AUTOMORPHISMS OF $A_{2n}^{(S_0)}$

TAEG YOUNG CHOI

1. Introduction

The study of reflexive, but not necessarily self-adjoint, algebras of Hilbert space operators has become one of the fastest growing specialties in operator theory. F. Gilfeather and D. Larson discovered the tridiagonal algebras $A_2, A_4, \dots, A_{\infty}[3]$. The tridiagonal algebras are the important classes of non-self-adjoint reflexive algebras. Let \mathcal{H} be a 2n-dimensional complex Hilbert space with an orthonormal basis $\{e_1, e_2, \dots, e_{2n}\}$. Then A is in A_{2n} if and only if A has the form

with respect to the basis $\{e_1, e_2, \dots, e_{2n}\}$, where all non-starred entries are zero. If we write the given basis in the order $\{e_1, e_3, \dots, e_{2n-1}, e_2, \dots, e_{2n-1}$

Received March 23, 1993

 e_4, \dots, e_{2n} , then the above matrix looks like this

where all non-starred entries are zero. The subalgebra of $\mathcal{B}(\mathcal{H})$, the class of all bounded operators acting on \mathcal{H} , consisting of these operators was denoted by $\mathcal{A}_{2n}^{(3)}[6]$.

Let S_0 be an $n \times n$ matrix with two 1 in each row and each column and 0 elsewhere as entries. Let S be an $n \times n$ matrix. Then $S_0 \leq S$ means that if the (i,j)-component of S_0 is 0, then the (i,j)-component of S is also 0. Let $\mathcal{A}_{2n}^{(S_0)}$ be the algebra consisting of the operators of the form $\begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$, where D_1 and D_2 are $n \times n$ diagonal matrices and $S_0 \leq S$. If S_0 is an $n \times n$ matrix whose (i,i)-component is 1 for all $i=1,2,\cdots,n,(j+1,j)$ -component is 1 for all $j=1,2,\cdots,n-1,(1,n)$ -component is 1 and all other components are zero, then $\mathcal{A}_{2n}^{(S_0)} = \mathcal{A}_{2n}^{(3)}$. So the algebra $\mathcal{A}_{2n}^{(3)}$ is the special form of the algebra $\mathcal{A}_{2n}^{(S_0)}$. In this paper we will investigate the necessary and sufficient condition that the automorphisms of $\mathcal{A}_{2n}^{(S_0)}$ are spatially implemented.

First we will introduce the terminologies which are used in this paper. Let \mathcal{H} be a complex Hilbert space and let \mathcal{A} be a subalgebra of $\mathcal{B}(\mathcal{H})$. \mathcal{A} is called a self-adjoint algebra provided A^* is in \mathcal{A} for every A in \mathcal{A} . Otherwise, \mathcal{A} is called a non-self-adjoint algebra. If \mathcal{L} is a lattice of orthogonal projections acting on \mathcal{H} , $Alg\mathcal{L}$ denotes the algebra of all operators acting on \mathcal{H} that leave invariant every orthogonal projections in \mathcal{L} . A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections acting on \mathcal{H} , containing 0 and I. Dually, if \mathcal{A} is a subalgebra of $\mathcal{B}(\mathcal{H})$, then $Lat\mathcal{A}$ is the lattice of all orthogonal projections

which leave invariant each operator in \mathcal{A} . An algebra \mathcal{A} is reflexive if $\mathcal{A} = AlgLat\mathcal{A}$ and a lattice \mathcal{L} is reflexive if $\mathcal{L} = LatAlg\mathcal{L}$. A lattice \mathcal{L} is a commutative subspace lattice, or CSL, if each pair of projections in \mathcal{L} commutes; $Alg\mathcal{L}$ is called a CSL-algebra. Let \mathcal{L}_1 and \mathcal{L}_2 be commutative subspace lattices. By an isomorphism $\phi: Alg\mathcal{L}_1 \to Alg\mathcal{L}_2$ we mean a strictly algebraic isomorphism, that is, a bijective, linear, multiplicative map. An isomorphism $\phi: Alg\mathcal{L}_1 \to Alg\mathcal{L}_2$ is said to be spatially implemented if there is a bounded invetible operator T such that $\varphi(A) = TAT^{-1}$ for all A in $Alg\mathcal{L}_1$. If x_1, x_2, \cdots, x_n are vectors in some Hilbert space, then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n . Let i and j be two nonzero natural numbers. Then E_{ij} is the matrix whose (i,j)—component is 1 and all other entries are zero.

