THE LEAST POSITIVE EIGENVALUE OF LAPLACIAN FOR $S U(4) / S U(2) \otimes S U(2)$

Joon-Sik Park

1. Introduction.

Let (M, g) be an n-dimensional compact Riemannian manifold. We denote by Δ the Laplace-Beltrami operator acting on the space $C^{\infty}(M)$ of all complex valued smooth functions on M, that is,

$$
\begin{equation*}
\Delta=-\sum_{i, 3} \frac{1}{\sqrt{G}} \frac{\partial}{\partial x^{i}}\left(\sqrt{G} g^{\imath \jmath} \frac{\partial}{\partial x^{j}}\right) \tag{1.1}
\end{equation*}
$$

where the $g_{1 j}$ are the components of g with respect to a local coordinate $\left(x_{1}, x_{2}, \cdots, x_{n}\right),\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$ and $G=\operatorname{det}\left(g_{z j}\right)$. Then, the spectrum $\operatorname{Spec}(M, g)$ of the Laplacian Δ, i.e, the set of all eigenvalues of the Laplacian, consists of

$$
0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots \rightarrow+\infty
$$

The task that calculates the spectrum $\operatorname{Spec}(M, g)$ seems to be impossible, in general, for nonhomogeneous Riemannian manifolds. For a few Riemannian manifolds, e.g., flat tori, lens spases and symmetric spaces, spectra have been calculated ($[7],[8],[10])$.

In this paper, we treat a normal homogeneous manifold ($M . g$) $=S U(4) / S U(2) \otimes S U(2)$. That is, let (\cdot, \cdot) be an $\operatorname{Ad}(S U(4))-$ invariant inner product on the Lie algebra $\mathfrak{s u}(4)$. Let m be the orthogonal complement to the subalgebra $\mathfrak{s u}(2) \otimes I_{2}+I_{2} \otimes \mathfrak{s u}(2)$ of $S U(2) \otimes S U(2)$ in $\mathfrak{s u}(4)$ relative to (\cdot, \cdot), so that $\mathfrak{s u}(4)=\mathfrak{s u}(2) \otimes I_{2}+I_{2} \otimes \mathfrak{s u}(2)+\mathfrak{m}$ and $\operatorname{Ad}(S U(2) \otimes S U(2))(\mathfrak{m})=\mathfrak{m}$, where

$$
\begin{gathered}
a \otimes b:=\left(\begin{array}{ll}
a_{11} b & a_{12} b \\
a_{21} b & a_{22} b
\end{array}\right), \\
\left(a=\left(a_{2 j}\right), b=\left(b_{\imath \jmath}\right) \in M_{2}(C)\right) .
\end{gathered}
$$

Received March 30, 1993

The tangent space $T_{0}(S U(4) / S U(2) \otimes S U(2))$ at the origin $o:=S U(2) \otimes$ $S U(2)$ can be identified with the subspace \mathfrak{m} by

$$
\mathfrak{m} \in X \rightarrow X_{o} \in T_{o}(S U(4) / S U(2) \otimes S U(2))
$$

where $X_{0} f:=d /\left.d t f(\operatorname{expt} X \cdot o)\right|_{t=0}$ for a C^{∞}-function f on $S U(4) / S U(2) \otimes S U(2)$. An inner product g_{o} on the tangent space at o defined by $g_{o}\left(X_{o}, Y_{o}\right)=(X, Y), X, Y \in \mathfrak{m}$, can be uniquely extended to a $S U(4)$-invariant Riemannian metric g on $S U(4) / S U(2) \otimes S U(2)$.

2. The main result.

In this paper, we have
Theorem. Let (M, g) be a normal homogeneous Rzemannian manifold $(S U(4) /(S U(2) \otimes S U(2)), g)$ with the normal metric g which is canowically-induced from the Killing form B on the Lie algebra_su(4) of $S U(4)$. Then, the least posttive ezgenvalue of the Laplacian Δ_{g} for (M, g) is $\frac{9}{8}$.

