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AUTOMORPHISMS OF 4%

TAEG YOUNG CHOI

1. Introduction

The study of reflexive, but not necessarily self-adjoint. algebras of
Hilbert space operators has become one of the fastest growing spe-
clalties in operator theory. F. Gilfeather and D. Larson discovered
the tridiagonal algebras Az, Ay,--- , Ax[3]. The tridiagonal algebras
are the important classes of non-self-adjoint reflexive algebras. Let H
be a 2n-dimensional complex Hilbert space with an orthonormal basis
{ei,e2, - ,ean}. Then A is in Ay, if and only if A has the form

(~ ")

with respect to the basis {e;, €2, - , €2, }, where all non-starred entries
are zero. If we write the given basis in the order {ey,e3,--- ,e2n-1, €2,

Received March 23, 1993

25



26 AUTOMORPHISMS OF A%

€4, ,€2n}, then the above matrix looks like this

* * *\
* * ok
*

\ v/
where all non-starred entries are zero. The subalgebra of B(H), the
class of all bounded operators acting on H, consisting of these operators
was denoted by AL {6].

Let Sy be an n x n matrix with two 1 in each row and each column

and 0 elsewhere as entries. Let S be an n X n matrix. Then 5y <X §
means that if the (s, 7)-component of S is 0, then the (2, }-component

of §is also 0. Let Agff) be the algebra consisting of the operators of

1 S
0 D,
and Sy < S. If Sy is an n X n matrix whose (z,2)-component is 1 for all
i=1,2,---,n,(3+1,5)-component is 1 forall j = 1,2,--- ,n—1, (1,n)-

component is 1 and all other components are zero, then Agi") = Af; :

So the algebra .423;3 is the special form of the algebra Agi"). In this
paper we will investigate the necessary and sufficient condition that
the automorphisms of Agi"} are spatially implemented.

First we will introduce the terminologies which are used in this pa-
per. Let H be a complex Hilbert space and let A be a subalgebra of
B(H). Ais called a self-adjoint algebra provided A* is in A for every A
in A. Otherwise, A is called a non-self-adjoint algebra. If £ is a lattice
of orthogonal projections acting on H, AlgL denotes the algebra of all
operators acting on H that leave invariant every orthogonal projections
in £. A subspace lattice £ is a strongly closed lattice of orthogonal
projections acting on H, containing 0 and I. Dually, if A is a subal-
gebra of B(H), then LatA is the lattice of all orthogonal projections

the form ), where Dy and D, are n X n diagonal matrices
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which leave invariant each operator in 4. An algebra A is reflexive if
A = AlgLat A and a lattice L is reflexive if £ = LatAlgL. A lattice £
is a commutative subspace lattice, or CSL, if each pair of projections
in £ commutes; AlgL is called a CSL-algebra. Let £; and £, be com-
mutative subspace lattices. By an isomorphism ¢ : AlgL, — AlgL,
we mean a strictly algebraic isomorphism, that is, a bijective, linear,
multiplicative map. An isomorphism ¢ : AlgL, — AlgL, is said to be
spatially implemented if there is a bounded invetible operator T such
that o{A) = TAT! for all 4 in AlgL,. If zy,25,-+- ,z, are vectors
in some Hilbert space, then [z, 2, -+, 2,,] means the closed subspace
generated by the vectors z,z4,--- ,z,. Let 2 and ; be two nonzero
natural numbers. Then F,, is the matrix whose (2, j)—component is 1
and all other entries are zero.

: (Sa)
2. Automorphisms of A4;)°

Let ‘H be a 2n-dimensional complex Hilbert space with a fixed or-

thonormal basis {e1, e, - ,€3,}. Let E,,, E,, and E; 4, bein A(S°)

forall:(1 <i<n)andn+1 <4 <22 <2nandlet Ey ,, By, aud

E,, bem Agi") forall 3(n+1 <3 <2n)and 1 < j(l) < ](2) < n. Let
L be the subspace lattice generated by {[e:],[e2],- " [en] [ Jm, €2,

e;]:3=n+1n+2. -, 2n}. Then A.ﬂﬁ") = AlgL and ‘AZu is reflex-
ive[l]. Before we investigate the general automorphisms ¢ : Ag‘i"j -~

g'ﬁ") we will consider the automorphisms p : A&f‘;” — A(S" satisfying

p(Epp) = Epp for all p(1 < p < 2n). Since B E,,, E,,“,,: = E,,, for
all 1 and k{1 <2 <n,1 <k <2),p(E, .} = p(E)p(E, ) Er ) =
E.p(E, . )E: .- Hence p(E,,, )} = V1., E. ., for some nonzero complex
number 7, ,,. From this we have the following theorem.