2. Automorphisms of $\mathcal{A}_{2n}^{(S_0)}$

Let \mathcal{H} be a 2n-dimensional complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots, e_{2n}\}$. Let E_n, E_{i,i_1} and E_{i,i_2} be in $\mathcal{A}_{2n}^{(S_0)}$ for all $i(1 \leq i \leq n)$ and $n+1 \leq i_1 < i_2 \leq 2n$ and let $E_{j(1),j}, E_{j(2),j}$ and E_{jj} be in $\mathcal{A}_{2n}^{(S_0)}$ for all $j(n+1 \leq j \leq 2n)$ and $1 \leq j^{(1)} < j^{(2)} \leq n$. Let \mathcal{L} be the subspace lattice generated by $\{[e_1], [e_2], \cdots, [e_n], [e_{j(1)}, e_{j(2)}, e_j]: j=n+1, n+2, \cdots, 2n\}$. Then $\mathcal{A}_{2n}^{(S_0)} = Alg\mathcal{L}$ and $\mathcal{A}_{2n}^{(S_0)}$ is reflexive[1]. Before we investigate the general automorphisms $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ satisfying $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$. Since $E_{ii}E_{i,i_k}E_{i_k,i_k} = E_{i,i_k}$ for all i and i a

THEOREM 1. Let $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism such that $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$. Then there exist 2n nonzero complex numbers $\gamma_{i,i_k} (1 \leq i \leq n, 1 \leq k \leq 2)$ such that $\rho(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}$.

Let $\gamma_{i,i_k}(1 \leq i \leq n, 1 \leq k \leq 2)$ be 2n nonzero complex numbers. Define a linear map $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ by $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$ and $\rho(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}$ for all i and $k(1 \leq i \leq n, 1 \leq k \leq 2)$.

Then clearly ρ is an automorphism. From this we have the following theorem.

THEOREM 2. If $\gamma_{i,i_k} (1 \leq i \leq n, 1 \leq k \leq 2)$ be 2n nonzero complex numbers, then there exists an automorphism $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ such that $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$ and $\rho(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}$ for all i and $k(1 \leq i \leq n, 1 \leq k \leq 2)$.

THEOREM 3. Let $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism such that $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$ and let $\rho(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}, \gamma_{i,i_k} \neq 0$, for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$. Then ρ is spatially implemented by $T = (t_{uv})$ if and only if T is diagonal and $\gamma_{i,i_k} = t_{ii}t_{i_k,i_k}^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$.

Proof. Let $A=(a_{ij})$ be in $\mathcal{A}_{2n}^{(S_0)}$ and $T=\sum_{u=1}^{2n}t_{uu}E_{uu}$. Then $\rho(A)T=TA$. Hence $\rho(A)=TAT^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. Conversely, suppose that ρ is spatially implemented by $T=(t_{uv})$. Since $\rho(E_{pp})=E_{pp}$, $E_{pp}T=TE_{pp}$ for all $p=1,2,\cdots,2n$. Hence $t_{pq}=0$ for all $p,q(p\neq q)$. Thus T is diagonal. Let $T=\sum_{u=1}^{2n}t_{uu}E_{uu}$ and $\rho(E_{i,i_k})=\gamma_{i,i_k}E_{i,i_k}$ for all $i,k(1\leq i\leq n,1\leq k\leq 2)$. Then

$$\rho(E_{i,i_k})T = (\gamma_{i,i_k} E_{i,i_k})(\sum_{u=1}^{2n} t_{uu} E_{uu}) = \gamma_{i,i_k} t_{i_k,i_k} E_{i,i_k} \text{ and}$$

$$TE_{i,i_k} = (\sum_{u=1}^{2n} t_{uu} E_{uu})E_{i,i_k} = t_{ii} E_{i,i_k}$$

Hence $\gamma_{i,i_k} = t_{ii}t_{i_k,i_k}^{-1}$ for all $i(1 \le i \le n)$ and $k(1 \le k \le 2)$.

