Pusan Kyöngnam Math J 9(1993), No. 1, pp 49-55

THE LEAST POSITIVE EIGENVALUE OF LAPLACIAN FOR $SU(4)/SU(2) \otimes SU(2)$

JOON-SIK PARK

1. Introduction.

Let (M, g) be an *n*-dimensional compact Riemannian manifold. We denote by Δ the Laplace-Beltrami operator acting on the space $C^{\infty}(M)$ of all complex valued smooth functions on M, that is,

(1.1)
$$\Delta = -\sum_{i,j} \frac{1}{\sqrt{G}} \frac{\partial}{\partial x^{i}} (\sqrt{G} g^{ij} \frac{\partial}{\partial x^{j}}),$$

where the g_{ij} are the components of g with respect to a local coordinate $(x_1, x_2, \dots, x_n), (g^{ij})$ is the inverse matrix of (g_{ij}) and $G = \det(g_{ij})$. Then, the spectrum Spec(M,g) of the Laplacian Δ , i.e., the set of all eigenvalues of the Laplacian, consists of

$$0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots \to +\infty.$$

The task that calculates the spectrum Spec(M, g) seems to be impossible, in general, for nonhomogeneous Riemannian manifolds. For a few Riemannian manifolds, e.g., flat tori, lens spases and symmetric spaces, spectra have been calculated ([7],[8],[10]).

In this paper, we treat a normal homogeneous manifold $(M.g) = SU(4) / SU(2) \otimes SU(2)$. That is, let (\cdot, \cdot) be an Ad(SU(4))-invariant inner product on the Lie algebra $\mathfrak{su}(4)$. Let \mathfrak{m} be the orthogonal complement to the subalgebra $\mathfrak{su}(2) \otimes I_2 + I_2 \otimes \mathfrak{su}(2)$ of $SU(2) \otimes SU(2)$ in $\mathfrak{su}(4)$ relative to (\cdot, \cdot) , so that $\mathfrak{su}(4) = \mathfrak{su}(2) \otimes I_2 + I_2 \otimes \mathfrak{su}(2) + \mathfrak{m}$ and Ad $(SU(2) \otimes SU(2))$ (\mathfrak{m}) = \mathfrak{m} , where

$$a \otimes b := \begin{pmatrix} a_{11}b & a_{12}b \\ a_{21}b & a_{22}b \end{pmatrix},$$

 $(a = (a_{11}), b = (b_{11}) \in M_2(C)).$

Received March 30, 1993

The tangent space $T_o(SU(4)/SU(2)\otimes SU(2))$ at the origin $o:=SU(2)\otimes SU(2)$ can be identified with the subspace \mathfrak{m} by

$$\mathfrak{m} \in X \to X_o \in T_o(SU(4)/SU(2) \otimes SU(2)),$$

where X_o $f := d/dt \ f(\exp t X \cdot o)|_{t=0}$ for a C^{∞} -function f on $SU(4)/SU(2) \otimes SU(2)$. An inner product g_o on the tangent space at o defined by $g_o(X_o, Y_o) = (X, Y), \ X, Y \in \mathfrak{m}$, can be uniquely extended to a SU(4)-invariant Riemannian metric g on $SU(4)/SU(2) \otimes SU(2)$.

2. The main result.

In this paper, we have

Theorem. Let (M, g) be a normal homogeneous Riemannian manifold $(SU(4)/(SU(2)\otimes SU(2)), g)$ with the normal metric g which is canonically-induced from the Killing form B on the Lie algebra $\mathfrak{su}(4)$ of SU(4). Then, the least positive eigenvalue of the Laplacian Δ_g for (M, g) is $\frac{9}{8}$.

3. Proof of the main result.

3.1. In this part, we present some results on the sectra for normal homogeneous Riemannian manifolds.

The spectrum Spec(G/K, g) of the Laplacian for a normal homogeneous Riemannian manifold G/K can be obtained as follows [8, PP.979-980]. Let t be a maximal abelian subalgebra of the Lie algebra \mathfrak{g} of G. Since the weight of a finite unitary representation of G relative to t has its value in purely imaginary numbers on t, we consider the weight as an element of $\sqrt{-1}\mathfrak{t}^*$, where \mathfrak{t}^* denotes the real dual space of t. From the $\operatorname{Ad}(G)$ -invariant inner product on \mathfrak{g} , a positive inner product on $\sqrt{-1}\mathfrak{t}^*$ is defined in the usual way and denoted by the same symbol (\cdot, \cdot) . Fixing a lexicographic order > on $\sqrt{-1}\mathfrak{t}^*$, let P be the set of all positive roots of the complexification \mathfrak{g}^c of \mathfrak{g} relative to \mathfrak{t}^c . We denote by δ half the sum of all elements in P. Let $\Gamma(G) = \{H \in \mathfrak{t}; \exp H = e\}$ and $I = \{\lambda \in \sqrt{-1}\mathfrak{t}^*; \lambda(H) \in 2\sqrt{-1}Z$ for all $H \in \Gamma(G)\}$. An element in I is called a G - integral form. The elements of

$$D(G) = \{\lambda \in I; (\lambda, \alpha) \ge 0 \text{ for all } \alpha \in P\}$$