THEOREM 1. Let p: A(zi") — .A({i“) be an automorphism such that
p(Epp) = Epp for all p(1 < p < 2n). Then there exist 2n nonzero
complex numbers v,,, (1 <@ < n,1 < k < 2) such that p(FE,, ) =
’Yl,!kEi,tk'

Let %, (1 €7 < n,1 <k < 2) be 2n nonzero complex numbers.
Define a linear map p : Agi"} .A(S") by p(E,p) = Epp for all p(1 <
p<2n)and p(E,,,) =7, E.s forall e and k(1 <2 <n,1 <k <2},
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Then clearly p is an automorphism. From this we have the following
theorem.

THEOREM 2. I v, ; (1 £1 < n,1 <k £2) be 2n nonzero complex
numbers, then there exists an automorphism p : Ag‘:") — Agi") such
that p(Epp) = Epp for all p(1 < p < 2n) and p(E,,,) = 11, Ei,, for
allz and k(1 <7 <n,1 <k <2).

THEOREM 3. Let p: .A(S") (S°) be an automorphism such that
p(Epp} = Epp for all p(1 S p<2n) a.nd let p(Eru) = T Brins Vo #
0, for all 1, k(1 <1 < n,1 < k <2). Then p is spatially impfemented
by T = (tu,) if and only if T is diagonal and v;,, = t“t‘ s for all
Lh1<:<n1<k<2).

Proof. Let A = (a,;) be in A5 and T = ¥2" #,,Eyy. Then
p(A)T = TA. Hence p(A) = TAT ! for all 4 in A(S°). Conversely,
suppose that p 15-spatraity mplemented by T = (tw) S‘mce P Epp) =
E,,, E,,T = TE,, for all p = 1,2,--- ,2n. Hence t,; = 0 for all
p,q(p # ¢)- Thus T is diagonal. Let T = 32", tyy Euy and p(E. ., ) =
Yaw By, forall i, k(1 <1< n,1 <k<2). Then

2n

P(E )T = (muEisy )(z tuuBuu) = Yo tae,n By and

u=l]

2n
T-Et,tk = (Z tquuu)Ez,zk = tﬂEl,tk

u=1

Hence v,,, = t,;471  for all Wl <i:<n)and k(1 <k <2).

tg,te

THEOREM 4. Let ¢ : Ag") .A(S") be an automorphism. Then for
each 3{1 £ 5 £ 2n), either there exist an integer p with 1 < p < n and
complex numbers o, 5, and ayp 5, such that ¢(E,,) = Epptap 5 Ep g +
0p 5, By p, Or there exist an integer ¢ withn+1 < g < 2n and complex
numbers f ) , and B2 , such that ¢(E,,) = Egq + Ba) gy ¢ +
Ba g Eqe2 4-

Proof. Let $(E,,) = (‘?]‘ I‘i) be in ALY, Since §(E,,) =

#(E,,;), we have D? = Dy, D2 = Dy and DS + §D; = S. Hence each
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diagonal element of ¢(E,,) is 1 or 0. Since all diagonal elements of
¢(E,;,) is 0 implies ¢( E,;)* = 0, the (p, p)-component of ¢(E,,) is 1 for
some p(1 < p < 2n). If the (r,r)-component of §(E;;) is 1 for some
r such that r # p and 1 < r < 2n, then the (p, p)-component and the
(r,r)-component of ¢(E,;) are 1. So there exists k with 1 < k < 2n and
j # k such that one of the (p, p)-component or the (r,r)-component
of ¢(Exi) is 1, and so 0 = ¢(E,,Exi) = ¢(E;;)¢(Exx) # 0 which
1s a contradiction. Hence the (p, p)-component of #(E,,) is 1 for one
and only one p(1 < p < 2n). If the (p,p)-component of ¢(E,,) is
1 for some p with 1 < p < n, then §(E,,) = E,, + (g g) So
#(E;;) = ¢(Ey;)? = Epp + @pp, Eppy + &pp, Bp,p, for some complex
numbers oy, , and ap,,. If the (g,g)-component of ¢(E,,) is 1 for
some ¢ with n +1 < ¢ < 2n, then ¢(E,;) = E,y + (g g) So
HE))) = HE;) = EoqtB,05 o Eq) g+ Byi2) o Eyn 4 for some complex

numbers 8,0) , and By 4.

