), 89-113
- R.C. Lyndon & P.E. Schupp, Combinatorial group theory, Springer-Verlag, 1977.
- 7 W. Magunus, A. Karras & D. Solitar, Combinatorial group theory, 2nd ed., Dover publ. New York, 1976
- 8 S.W. Margolis & J.C. Meakin, E-unitary inverse monoids and the Cayley graph of a group presentation, J. Pure and Appl. Alg. 58 (1989), 45-76
- 9. John H. Remmers, On the Geometry of Semigroup Presentations, Adv in Math. 36 (1980), 283-296

Department of Mathematics Pusan National University Pusan 609-735, Korea