THEOREM 4. Let $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism. Then for each $j(1 \leq j \leq 2n)$, either there exist an integer p with $1 \leq p \leq n$ and complex numbers α_{p,p_1} and α_{p,p_2} such that $\phi(E_{jj}) = E_{pp} + \alpha_{p,p_1} E_{p,p_1} + \alpha_{p,p_2} E_{p,p_2}$ or there exist an integer q with $n+1 \leq q \leq 2n$ and complex numbers $\beta_{q^{(1)},q}$ and $\beta_{q^{(2)},q}$ such that $\phi(E_{jj}) = E_{qq} + \beta_{q^{(1)},q} E_{q^{(1)},q} + \beta_{q^{(2)},q} E_{q^{(2)},q}$.

Proof. Let $\phi(E_{jj}) = \begin{pmatrix} D_1 & S \\ 0 & D_2 \end{pmatrix}$ be in $\mathcal{A}_{2n}^{(S_0)}$. Since $\phi(E_{jj})^2 = \phi(E_{jj})$, we have $D_1^2 = D_1, D_2^2 = D_2$ and $D_1S + SD_2 = S$. Hence each

diagonal element of $\phi(E_{jj})$ is 1 or 0. Since all diagonal elements of $\phi(E_{jj})$ is 0 implies $\phi(E_{jj})^2=0$, the (p,p)-component of $\phi(E_{jj})$ is 1 for some $p(1 \leq p \leq 2n)$. If the (r,r)-component of $\phi(E_{jj})$ is 1 for some r such that $r \neq p$ and $1 \leq r \leq 2n$, then the (p,p)-component and the (r,r)-component of $\phi(E_{jj})$ are 1. So there exists k with $1 \leq k \leq 2n$ and $j \neq k$ such that one of the (p,p)-component or the (r,r)-component of $\phi(E_{kk})$ is 1, and so $0 = \phi(E_{jj}E_{kk}) = \phi(E_{jj})\phi(E_{kk}) \neq 0$ which is a contradiction. Hence the (p,p)-component of $\phi(E_{jj})$ is 1 for one and only one $p(1 \leq p \leq 2n)$. If the (p,p)-component of $\phi(E_{jj})$ is 1 for some p with $1 \leq p \leq n$, then $\phi(E_{jj}) = E_{pp} + \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}$. So $\phi(E_{jj}) = \phi(E_{jj})^2 = E_{pp} + \alpha_{p,p_1}E_{p,p_1} + \alpha_{p,p_2}E_{p,p_2}$ for some complex numbers α_{p,p_1} and α_{p,p_2} . If the (q,q)-component of $\phi(E_{jj})$ is 1 for some q with $n+1 \leq q \leq 2n$, then $\phi(E_{jj}) = E_{qq} + \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}$. So $\phi(E_{jj}) = \phi(E_{jj})^2 = E_{qq} + \beta_{q(1),q}E_{q(1),q} + \beta_{q(2),q}E_{q(2),q}$ for some complex numbers $\beta_{q(1),q}$ and $\beta_{q(2),q}$.

THEOREM 5. Let $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism (1) If $1 \leq i \leq n$ and the (p,p)-component of $\phi(E_n)$ is 1, then $1 \leq p \leq n$ (2) If $n+1 \leq j \leq 2n$ and the (q,q)-component of $\phi(E_{jj})$ is 1, then $n+1 \leq q \leq 2n$.