3. Proof of the main result.

3.1. In this part, we present some results on the sectra for normal homogeneous Riemannian manifolds.

The spectrum $\operatorname{Spec}(G / K, g)$ of the Laplacian for a normal homogeneous Riemannian manifold G / K can be obtained as follows [8, PP.979-980]. Let \mathfrak{t} be a maximal abelian subalgebra of the Lie algebra \mathfrak{g} of G. Since the weight of a finite unitary representation of G relative to t has its value in purely imaginary numbers on t, we consider the weight as an element of $\sqrt{-1} t^{*}$, where t^{*} denotes the real dual space of t. From the $\operatorname{Ad}(G)$-invariant inner product on \mathfrak{g}, a positive inner product on $\sqrt{-1} t^{*}$ is defined in the usual way and denoted by the same symbol (\cdot, \cdot). Fixing a lexicographic order $>$ on $\sqrt{-1} t^{*}$, let P be the set of all positive roots of the complexification \mathfrak{g}^{c} of \mathfrak{g} relative to \mathfrak{t}^{c}. We denote by δ half the sum of all elements in P. Let $\Gamma(G)=\{H \in \mathfrak{t} ; \exp H=e\}$ and $I=\left\{\lambda \in \sqrt{-1} \mathbf{t}^{*} ; \lambda(H) \in 2 \sqrt{-1} Z\right.$ for all $\left.H \in \Gamma(G)\right\}$. An element in I is called a G-integral form. The elements of

$$
D(G)=\{\lambda \in I ;(\lambda, \alpha) \geq 0 \text { for all } \alpha \in P\}
$$

are called dominant G-integral forms. Then there exists a natural bijection from $D(G)$ onto the set $\boldsymbol{D}(G)$ of all nonequivalent finite dimensional irreducible unitary representation of G which map a dominant G-integral form $\lambda \in D(G)$ to an irreducible unitary representation $\left(V_{\lambda}, \pi_{\lambda}\right)$ having highest weight λ. For $\lambda \in D(G)$, put $d(\lambda)$ the dimension of the representation $V_{\lambda} . d(\lambda)$ is given by

$$
d(\lambda)=\Pi_{\alpha \in P} \frac{(\lambda+\delta, \alpha)}{(\delta, \alpha)}
$$

A representation $\left(V_{\lambda}, \pi_{\lambda}\right)$ in $\mathfrak{D}(G)$ is called spherical relative to K if there exists a nonzero vector $v \in V_{\lambda}$ such that $\pi_{\lambda}(k) v=v$ for all $k \in K$. Let $\mathfrak{D}(G, K)$ be the set of all spherical representations in $\mathfrak{D}(G)$ relative to K and $D(G, K)=\left\{\lambda \in D(G) ;\left(V_{\lambda}, \pi_{\lambda}\right) \in \mathfrak{D}(G, K)\right\}$.

Then the following Theorem is well known.
Theorem 1 [7, Propo. 2.1, P.558]. The spectrum $\operatorname{Spec}(G / K, g)$ of the Laplactan on the-normal homogeneous space $(G / K, g)$ is guven by eigenvalues $(\lambda+2 \delta, \lambda), \lambda \in D(G, K)$.
3.2. The inclusion of $S U(2) \otimes S U(2)$ into $S U(4)$ is the tensor product of two usual linear representations of $S U(2)$. In this section, we use the following notations.
$G=S U(4), \quad G_{(2)}=S U(2), \quad H=(S U(2) \otimes S U(2)), \quad M=G / H$,
$T=\left\{d_{2} a g\left[\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}\right] ; \epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}=1,\left|\epsilon_{2}\right|=1, \epsilon_{1} \in C\right\}$,
$T_{(2)}=\left\{d_{2 a g}\left[\epsilon_{1}, \epsilon_{2}\right] ; \epsilon_{1} \epsilon_{2}=1,\left|\epsilon_{\imath}\right|=1, \epsilon_{2} \in C\right\}$,
$\mathfrak{g}\left(\right.$ resp. $\left.\mathfrak{g}_{(2)}\right)$: the Lie algebra of G (resp. $\left.G_{(2)}\right)$,
$\mathfrak{h}=\mathfrak{s u}(2) \otimes I_{2}+I_{2} \otimes \mathfrak{s u}(2):$ the Lie algebra of H as a subspace of \mathfrak{g},
$\mathfrak{t}\left(\right.$ resp. $\left.\mathfrak{t}_{(2)}\right)$: the Lie algebra of T (resp. $\left.T_{(2)}\right)$,
\mathfrak{g}^{c} (resp. \mathfrak{f}^{c}) : the complexification of \mathfrak{g} (resp. \mathfrak{t}),
$\operatorname{diag}\left[\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{n}\right]$: a diagonal matrix
with diagonal elements $\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{n}$.
We give an $\operatorname{Ad}(G)$-invariant inner product (\cdot, \cdot) on \mathfrak{g} by