Joon-Sik Park

are called *dominant* G-integral forms. Then there exists a natural bijection from D(G) onto the set $\mathfrak{D}(G)$ of all nonequivalent finite dimensional irreducible unitary representation of G which map a dominant G-integral form $\lambda \in D(G)$ to an irreducible unitary representation $(V_{\lambda}, \pi_{\lambda})$ having highest weight λ . For $\lambda \in D(G)$, put $d(\lambda)$ the dimension of the representation V_{λ} . $d(\lambda)$ is given by

$$d(\lambda) = \prod_{\alpha \in P} \frac{(\lambda + \delta, \alpha)}{(\delta, \alpha)}.$$

A representation $(V_{\lambda}, \pi_{\lambda})$ in $\mathfrak{D}(G)$ is called *spherical* relative to K if there exists a nonzero vector $v \in V_{\lambda}$ such that $\pi_{\lambda}(k) v = v$ for all $k \in K$. Let $\mathfrak{D}(G, K)$ be the set of all spherical representations in $\mathfrak{D}(G)$ relative to K and $D(G, K) = \{\lambda \in D(G); (V_{\lambda}, \pi_{\lambda}) \in \mathfrak{D}(G, K)\}.$

Then the following Theorem is well known.

Theorem 1 [7, Propo. 2.1, P.558]. The spectrum Spec(G/K, g) of the Laplacian on the normal homogeneous space (G/K, g) is given by eigenvalues $(\lambda + 2\delta, \lambda), \lambda \in D(G, K)$.

3.2. The inclusion of $SU(2) \otimes SU(2)$ into SU(4) is the tensor product of two usual linear representations of SU(2). In this section, we use the following notations.

$$\begin{split} G &= SU(4), \quad G_{(2)} = SU(2), \quad H = (SU(2) \otimes SU(2)), \quad M = G/H, \\ T &= \{ diag[\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4]; \epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4 = 1, |\epsilon_i| = 1, \epsilon_i \in C \}, \\ T_{(2)} &= \{ diag[\epsilon_1, \epsilon_2]; \epsilon_1 \epsilon_2 = 1, |\epsilon_i| = 1, \epsilon_i \in C \}, \\ \mathfrak{g} \ (\text{resp. } \mathfrak{g}_{(2)}) : \text{ the Lie algebra of } G \ (\text{resp. } G_{(2)}), \\ \mathfrak{h} &= \mathfrak{su}(2) \otimes I_2 + I_2 \otimes \mathfrak{su}(2): \text{ the Lie algebra of } H \text{ as a subspace of } \end{split}$$

g,

t (resp. $t_{(2)}$): the Lie algebra of T (resp. $T_{(2)}$), \mathfrak{g}^c (resp. \mathfrak{t}^c): the complexification of \mathfrak{g} (resp. \mathfrak{t}), $diag[\epsilon_1, \epsilon_2, \cdots, \epsilon_n]$: a diagonal matrix

with diagonal elements $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$.

We give an $\operatorname{Ad}(G)$ -invariant inner product (\cdot, \cdot) on \mathfrak{g} by

(3.1)
$$(X,Y) = -B(X,Y) = -8 Trace(XY), (X,Y \in g),$$

where B is the Killing form on \mathfrak{g}^c . Let g be the G-invariant Riemannian metric on M induced from this inner product (\cdot, \cdot) . We denote by $e_j \in \sqrt{-1}\mathfrak{t}^*$ $(\mathfrak{j}=1,2,3,4)$, the Linear map

$$\sqrt{-1}\mathfrak{t}\ni diag[x_1,x_2,x_3,x_4]\longrightarrow x_j\in C.$$

52 The least positive eigenvalue of Laplacian for $SU(4)/SU(2) \otimes SU(2)$

Put $\alpha_i = e_i - e_{i+1}$, (i = 1, 2). We fix an lexicographic order < on $\sqrt{-1}\mathfrak{t}^*$ in such a way $e_1 > e_2 > e_3 > 0 > e_4$. The set D(G) of all dominant G-integral forms is given by

$$D(G) = \{\lambda = \sum_{i=1}^{3} m_i e_i; \ m_1 \ge m_2 \ge m_3 \ge 0, \ \text{each} \ m_j \in Z \}.$$