Proof. (1) Suppose that $n+1 \leq p \leq 2n$. Then $\phi(E_n) = E_{pp} + \alpha_{p(1),p}E_{p(1),p} + \alpha_{p(2),p}E_{p(2),p}$. Let $\phi(E_{i,i_1}) = (\gamma_{uv})$ be in $\mathcal{A}_{2n}^{(S_0)}$. Then

$$\begin{split} \phi(E_{i,i_1}) &= \phi(E_{ii})\phi(E_{i,i_1})\phi(E_{i_1,i_1}) \\ &= (E_{pp} + \alpha_{p^{(1)},p}E_{p^{(1)},p} + \alpha_{p^{(2)},p}E_{p^{(2)},p})\phi(E_{i,i_1})\phi(E_{i_1,i_1}) \\ &= (\gamma_{pp}E_{pp} + \alpha_{p^{(1)},p}\gamma_{pp}E_{p^{(1)},p} + \alpha_{p^{(2)},p}\gamma_{pp}E_{p^{(2)},p})\phi(E_{i_1,i_1}). \end{split}$$

Since the (p,p)-component of $\phi(E_{i_1,i_1})$ is 0, $\phi(E_{i,i_1})=0$. It is a contradiction. Hence $1 \leq p \leq n$.

(2) By similar proof of (1), (2) holds.

THEOREM 6. Let $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism and let $1 \leq i \leq n$. If

$$\begin{split} \phi(E_{ii}) &= E_{pp} + \alpha_{p,p_1} E_{p,p_1} + \alpha_{p,p_2} E_{p,p_2} \text{ and} \\ \phi(E_{ik,ik}) &= E_{qq} + \beta_{q^{(1)},q} E_{q^{(1)},q} + \beta_{q^{(2)},q} E_{q^{(2)},q} \text{ for } k = 1 \text{ or } 2, \end{split}$$

then there exists a nonzero complex number γ_{pq} such that $\phi(E_{i,i_k}) = \gamma_{pq}E_{pq}$, and $\beta_{pq} = -\alpha_{pq}$.

Proof. Since $1 \le i \le n$, we have $n+1 \le i_k \le 2n$. Hence $1 \le p \le n$ and $n+1 \le q \le 2n$. Let $\phi(E_{i,i_k}) = \sum_{p=1}^{2n} \gamma_{pp} E_{pp} + \sum_{i=1}^{n} \gamma_{i,i_1} E_{i,i_1} + \sum_{i=1}^{n} \gamma_{i,i_2} E_{i,i_2}$. Then

 $\phi(E_{i,i_k}) = \phi(E_{i_k})\phi(E_{i,i_k})\phi(E_{i_k,i_k})$

 $= (E_{pp} + \alpha_{p,p_1} E_{p,p_1} + \alpha_{p,p_2} E_{p,p_2}) \phi(E_{i,i_k}) \phi(E_{i_k,i_k})$

 $=(\gamma_{pp}E_{pp}+\lambda_1E_{p,p_1}+\lambda_2E_{p,p_2})(E_{qq}+\beta_{q^{(1)},q}E_{q^{(1)},q}+\beta_{q^{(2)},q}E_{q^{(2)},q})$ where $\lambda_1=\gamma_{p,p_1}+\alpha_{p,p_1}\gamma_{p_1,p_1},\lambda_2=\gamma_{p,p_2}+\alpha_{p,p_2}\gamma_{p_2,p_2}$. So every component of $\phi(E_{i,i_k})$ is 0 except the (p,q)-component. Hence $\gamma_{pp}=0$ for all $p(1\leq p\leq 2n)$. Since $\phi(E_{i,i_k})\neq 0$, we have $\phi(E_{i,i_k})=\gamma_{pq}E_{pq}$. Since $\gamma_{pq}\neq 0$, either $p_1=q$ or $p_2=q$ and either $q^{(1)}=p$ or $q^{(2)}=p$. Let $A=E_{ii}+E_{i,i_k}+E_{i_k,i_k}$. Then $A^2=E_{ii}+2E_{i,i_k}+E_{i_k,i_k}$. Since $\phi(A^2)=\phi(A)^2$, the (p,q)-components of $\phi(A)^2$ and $\phi(A^2)$ are equal. So $\alpha_{pq}+\beta_{pq}+2\gamma_{pq}=2(\alpha_{pq}+\beta_{pq}+\gamma_{pq})$. Hence $\alpha_{pq}=-\beta_{pq}$.