$$
\begin{equation*}
(X, Y)=-B(X, Y)=-8 \operatorname{Trace}(X Y), \quad(X, Y \in \mathfrak{g}) \tag{3.1}
\end{equation*}
$$

where B is the Killing form on \mathfrak{g}^{c}. Let g be the G-invariant Riemannian metric on M induced from this inner product (\cdot, \cdot). We denote by $e, \in \sqrt{-1} \mathfrak{t}^{*} \quad(\mathrm{j}=1,2,3,4)$, the Linear map

$$
\sqrt{-1} \mathfrak{t} \ni \operatorname{diag}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \longrightarrow x_{j} \in C
$$

Put $\alpha_{1}=e_{2}-e_{1+1}, \quad(2=1,2)$. We fix an lexicographic order $<$ on $\sqrt{-1} t^{*}$ in such a way $e_{1}>e_{2}>e_{3}>0>e_{4}$. The set $D(G)$ of all dominant G-integral forms is given by

$$
D(G)=\left\{\lambda=\sum_{t=1}^{3} m_{2} e_{i} ; m_{1} \geq m_{2} \geq m_{3} \geq 0, \text { each } m_{j} \in Z\right\}
$$

On the other hand, the elements $H_{e} \in \sqrt{-1 t}$ such that $e_{3}(H)=$ $B\left(H_{e}, H\right)$ for all $H \in \mathfrak{t}^{c}$ are given as follows:

$$
\left\{\begin{array}{l}
H_{e_{1}}=1 / 32 \operatorname{diag}[3,-1,-1,-1], H_{e_{2}}=1 / 32 \operatorname{diag}[-1,3,-1,-1] \tag{3.2}\\
H_{e_{3}}=1 / 32 \operatorname{diag}[-1,-1,3,-1], H_{e_{4}}=1 / 32 \operatorname{diag}[-1,-1,-1,3] \\
H_{\alpha_{1}}=1 / 8 \operatorname{diag}[1,-1,0,0], \quad H_{\alpha_{2}}=1 / 8 \operatorname{diag}[0,1,-1,0] \\
H_{\alpha_{3}}=1 / 8 \operatorname{diag}[0,0,1,-1]
\end{array}\right.
$$

Then the inner product (\cdot, \cdot) induced on $\sqrt{-1} t$ is given by

$$
\left(e_{i}, e_{j}\right)=\left(H_{e_{i}}, H_{e_{j}}\right)= \begin{cases}\frac{3}{32} & (i=j) \tag{3.3}\\ \frac{-1}{32} & (i \neq j)\end{cases}
$$

where $i, j=1,2,3,4$. The set P of all positive roots of \mathfrak{g}^{c} relative to \mathfrak{t}^{c} is

$$
\begin{equation*}
P=\left\{e_{i}-e_{j} ; 1 \leq i<j \leq 4\right\} \tag{3.4}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\delta=3 e_{1}+2 e_{2}+e_{3} \tag{3.5}
\end{equation*}
$$

Therefore we have

$$
\begin{align*}
&(\lambda+2 \delta, \lambda)=(1 / 32) {\left[\left(m_{1}-m_{2}\right)^{2}+\left(m_{2}-m_{3}\right)^{2}+\left(m_{3}-m_{1}\right)^{2}\right.} \tag{3.6}\\
&\left.+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+12 m_{1}+4\left(m_{2}-m_{3}\right)\right]
\end{align*}
$$

for $\lambda=m_{1} e_{1}+m_{2} e_{2}+m_{3} e_{3} \in D(G)$. Moreover, we have

$$
\begin{align*}
d(\lambda)= & \Pi_{1 \leq r<\jmath \leq 4} \frac{\left(e_{i}-e_{j}, \lambda+\delta\right)}{\left(e_{i}-e_{j}, \delta\right)} \\
= & (1 / 12)\left(m_{1}+3\right)\left(m_{2}+2\right)\left(m_{3}+1\right) \tag{3.7}\\
& \quad\left(m_{1}-m_{2}+1\right)\left(m_{2}-m_{3}+1\right)\left(m_{1}-m_{3}+2\right)
\end{align*}
$$