THEOREM 5. Let ¢ - Ag’,s;’) — .A(zi") be an automorphism
(1)If1 < < n and the (p, p)-component of $(E,,} is 1, then1 <p < n
(2) fn+1 <3 < 2n and the (q,q)-component of $(E,,) 15 1, then
n+1<q<2n.

Proof. (1) Suppose that n+ 1 < p < 2n. Then ¢(E.) = E,, +
apy p By p + ap By 5o Let $(E. ;) = (Yuv) be in Af’f’. Then
d)(Ea.u ) = ¢(Eu)¢(Ez,zl )¢'(E:1 iy )
= (Epp + ap(l),PEp(])‘p + Otptz)mE,,(z)'p)(ﬁ(Ez.zl YOUE, 4, )
= ('YPPEPP + QP(”,P’){PPE;J‘”,}: + a’p('“,p’}'PPEp(”,p)é(Ellﬂl )

Since the (p,p)-component of ¢(E, , )is 0, (E,,,) = 0. It is a con-
tradiction. Hence 1 <p < n.

(2) By similar proof of (1), (2) holds.

THEOREM 6. Let ¢ : Agi") — Agi") be an automorphism and let
1<:<n. If

MEn) = Epp +0pp Eppy +0pp, Epp, and
HEq i) = Egg + By g Equ g + By g Egenr g for k = 1 or 2,
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then there exists a nonzero complex number ,, such that ¢(E,,, ) =
YrgEpg, and fpg = —apq.

Proof. Since 1 <7 <n,wehaven+1<: <2n. Hence 1 <p<n
and n+1<¢<2n. Let ¢(F,,,) = E Y Eep + 2oy Ve Eue +
E:;l Yr.22 54,2, Then

EBsp) = HBDH B, H B

- (EPP + Qp,pt EP P + aP,Pz ,Pz)qs(E' 123 )‘ﬁ(Etb wc)

= (7PPEPP + A E PsP1 +’\2EP,P2)(EW +5q(‘] q q(” g +’8q(2),qEq(”,q)
where A1 = Yp,p1 + @p,p1 Tp1,p11 A2 = Vo,py F Up,py Vpg,py- SO eVery com-
ponent of ¢(E, ,,) is 0 except the (p,q)-component. Hence vy, = 0
for all p(1 < p < 2n). Since ¢(E,,,) # 0, we have ¢(E,,,) = vpeEpq-
Since 7,4 # 0, either p; = ¢ or p, = ¢ and either ¢ =por¢® =p.
Let A=E,+E,, +E,,. Then A® = E, +2E,,, + E,, ,,. Since
B(A?) = ¢{A)?, the (p,g)-components of $(A)? and ¢(A?) are equal.
S0 apg + Bpg + 29pg = 2tpg + Bpg + Ypq). Hence apg = —fpq.

From Theorem 6, we have the following theorem.

THEOREM 7. Let ¢ : A — A% be an automorphism. I Eyq is

in Ag,,") with p 95 g, then there exist 1 and 14(1 <2 < n,1 < k < 2) such
that gb(E,,) = Epp+apeEpg+apy Epgr and ¢(E., 1) = Eqq + BpgEpg +
Byt gEp g for some complex numbers ayq, ap o, fpg and Py, and there
exists a nonzero complex number v,, such that ¢(E,, tE) = YpeEpq-
Moreover ayq = —fp,.

From Theorem 7, we have the following theorem.

THEOREM 8. Let ¢ : Ag’;”) A(s") be an automorphism such that

the (p, p)-component of p(E,,) is 1 for all p(1 <p <2n). Then
(1) for eich 2(1 < i <n), p(E,) = E, +a,, E., +a,.,E,,, for some
complex numbers a,,, and a,,,.
(2) for each j(n + 1 < j < 2n), o(E);) = E;; — a,m,E,m, —
QJ(z)’JEj(z)‘J for sonie complex numbers a,u) , and ays .
(3) foreach E, ;,(1 <1< n,1 <k<2), o{E,,,) = T, Fra, for some
nonzero complex number 7, ,, .