From Theorem 6, we have the following theorem.

THEOREM 7. Let $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism. If E_{pq} is in $\mathcal{A}_{2n}^{(S_0)}$ with $p \neq q$, then there exist i and $i_k (1 \leq i \leq n, 1 \leq k \leq 2)$ such that $\phi(E_{ii}) = E_{pp} + \alpha_{pq} E_{pq} + \alpha_{pq'} E_{pq'}$ and $\phi(E_{i_k,i_k}) = E_{qq} + \beta_{pq} E_{pq} + \beta_{p'q} E_{p'q}$ for some complex numbers $\alpha_{pq}, \alpha_{p,q'}, \beta_{pq}$ and $\beta_{p'q}$ and there exists a nonzero complex number γ_{pq} such that $\phi(E_{i,i_k}) = \gamma_{pq} E_{pq}$. Moreover $\alpha_{pq} = -\beta_{pq}$.

From Theorem 7, we have the following theorem.

THEOREM 8. Let $\varphi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism such that the (p,p)-component of $\varphi(E_{pp})$ is 1 for all $p(1 \leq p \leq 2n)$. Then

- (1) for eich $i(1 \le i \le n)$, $\varphi(E_{ii}) = E_{ii} + \alpha_{i,i_1} E_{i,i_1} + \alpha_{i,i_2} E_{i,i_2}$ for some complex numbers α_{i,i_1} and α_{i,i_2} .
- (2) for each $j(n+1 \le j \le 2n)$, $\varphi(E_{jj}) = E_{jj} \alpha_{j(1),j} E_{j(1),j} \alpha_{j(2),j} E_{j(2),j}$ for some complex numbers $\alpha_{j(1),j}$ and $\alpha_{j(2),j}$.
- (3) for each E_{i,i_k} $(1 \le i \le n, 1 \le k \le 2)$, $\varphi(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}$ for some nonzero complex number γ_{i,i_k} .

THEOREM 9. Let $\varphi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism such that the (p,p)-component of $\varphi(E_{pp})$ is 1 for all $p(1 \leq p \leq 2n)$. Then there exists an operator T in $\mathcal{A}_{2n}^{(S_0)}$ such that $\varphi(A) = T\rho(A)T^{-1}$ for

all A in $\mathcal{A}_{2n}^{(S_0)}$, where $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ is an automorphism such that $\rho(E_{pp}) = E_{pp}$ for all $p(1 \le p \le 2n)$.

Proof. Let $\varphi(E_{ii}) = E_{ii} + \alpha_{i,i_1} E_{i,i_1} + \alpha_{i,i_2} E_{i,i_2}$ for all $i(1 \leq i \leq n)$ and $\varphi(E_{jj}) = E_{jj} - \alpha_{j(1),j} E_{j(1),j} - \alpha_{j(2),j} E_{j(2),j}$ for all $j(n+1 \leq j \leq 2n)$. Then there exist 2n nonzero complex numbers $\gamma_{i,i_k} (1 \leq i \leq n, 1 \leq k \leq 2)$ such that $\varphi(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}$. Define an isomorphism $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ by $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$ and $\rho(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}$ for all $i(1 \leq i \leq n)$ and $k(1 \leq k \leq 2)$. Let $T = \sum_{p=1}^{2n} E_{pp} - \sum_{i=1}^{n} \alpha_{i,i_1} E_{i,i_1} - \sum_{i=1}^{n} \alpha_{i,i_2} E_{i,i_2}$. For each $i(1 \leq i \leq n)$, since $\varphi(E_{ii}) = E_{ii} + \alpha_{i,i_1} E_{i,i_1} + \alpha_{i,i_2} E_{i,i_2}$ for some complex numbers $\alpha_{i,i_1}, \alpha_{i,i_2}$ and $\rho(E_{ii}) = E_{ii}$, we have $\varphi(E_{ii})T = E_{ii} = TE_{ii} = T\rho(E_{ii})$. For each $j(n+1 \leq j \leq 2n)$, since $\varphi(E_{jj}) = E_{jj} - \alpha_{j(1),j} E_{j(1),j} - \alpha_{j(2),j} E_{j(2),j}$ for some complex numbers $\alpha_{j(1),j}, \alpha_{j(2),j}$ and $\rho(E_{jj}) = E_{jj}$, we have $\varphi(E_{jj})T = E_{jj} - \alpha_{j(1),j} E_{j(1),j} - \alpha_{j(2),j} E_{j(2),j}$ for each $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$, since $\varphi(E_{i,i_k}) = T\rho(E_{jj})$. For each $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$, since $\varphi(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k} = \rho(E_{i,i_k})$, we have $\varphi(E_{i,i_k})T = (\gamma_{i,i_k} E_{i,i_k})T = \gamma_{i,i_k} E_{i,i_k} = T(\gamma_{i,i_k} E_{i,i_k}) = T\rho(E_{i,i_k})$. Thus $\varphi(A) = T\rho(A)T^{-1}$ for all A in $A_{2n}^{(S_0)}$.