On the other hand, the elements $H_{e_j} \in \sqrt{-1}\mathfrak{t}$ such that $e_j(H) = B(H_{e_j}, H)$ for all $H \in \mathfrak{t}^c$ are given as follows:

$$(3.2) \begin{cases} H_{e_1} = 1/32 \ diag[3, -1, -1, -1], \ H_{e_2} = 1/32 \ diag[-1, 3, -1, -1], \\ H_{e_3} = 1/32 \ diag[-1, -1, 3, -1], \ H_{e_4} = 1/32 \ diag[-1, -1, -1, 3], \\ H_{\alpha_1} = 1/8 \ diag[1, -1, 0, 0], \ H_{\alpha_2} = 1/8 \ diag[0, 1, -1, 0], \\ H_{\alpha_3} = 1/8 \ diag[0, 0, 1, -1]. \end{cases}$$

Then the inner product (\cdot, \cdot) induced on $\sqrt{-1}\mathfrak{t}$ is given by

(3.3)
$$(e_i, e_j) = (H_{e_i}, H_{e_j}) = \begin{cases} \frac{3}{32} & (i = j), \\ \frac{-1}{32} & (i \neq j), \end{cases}$$

where i, j = 1, 2, 3, 4. The set P of all positive roots of g^c relative to t^c is

$$(3.4) \quad P = \{e_i - e_j; 1 \le i < j \le 4\},\$$

so we have

 $(3.5) \quad \delta = 3e_1 + 2e_2 + e_3.$

for $\lambda = m_1e_1 + m_2e_2 + m_3e_3 \in D(G)$. Moreover, we have

(3.7)
$$d(\lambda) = \prod_{1 \le i < j \le 4} \frac{(e_i - e_j, \lambda + \delta)}{(e_i - e_j, \delta)} = (1/12)(m_1 + 3)(m_2 + 2)(m_3 + 1) (m_1 - m_3 + 2)(m_1 - m_3 + 1)(m_1 - m_3 + 2)$$

for $\lambda = m_1e_1 + m_2e_2 + m_3e_3 \in D(G)$. Here we have

Lemma 2. Let m be the orthogonal complement of \mathfrak{h} in \mathfrak{g} with respect to the inner product (\cdot, \cdot) . Then m is given by (3.8) $\mathfrak{m} = \{(A_{ij}) \in \mathfrak{g}; TraceA_{ij} = 0 \ (i, j = 1, 2), A_{11} + A_{22} = O_2\},\$

where O_2 is the zero matrix of order 2.

Proof. Since $\mathfrak{h} = \{X \otimes I_2 + I_2 \otimes Y; X, Y \in \mathfrak{g}_{(2)}\}$, \mathfrak{m} is perpendicular to \mathfrak{h} . Moreover, $dim\mathfrak{h} + dim\mathfrak{m} = dim\mathfrak{g}$. Hence, the proof of this Lemma is completed.

In the unitary irreducible representations of $G_{(2)}$, we use the same symbols as occured in the unitary irreducible representation of G. Let $V^{(2)}_l$ be a unitary irreducible representation space of $G_{(2)}$ with highest weight le_1 , where $le_1 \in D(G(2)) = \{me_1; m \ge 0, m \in Z\}$, [5, Th.1, P.46]. By the character formula of Weyl [10, PP.332-333] for $\lambda = f_1e_1 + f_2e_2 + f_3e_3 \in D(G)$,

(3.9)
$$\chi_{\lambda}(h) = |\epsilon_{\iota}^{l_{j}}|/\xi(h)|$$

for each $h = diag[\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4] \in T$, where $|\epsilon_i^{l_j}|$ is the determinant of matrix of order 4 whose (i, j)-entries are $\epsilon_i^{l_j}$,

(3.10)
$$l_j = f_j + 4 - j$$
 $(j = 1, 2, 3)$, and $l_4 = 0$,

and $\xi(h)$ is given as follows:

(3.11) $\xi(h) = \prod_{1 \le i \le j \le 4} (\epsilon_i - \epsilon_j).$

Now let us consider the decomposition of V_{λ} , $(\lambda = \sum_{i=1}^{4} f_i e_i \in D(G))$, into *H*-irreducible submodule as follows:

(3.12)
$$V_{\lambda} = \sum N(\lambda, l_1, l_2) V^{(2)}_{l_1} \otimes V^{(2)}_{l_2}$$

where l_1, l_2 run over the set of all non-zero integers, $V^{(2)}_{l_1} \otimes V^{(2)}_{l_2}$ are irreducible representation spaces of $G_{(2)} \otimes G_{(2)}$, and $N(\lambda, l_1, l_2)$ is the multiplicity of $V^{(2)}_{l_1} \otimes V^{(2)}_{l_2}$ in V_{λ} .