THEOREM 9. Let o : Agio) - AE,,S"’) be an automorphism such
that the (p, p)-component of p(E,,) is 1 for all p(1 < p < 2n). Then

there exists an operator T in A( 50) such that @A) = Tp(A)T™! for
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all A in A(zio), where p : A(SO) .A( %) js an automorphism such that
p(Epp) = Epp for all p(1 < p < 2n).

Proof. Let go(E'“) = B, 4o, Eoyy +0:‘ 1y Fe e, forall 2(1 <2 < n)
and o ”) =FE,,— J(lj’JEJ(l)‘) a0 , 3(23 g forall j(n+1 < j < 2n).
Then there exist 2n nonzero complex numbers v, , {1 < <n,1 <k <
2) such that ¢(E,,;,) = 71, £, 1, . Define an isomorphism p : Agi") —

So)

A3 by p(E,p) = E,p for all p(1 < p < 2n) and p(Ev, ) = ou B,
1
for all o(1 < ¢ < n)and k(1 < k < 2). Let T = ) 7, Epp —
o e B =0 @y, B, Foreach o(1 < ¢ < n), since o Ey) =
Ey + a4, Eiq + a4, B, for some complex numbers «;,,, «, ,;, and
po(E,.) = E,,, wehave o( E,;)T = E,, = TE,, = Tp(E,,). For each j(n+
1 <7 < 2n),since p(E,}) = Ey—am By, — a0, Eje for some
complex numbers a,m) ;, e, , and p(E;,) = E;,, we have ¢(E,,)T =

Ej,—a,m,Em,~ayu E@,=TE, = Tp(E,,). For each 1, k(1 <
1 < n,1 <k <2) since o(E; ) = Yo Fage = (&1 ), we have
W(Et,u T = (’Y:.uEl.zk)T = YLy = T(‘Yt.tkEt,tk) = TP(EMH;)‘
Thus p(A) = Tp(A)T" for all A in A%

THEOREM 10. Let ., (1 € i < n,1 < k £ 2) be 2n complex

numbers and let v,, (1 <1 < n,1 < k < 2) be 2n nonzero complex
numbers. Then the linear map ¢ : Ag?) — Aé’?:’) defined by

(IO(EH) = Eu + 03,21 E""l -'ra,.;,E.',szI‘ 811 2(1 S 2 s n),
(fo(Ejj) = Ej) - a,(l),JEJ(a)’J - CXJ(z)’JEJ(z)'JfOI' a.H j(n +1 gj S 27),),
W E ) =Y Eun forall e, k(1 <i<n,1<k<2),

is an automorphism.

Proof. Let T be as in Theorem 9. Then @(E,,) = Tp(E,,)T~! for
all p(1 < p < 2n) and @(E,,,) = Tp(E, ., )T for all ,k(1 <7 <
n,1<k< 2) where p : A(S°} A(S") is an automorphism satisfying
p(Epp) = E,, for all p(1 < p < 2n) and p(E, ..} = 1., Ei,, for all
(1 < i< n)and k(1 < k <2). Hence ¢ is an automorphism

THEOREM 11. Let a7, {(1 £t < n,1 < k £ 2) and ¢ be
as i Theorem 10 Let T be as in Theoremn 9. Then ¢ is spatially
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implemented by B if and only if B = TS for some diagonal invertible
matrix S satisfying v,,, = s,s,., forall i, k(1 <i<n, 1<k <2).

cg ik

Proof. Suppose that ¢ is spatially implemented by B. Then ¢o(B) =
BAB~! for all Ain Agi") . Let p A(S“} Agi") be an automorphism
defined by p(E;,) = E,, for all J(l 5 7 <2n)and p(E,..) = 1 Eisiy
for all £,k(1 <7 < n,1 <k <2). Since p(A4) = Tp(A)T™? for all
Ain Ag‘f"’), we have p(A) = Tp(A)T™' = BAB™! for all A in A(S").
Hence p{A) = T"*BAB~'T= (T~'B)A(T-'B)~"! for all A in Agi°’.
Put § = T7'B = (s4y). Then p is spatially implemented by S. By
Theorem 3, § is diagonal and v, ,, = s,,s:% forall 1,k(1 €2 <n,1<
k < 2). Conversely, suppose that B = TS for some diagonal matrix S
satisfying +v,,, = s.,s"= , forall £,k(1<:<n,1<k<2). Since §is

diagonal and v, ,, = s,,su > 0 18 spatially implemented by § = T~!B.
Hence p(A) = Tp(A)T™! = TSAS™'T~! =~ BAB~ forall 4 in A