THEOREM 10. Let $\alpha_{i,i_k} (1 \leq i \leq n, 1 \leq k \leq 2)$ be 2n complex numbers and let $\gamma_{i,i_k} (1 \leq i \leq n, 1 \leq k \leq 2)$ be 2n nonzero complex numbers. Then the linear map $\varphi : \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ defined by

$$\begin{split} \varphi(E_{ii}) &= E_{ii} + \alpha_{i,i_1} E_{i,i_1} + \alpha_{i,i_2} E_{i,i_2} \text{for all } i (1 \leq i \leq n), \\ \varphi(E_{jj}) &= E_{jj} - \alpha_{j^{(1)},j} E_{j^{(1)},j} - \alpha_{j^{(2)},j} E_{j^{(2)},j} \text{for all } j (n+1 \leq j \leq 2n), \\ \varphi(E_{i,i_k}) &= \gamma_{i,i_k} E_{i,i_k} \text{for all } i, k (1 \leq i \leq n, 1 \leq k \leq 2), \end{split}$$

is an automorphism.

Proof. Let T be as in Theorem 9. Then $\varphi(E_{pp}) = T\rho(E_{pp})T^{-1}$ for all $p(1 \leq p \leq 2n)$ and $\varphi(E_{i,i_k}) = T\rho(E_{i,i_k})T^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$, where $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ is an automorphism satisfying $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$ and $\rho(E_{i,i_k}) = \gamma_{i,i_k} E_{i,i_k}$ for all $i(1 \leq i \leq n)$ and $k(1 \leq k \leq 2)$. Hence φ is an automorphism

THEOREM 11. Let $\alpha_{i,i_k}, \gamma_{i,i_k} (1 \leq i \leq n, 1 \leq k \leq 2)$ and φ be as in Theorem 10 Let T be as in Theorem 9. Then φ is spatially

implemented by B if and only if B = TS for some diagonal invertible matrix S satisfying $\gamma_{i,i_k} = s_{ii} s_{i_k,i_k}^{-1}$ for all $i, k (1 \le i \le n, 1 \le k \le 2)$.

Proof. Suppose that φ is spatially implemented by B. Then $\varphi(B)=BAB^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. Let $\rho:\mathcal{A}_{2n}^{(S_0)}\to\mathcal{A}_{2n}^{(S_0)}$ be an automorphism defined by $\rho(E_{jj})=E_{jj}$ for all $j(1\leq j\leq 2n)$ and $\rho(E_{i,i_k})=\gamma_{i,i_k}E_{i,i_k}$ for all $i,k(1\leq i\leq n,1\leq k\leq 2)$. Since $\varphi(A)=T\rho(A)T^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$, we have $\varphi(A)=T\rho(A)T^{-1}=BAB^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. Hence $\rho(A)=T^{-1}BAB^{-1}T=(T^{-1}B)A(T^{-1}B)^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. Put $S=T^{-1}B=(s_{uv})$. Then ρ is spatially implemented by S. By Theorem 3, S is diagonal and $\gamma_{i,i_k}=s_{ii}s_{i_k,i_k}^{-1}$ for all $i,k(1\leq i\leq n,1\leq k\leq 2)$. Conversely, suppose that B=TS for some diagonal matrix S satisfying $\gamma_{i,i_k}=s_{ii}s_{i_k,i_k}^{-1}$ for all $i,k(1\leq i\leq n,1\leq k\leq 2)$. Since S is diagonal and $\gamma_{i,i_k}=s_{ii}s_{i_k,i_k}^{-1}$, ρ is spatially implemented by $S=T^{-1}B$. Hence $\varphi(A)=T\rho(A)T^{-1}=TSAS^{-1}T^{-1}=BAB^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$.