We investigate $\lambda \in D(G)$ which belong to D(G, H). $\lambda \in D(G)$ belongs to D(G, H) if and only if the unitary irreducible representation space V_{λ} of G contains $V^{(2)}_{0} \otimes V^{(2)}_{0}$. We put

$$h = h_1 \otimes h_2 = diag[x, x^{-1}] \otimes diag[y, y^{-1}]$$

= $diag[xy, xy^{-1}, x^{-1}y, x^{-1}y^{-1}]$
 $\in T_{(2)} \otimes T_{(2)} \subset T,$

then we have from (3,12)

(3.13)
$$\chi_{\lambda}(h) = \sum N(\lambda, l_1, l_2) \chi_{l_1}(h_1) \chi_{l_2}(h_2),$$

where χ_{λ} (resp. $\chi_{l_{\star}}$) is the character of the irreducible representation of G (resp. $G_{(2)}$) with the highest weight λ (resp. $l_{\star}e_{1}$). Then we have

Lemma 3.

$$\begin{array}{l} (a) \ V_{e_1} = V^{(2)}{}_1 \otimes V^{(2)}{}_1, \\ (b) \ V_{e_1+e_2} = V^{(2)}{}_2 \otimes V(2)_0 + V^{(2)}{}_0 \otimes V^{(2)}{}_2, \\ (c) \ V_{e_1+e_2+e_3} = V^{(2)}{}_1 \otimes V^{(2)}{}_1, \\ (d) \ V_{2e_1} = V^{(2)}{}_2 \otimes V^{(2)}{}_2 + V^{(2)}{}_0 \otimes V^{(2)}{}_0, \\ (e) \ V_{2e_1+e_2} = V^{(2)}{}_3 \otimes V^{(2)}{}_1 + V^{(2)}{}_1 \otimes V^{(2)}{}_3 + V^{(2)}{}_1 \otimes V^{(2)}{}_1, \\ (f) \ V_{2e_1+e_2+e_3} = V^{(2)}{}_2 \otimes V^{(2)}{}_2 + V^{(2)}{}_2 \otimes V^{(2)}{}_0 + V^{(2)}{}_0 \otimes V^{(2)}{}_2, \\ (g) \ V_{2e_1+2e_2+e_3} = V^{(2)}{}_3 \otimes V^{(2)}{}_1 + V^{(2)}{}_1 \otimes V^{(2)}{}_3 + V^{(2)}{}_1 \otimes V^{(2)}{}_1, \\ (h) \ V_{2e_1+2e_2+2e_3} = V^{(2)}{}_2 \otimes V^{(2)}{}_2 + V^{(2)}{}_0 \otimes V^{(2)}{}_0. \end{array}$$

Proof. Comparing with coefficients of both sides of (3.13) by using Weyl's character formular (3.9)-(3.11), we can obtain this Lemma. Q.E.D.

Remark. Comparing with the dimensions of both sides in the decompositions in the above Lemma, we can check these decompositions. Using (3.6), we get

Lemma 4.

- (a) $(2\delta + 2e_1, 2e_1) = 4(\delta + e_1 + e_2 + e_3, e_1 + e_2 + e_3) = 9/8$,
- (b) In case of $\lambda \in \{m_1e_1 + m_2e_2 + m_3e_3 \in D(G); m_1 \ge 3\}, (2\delta + \lambda, \lambda) > (39/32).$

Therefore, we get from Theorem 1, Lemma 3 and Lemma 4 that the least positive eigenvalue of the Laplace-Beltrami operator Δ_g of (G/H,g) is 9/8.

References

- S.Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1978
- [2] M.Ise, The theory of symmetric spaces, Sugaku, 11 (1959), 76~93
- [3] N.Iwahori, Theory of Lie Groups (in Japanese), Iwanami, Tokyo, 1957
- [4] S.Kobayashi and K.Nomizu, Foundations of Differential Geometry, New-York, Interscience, 1969
- [5] I.Satake, The Theory of Lie Algebra (in Japanese), Nihon-Hyoron-Sha, 1987
- [6] M.Takeuchi, Modern Theory of Spherical Functions (in Japanese), Iwa-

nami, Tokyo, 1974

- [7] Y.Taniguchi, Normal homogeneous metrics and their spectra, Osaka J. Math. 18 (1981), 555~576
- [8] H.Urakawa, Numerical computations of the spectra of the Laplacian on 7-dimensional homogeneous manifold SU(3)/T(k,l), SIAM J. Math.

Anal., 15 (1984), 979~987

- [9] H.Urakawa, Variations and Harmonic Maps (in Japanese), Shokabow, 1990
- [10] H.Urakawa, Minimal immersions of projective spaces into spheres, Tsu I. M. J. M. J. M. D. (1995), 201–247.

kuba J. Math., Vol.9 No.2 (1985), 321~347

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Korea