for $\lambda=m_{1} e_{1}+m_{2} e_{2}+m_{3} e_{3} \in D(G)$. Here we have
Lemma 2. Let \mathfrak{m} be the orthogonal complement of \mathfrak{h} in \mathfrak{g} with respect to the inner product (\cdot, \cdot). Then m as given by (3.8) $\mathrm{m}=\left\{\left(A_{i j}\right) \in \mathfrak{g} ; \operatorname{Trace} A_{i j}=0(i, j=1,2), A_{11}+A_{22}=O_{2}\right\}$,
where O_{2} ts the zero matrix of order 2.
Proof. Since $\mathfrak{h}=\left\{X \otimes I_{2}+I_{2} \otimes Y ; X, Y \in \mathfrak{g}_{(2)}\right\}$, \mathfrak{m} is perpendicular to h. Moreover, $d_{2 m h}+d_{2 m m}=d m g$. Hence, the proof of this Lemma is completed.

In the unitary irreducible representations of $G_{\{2)}$, we use the same symbols as occured in the unitary irreducible representation of G. Let $V^{(2)}$ be a unitary irreducible representation space of $G_{(2)}$ with highest weight $l e_{1}$, where $l e_{1} \in D(G(2))=\left\{m e_{1} ; m \geq 0, m \in Z\right\}$, $\{5$, Th.1, P.46]. By the character formula of Weyl [10, PP.332-333] for $\lambda=$ $f_{1} e_{1}+f_{2} e_{2}+f_{3} e_{3} \in D(G)$,

$$
\begin{equation*}
\chi_{\lambda}(h)=\left|\epsilon_{t}^{l,}\right| / \xi(h) \tag{3.9}
\end{equation*}
$$

for each $h=\operatorname{duag}_{2}\left[\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}\right] \in T$, where $\left|\epsilon_{t}^{t_{3}}\right|$ is the determinant of matrix of order 4 whose (\imath, j)-entries are $\epsilon_{1}^{l_{1}}$,
(3.10) $\quad l_{3}=f_{3}+4-\jmath \quad(j=1,2,3)$, and $l_{4}=0$,
and $\xi(h)$ is given as follows:

$$
\begin{equation*}
\xi(h)=\Pi_{1 \leq \imath<j \leq 4}\left(\epsilon_{t}-\epsilon_{j}\right) . \tag{3.11}
\end{equation*}
$$

Now let us consider the decomposition of $V_{\lambda},\left(\lambda=\sum_{2=1}^{4} f_{2} e_{2} \in\right.$ $D(G))$, into H-irreducible submodule as follows:

$$
\begin{equation*}
V_{\lambda}=\sum N\left(\lambda, l_{1}, l_{2}\right) V^{(2)} l_{1} \otimes V^{(2)} l_{2}, \tag{3.12}
\end{equation*}
$$

where l_{1}, l_{2} run over the set of all non-zero integers, $V^{(2)} l_{1} \otimes V^{(2)} l_{2}$ are irreducible representation spaces of $G_{(2)} \otimes G_{(2)}$, and $N\left(\lambda, l_{1}, l_{2}\right)$ is the multiplicity of $V^{(2)} I_{1} \otimes V^{(2)} l_{2}$ in V_{λ}.

We investigate $\lambda \in D(G)$ which belong to $D(G, H), \quad \lambda(\in D(G))$ belongs to $D(G, H)$ if and only if the unitary irreducible representation space V_{λ} of G contains $V^{(2)}{ }_{0} \otimes V^{(2)}$. We put

$$
\begin{aligned}
h=h_{1} \otimes h_{2} & =\operatorname{diag}\left[x, x^{-1}\right] \otimes \operatorname{diag}\left[y, y^{-1}\right] \\
& =\operatorname{diag}\left[x y, x y^{-1}, x^{-1} y, x^{-1} y^{-1}\right] \\
& \in T_{(2)} \otimes T_{(2)} \subset T
\end{aligned}
$$

then we have from $(3,12)$

$$
\begin{equation*}
\chi_{\lambda}(h)=\sum N\left(\lambda, l_{1}, l_{2}\right) \chi_{l_{1}}\left(h_{1}\right) \chi_{l_{2}}\left(h_{2}\right), \tag{3.13}
\end{equation*}
$$

where χ_{λ} (resp. $\chi_{l_{t}}$) is the character of the irreducible representation of G (resp. $G_{(2)}$) with the highest weight λ (resp. $l_{2} e_{1}$). Then we have

Lemma 3.