THEOREM 12. Let ¢ : A5 — AP be an automorphism. Then
there exists a 2n X 2n unitary matrix U and an automorphism ¢ :

A(Zi") — A with the {p, p)-component of ¢(E,,) is 1 for all p(1 <

n

p < 2n) such that $(A) = Up(A)U* for all A in A

1 2 . .. 2n
Proof. Let ¢ = (0(1) o2 . . . o(2n
such that the (o(7), o(3))-component of #(E,,) is 1 for all i(1 <1 < 2n).
Let V be 2n x 2n matrix whose (p, o(p))—component is 1 for all p{1 <

P € 2n) and all other components are 0. Define ¢ : A,(z“z"} — A&‘i“’

by p(A) = V(A)V* for all A in A‘ﬁ“. Then by simple calculation,
 is an automorphism and the (p, p)-component of w(E,,) is 1 for all
p(l < p <2n). Put U = V*. Then ¢(A) = Up(A)U* for all A in
A(So).

2n

)) be a permutation

From Theorems 9 and 12, we have the following theorem.

THEOREM 13. Let ¢ : .A‘gs"} A(Sm‘ be an automorphism. Then

there exist an automorphism p : .A(S") A( S0) satisfying p(E,;) =
E,p, for all p(1 < p < 2n) and an mvertzbfe operator Y such that

$(A) = Yp(A)Y - for all A in A5,
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THEOREM 14. Let ¢ : A5 — AP be an automorphism. Let

o= 1 2 . . . 2n
“\e(l) (2 . . . o(2n)

be a permutation such that the (0(7),0(:))-component of ¢(E,,) is 1
for all i(1 <1< 2n) and let $(E,,,) = Ya(1),0(x) Eo(r),o(,) for all B,
in .A(zi“). Then ¢ is spatially implemented by R if and only if R =UTS
for some diagonal invertible matrix § = (Syv) satisfying 7,(.),0(x) =
81iS,, for all 1,k(1 <1< n,1 <k <2), where U* = Eizl B, o)
and T 22" ~ Vi v By — L 0, B,

Proof. Note that the (o{p),o(p))-component of ¢(Ey,) is 1 for all

p(1 < p < 2n). By Theorem 6, ¢(E...,) = Yo(),00:) Eo(2),0:4) for some
nonzero complex number 7,(;) g(:,)- From Theorem 12, there exists an

automorphism ¢ : .4;“:';‘” A‘S°' satisfying the {p,p)-component of
o(Epp)is 1 forall p(1 <p< 2n) such that ¢(A) = Up(A)U* for all A
in Agi"). Hence

Py, ) = U*d’(Et,u w

2Zn 2n
= (Z Ep,a(p))(70(:).a(zk)Ea(z),a(:g))(Z Ea{p),p) .
= p=1

= Yo(1),0000) Br,ta

Define an automorphism p : Af,ff) - A(S") by p(E,p) = E,p for all
p(1 < p < 2n)and p(E,,,) = Yaq )|c,(,k)l'7,|,,E for all 2(1 < ¢ < n) and
k(1 < k < 2). Then from Theorem 9, ¢(A4) = Tp(A)T ™! for all A in
Agi"). Suppose that ¢ is spatially implemented by R. Then ¢(A) =
RAR™ for all Ain A%, So p(A) = T 1p(A)T = T U*$(A)UT =
(UT)"'RAR™YUT). Put § = (UT)" 'R = (54»). Then p is spatially
implemented by S. By Theorem 3, S is diagonal and Ye(,),0(,) =
s,,sulz for all 1, k(1 < i < n,1 <k < 2). Conversely, suppose that
R = UTS for some invertible diagonal matrix § = (s,,)} satisfying
Yo(i),o(x) = Susy, l‘ for all z and k(1 < i < n,1 < k £ 2). Since

S is diagonal and Y,(,),0(:,) = Sus,, ~1 for all 1, k1 <2 < n,1 <

Wi
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k < 2), p is spatially implemented by S. Hence ¢(A) = Up(A)U* =
UTp(AYT~IU* = UTSAS™'T~'U*. Hence ¢ is spatially implemented
by R=UTS.
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