THEOREM 12. Let $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism. Then there exists a $2n \times 2n$ unitary matrix U and an automorphism $\varphi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ with the (p,p)-component of $\varphi(E_{pp})$ is 1 for all $p(1 \leq p \leq 2n)$ such that $\phi(A) = U\varphi(A)U^*$ for all A in $\mathcal{A}_{2n}^{(S_0)}$

Proof. Let $\sigma = \begin{pmatrix} 1 & 2 & \dots & 2n \\ \sigma(1) & \sigma(2) & \dots & \sigma(2n) \end{pmatrix}$ be a permutation such that the $(\sigma(i), \sigma(i))$ -component of $\phi(E_n)$ is 1 for all $i(1 \leq i \leq 2n)$. Let V be $2n \times 2n$ matrix whose $(p, \sigma(p))$ -component is 1 for all $p(1 \leq p \leq 2n)$ and all other components are 0. Define $\varphi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ by $\varphi(A) = V\phi(A)V^*$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. Then by simple calculation, φ is an automorphism and the (p,p)-component of $\varphi(E_{pp})$ is 1 for all $p(1 \leq p \leq 2n)$. Put $U = V^*$. Then $\phi(A) = U\varphi(A)U^*$ for all A in $\mathcal{A}_{2n}^{(S_0)}$.

From Theorems 9 and 12, we have the following theorem.

THEOREM 13. Let $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism. Then there exist an automorphism $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ satisfying $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$ and an invertible operator Y such that $\phi(A) = Y \rho(A) Y^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$.

THEOREM 14. Let $\phi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ be an automorphism. Let

$$\sigma = \begin{pmatrix} 1 & 2 & \cdot & \cdot & \cdot & 2n \\ \sigma(1) & \sigma(2) & \cdot & \cdot & \cdot & \sigma(2n) \end{pmatrix}$$

be a permutation such that the $(\sigma(i), \sigma(i))$ -component of $\phi(E_{ii})$ is 1 for all $i(1 \leq i \leq 2n)$ and let $\phi(E_{i,i_k}) = \gamma_{\sigma(i),\sigma(i_k)} E_{\sigma(i),\sigma(i_k)}$ for all E_{i,i_k} in $\mathcal{A}_{2n}^{(S_0)}$. Then ϕ is spatially implemented by R if and only if R = UTS for some diagonal invertible matrix $S = (s_{uv})$ satisfying $\gamma_{\sigma(i),\sigma(i_k)} = s_{ii}s_{i_k,i_k}^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$, where $U^* = \sum_{p=1}^{2n} E_{p,\sigma(p)}$ and $T = \sum_{p=1}^{2n} E_{pp} - \sum_{i=1}^{n} \alpha_{i,i_1} E_{i,i_1} - \sum_{i=1}^{n} \alpha_{i,i_2} E_{i,i_2}$.