(a) $V_{e_{1}}=V^{(2)}{ }_{1} \otimes V^{(2)}{ }_{1}$,
(b) $V_{e_{1}+e_{2}}=V_{2}^{(2)} \otimes V(2)_{0}+V^{(2)} \otimes V^{(2)}{ }_{2}$,
(c) $V_{e_{1}+e_{2}+e_{3}}=V_{1}^{(2)} \otimes V^{(2)}$,
(d) $V_{2 e_{1}}=V_{2}^{(2)} \otimes V^{(2)}+V_{0}^{(2)} \otimes V_{0}^{(2)}$,
(e) $V_{2 e_{1}+e_{2}}=V^{(2)}{ }_{3} \otimes V^{(2)}{ }_{1}+V^{(2)}{ }_{1} \otimes V^{(2)}{ }_{3}+V^{(2)}{ }_{1} \otimes V^{(2)}{ }_{1}$,
(f) $V_{2 e_{1}+e_{2}+e_{3}}=V^{(2)}{ }_{2} \otimes V^{(2)}{ }_{2}+V^{(2)}{ }_{2} \otimes V^{(2)}{ }_{0}+V^{(2)} \otimes V^{(2)}{ }_{2}$,
$(g) V_{2 e_{1}+2 e_{2}+e_{3}}=V^{(2)}{ }_{3} \otimes V^{(2)}{ }_{1}+V^{(2)}{ }_{1} \otimes V^{(2)}{ }_{3}+V^{(2)}{ }_{1} \otimes V^{(2)}{ }_{1}$,
(h) $V_{2 e_{1}+2 e_{2}+2 e_{3}}=V^{(2)} \otimes V^{(2)}{ }_{2}+V^{(2)}{ }_{0} \otimes V^{(2)}$.

Proof. Comparing with coefficients of both sides of (3.13) by using Weyl's character formular (3.9)-(3.11), we can obtain this Lemma. Q.E.D.

Remark. Comparing with the dimensions of both sides in the decompositions in the above Lemma, we can check these decompositions.

Using (3.6), we get

Lemma 4.

(a) $\left(2 \delta+2 e_{1}, 2 e_{1}\right)=4\left(\delta+e_{1}+e_{2}+e_{3}, e_{1}+e_{2}+e_{3}\right)=9 / 8$,
(b) In case of $\lambda \in\left\{m_{1} e_{1}+m_{2} e_{2}+m_{3} e_{3} \in D(G) ; m_{1} \geq 3\right\}$, $(2 \delta+\lambda, \lambda)>(39 / 32)$.
Therefore, we get from Theorem 1, Lemma 3 and Lemma 4 that the least positive eigenvalue of the Laplace-Beltrami operator Δ_{g} of $(G / H, g)$ is $9 / 8$.

References

[1] S.Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1978
[2] M.Ise, The theory of symmetric spaces, Sugaku, 11 (1959), 76~93
[3] N.Iwahori, Theory of Lie Groups (in Japanese), Iwanami, Tokyo, 1057
[4] S.Kobayashi and K.Nomizu, Foundations of Differential Geometry, New-York, Interscience, 1969
[5] I.Satake, The Theory of Lie Algebra (in Japanese), Nihon-HyoronSha, 1987
[6] M.Takeuchi, Modern Theory of Spherical Functions (in Japanese), Iwanami, Tokyo, 1974
[7] Y.Taniguchi, Normal homogeneous metrics and their spectra, Osaka J. Math. 18 (1981), 555~576
[8] H.Urakawa, Numerical computations of the spectra of the Laplacian on 7 -dimensional homogeneous manifold $S U(3) / T(k, l)$, SIAM J. Math.
Anal., 15 (1984), 979~987
[9] H.Urakawa, Variations and Harmonic Maps (in Japanese), Shokabow, 1990
[10] H.Urakawa, Minimal immersions of projective spaces into spheres, Tsu-
kuba J. Math., Vol. 9 No. 2 (1985), 321~347
Department of Mathematics
Pusan University of Foreign Studies
Pusan 608-738, Korea