Proof. Note that the $(\sigma(p), \sigma(p))$ -component of $\phi(E_{pp})$ is 1 for all $p(1 \leq p \leq 2n)$. By Theorem 6, $\phi(E_{i,i_k}) = \gamma_{\sigma(i),\sigma(i_k)} E_{\sigma(i),\sigma(i_k)}$ for some nonzero complex number $\gamma_{\sigma(i),\sigma(i_k)}$. From Theorem 12, there exists an automorphism $\varphi: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ satisfying the (p,p)-component of $\varphi(E_{pp})$ is 1 for all $p(1 \leq p \leq 2n)$ such that $\phi(A) = U\varphi(A)U^*$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. Hence

$$\begin{split} \varphi(E_{\imath,\imath_k}) &= U^*\phi(E_{\imath,\imath_k})U \\ &= (\sum_{p=1}^{2n} E_{p,\sigma(p)})(\gamma_{\sigma(\imath),\sigma(\imath_k)}E_{\sigma(\imath),\sigma(\imath_k)})(\sum_{p=1}^{2n} E_{\sigma(p),p})\,. \\ &= \gamma_{\sigma(\imath),\sigma(\imath_k)}E_{\imath,\imath_k} \end{split}$$

Define an automorphism $\rho: \mathcal{A}_{2n}^{(S_0)} \to \mathcal{A}_{2n}^{(S_0)}$ by $\rho(E_{pp}) = E_{pp}$ for all $p(1 \leq p \leq 2n)$ and $\rho(E_{i,i_k}) = \gamma_{\sigma(i),\sigma(i_k)}E_{i,i_k}$ for all $i(1 \leq i \leq n)$ and $k(1 \leq k \leq 2)$. Then from Theorem 9, $\varphi(A) = T\rho(A)T^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. Suppose that ϕ is spatially implemented by R. Then $\phi(A) = RAR^{-1}$ for all A in $\mathcal{A}_{2n}^{(S_0)}$. So $\rho(A) = T^{-1}\varphi(A)T = T^{-1}U^*\phi(A)UT = (UT)^{-1}RAR^{-1}(UT)$. Put $S = (UT)^{-1}R = (s_{uv})$. Then ρ is spatially implemented by S. By Theorem 3, S is diagonal and $\gamma_{\sigma(i),\sigma(i_k)} = s_{ii}s_{i_k,i_k}^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$. Conversely, suppose that R = UTS for some invertible diagonal matrix $S = (s_{uv})$ satisfying $\gamma_{\sigma(i),\sigma(i_k)} = s_{ii}s_{i_k,i_k}^{-1}$ for all i and $k(1 \leq i \leq n, 1 \leq k \leq 2)$. Since S is diagonal and $\gamma_{\sigma(i),\sigma(i_k)} = s_{ii}s_{i_k,i_k}^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$. Since S is diagonal and $\gamma_{\sigma(i),\sigma(i_k)} = s_{ii}s_{i_k,i_k}^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$.

 $k \leq 2$), ρ is spatially implemented by S. Hence $\phi(A) = U\varphi(A)U^* = UT\rho(A)T^{-1}U^* = UTSAS^{-1}T^{-1}U^*$. Hence ϕ is spatially implemented by R = UTS.

References

- 1. W. B. Arveson, Operator algebras and invariant subspaces, Annals of Math. 100, 2 (1974), 433-532
- 2. F. Gilfeather, A. Hopenwasser, and D. Larson, Reflexive algebras with finite width lattices; tensor products, cohomology, compact perturbations, J. Funct. Anal. 55 (1984), 176-199
- 3. F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras, Oper. Theory: Adv. Appl. 2 (1981), 105-120 Birkhauser, Basel.
- F Gilfeather and R L. Moore, Isomorphisms of certain CSL-algebras, J. Funct. Anal. 67 (1986), 264-291
- Y. S. Jo, Isometries of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
- 6. Y. S. Jo and J. H. Kang, Isomorphisms of $A_{2n(k)}^{(3)}$, Math. Japonica 37(2) (1992), 259-265
- 7. Y. S. Jo and T. Y. Choi, Isomorphisms of $Alg\mathcal{L}_n$ and $Alg\mathcal{L}_{\infty}$, Michigan Math. J. 37 (1990), 305-314
- 8. T. Y. Choi and Y. S. Jo, Isomorphisms of Tridiagonal algebras, Perprint.

Department of Mathematics Education Andong National University Andong 760-749, Korea