AUTOMORPHISMS OF $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$

Taeg Young Choi

1. Introduction

The study of reflexive, but not necessarily self-adjoint, algebras_of Hilbert space operators has become one of the fastest growing specialties in operator theory. F. Gilfeather and D. Larson discovered the tridiagonal algebras $\mathcal{A}_{2}, \mathcal{A}_{4}, \cdots, \mathcal{A}_{\infty}[3]$. The tridiagonal algebras are the important classes of non-self-adjoint reflexive algebras. Let \mathcal{H} be a $2 n$-dimensional complex Hilbert space with an orthonormal basis $\left\{e_{1}, e_{2}, \cdots, e_{2 n}\right\}$. Then A is in $\mathcal{A}_{2 n}$ if and only if A has the form

$$
\left(\begin{array}{ccccccc}
* & * & & & & & \\
& * & & & & & \\
& * & * & * & & & \\
& & & * & & & \\
& & & * & \cdot & & \\
& & & & & \cdot & \\
& & & & & & \\
& & & & & & \\
& & & \\
& & &
\end{array}\right)
$$

with respect to the basis $\left\{e_{1}, e_{2}, \cdots, e_{2 n}\right\}$, where all non-starred entries are zero. If we write the given basis in the order $\left\{e_{1}, e_{3}, \cdots, e_{2 n-1}, e_{2}\right.$,
$\left.e_{4}, \cdots, e_{2 n}\right\}$, then the above matrix looks like this
where all non-starred entries are zero. The subalgebra of $\mathcal{B}(\mathcal{H})$, the class of all bounded operators acting on \mathcal{H}, consisting of these operators was denoted by $\mathcal{A}_{2 n}^{(3)}[6]$.

Let S_{0} be an $n \times n$ matrix with two 1 in each row and each column and 0 elsewhere as entries. Let S be an $n \times n$ matrix. Then $S_{0} \preceq S$ means that if the (\imath, \jmath)-component of S_{0} is 0 , then the (\imath, \jmath)-component of S is also 0 . Let $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be the algebra consisting of the operators of the form $\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$, where D_{1} and D_{2} are $n \times n$ diagonal matrices and $S_{0} \preceq S$. If S_{0} is an $n \times n$ matrix whose (\imath, \imath)-component is 1 for all $i=1,2, \cdots, n,(j+1, j)$-component is 1 for all $j=1,2, \cdots, n-1,(1, n)$ component is 1 and all other components are zero, then $\mathcal{A}_{2 n}^{\left(S_{0}\right)}=\mathcal{A}_{2 n}^{(3)}$. So the algebra $\mathcal{A}_{2 n}^{(3)}$ is the special form of the algebra $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. In this paper we will investigate the necessary and sufficient condition that the automorphisms of $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ are spatially implemented.

First we will introduce the terminologies which are used in this paper. Let \mathcal{H} be a complex Hilbert space and let \mathcal{A} be a subalgebra of $\mathcal{B}(\mathcal{H}) . \mathcal{A}$ is called a self-adjoint algebra provided A^{*} is in \mathcal{A} for every A in \mathcal{A}. Otherwise, \mathcal{A} is called a non-self-adjoint algebra. If \mathcal{L} is a lattice of orthogonal projections acting on $\mathcal{H}, A \lg \mathcal{L}$ denotes the algebra of all operators acting on \mathcal{H} that leave invariant every orthogonal projections in \mathcal{L}. A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections acting on \mathcal{H}, containing 0 and I. Dually, if \mathcal{A} is a subalgebra of $\mathcal{B}(\mathcal{H})$, then $L a t \mathcal{A}$ is the lattice of all orthogonal projections
which leave invariant each operator in \mathcal{A}. An algebra \mathcal{A} is reflexive if $\mathcal{A}=\operatorname{Alg} \operatorname{Lat} \mathcal{A}$ and a lattice \mathcal{L} is reflexive if $\mathcal{L}=\operatorname{LatAlg} \mathcal{L}$. A lattice \mathcal{L} is a commutative subspace lattice, or CSL, if each pair of projections in \mathcal{L} commutes; $\operatorname{Alg} \mathcal{L}$ is called a CSL-algebra. Let \mathcal{L}_{1} and \mathcal{L}_{2} be commutative subspace lattices. By an isomorphism $\phi: A \lg \mathcal{L}_{1} \rightarrow A \lg \mathcal{L}_{2}$ we mean a strictly algebraic isomorphism, that is, a bijective, linear, multiplicative map. An isomorphism $\phi: A \lg \mathcal{L}_{1} \rightarrow A \lg \mathcal{L}_{2}$ is said to be spatially implemented if there is a bounded invetible operator T such that $\varphi(A)=T A T^{-1}$ for all A in $A l g \mathcal{L}_{1}$. If $x_{1}, x_{2}, \cdots, x_{n}$ are vectors in some Hilbert space, then $\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ means the closed subspace generated by the vectors $x_{1}, x_{2}, \cdots, x_{n}$. Let \imath and j be two nonzero natural numbers. Then E_{2}, is the matrix whose (\imath, j)-component is 1 and all other entries are zero.

2. Automorphisms of $\mathcal{A}_{2 n}^{\left(\mathcal{S}_{0}\right)}$

Let \mathcal{H} be a $2 n$-dimensional complex Hilbert space with a fixed orthonormal basis $\left\{e_{1}, e_{2}, \cdots, e_{2 n}\right\}$. Let $E_{12}, E_{2, t_{1}}$ and $E_{2,1_{2}}$ be in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ for all $t(1 \leq i \leq n)$ and $n+1 \leq i_{1}<\imath_{2} \leq 2 n$ and let $E_{\jmath^{(1)},}, E_{3^{(2)}, \jmath}$ and E_{\jmath} be in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ for all $\jmath(n+1 \leq \jmath \leq 2 n)$ and $1 \leq J^{(1)}<\jmath^{(2)} \leq n$. Let \mathcal{L} be the subspace lattice generated by $\left\{\left[e_{1}\right],\left[e_{2}\right], \cdots,\left[e_{n}\right],\left[e_{j^{(1)}}, e_{j(2)}\right.\right.$, $\left.\left.e_{\jmath}\right\}: \jmath=n+1, n+2, \cdots, 2 n\right\}$. Then $\mathcal{A}_{2 n}^{\left(S_{0}\right)}=A \lg \mathcal{L}$ and $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ is reflexive[1]. Before we investigate the general automorphisms $\phi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow$ $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ we will consider the automorphisms $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ satisfying $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$. Since $E_{n z} E_{\imath, t_{k}} E_{\imath_{k}, \imath_{k}}=E_{\imath_{1}, r_{k}}$ for all \imath and $k(1 \leq \imath \leq n, 1 \leq k \leq 2), \rho\left(E_{\imath, \imath_{k}}\right)=\rho\left(E_{11}\right) \rho\left(E_{\imath, \imath_{k}}\right) \rho\left(E_{\imath_{k}, \imath_{k}}\right)=$ $E_{\imath \imath} \rho\left(E_{\imath, 2_{k}}\right) E_{\imath_{k}, 2_{k}}$. Hence $\rho\left(E_{\imath, 2_{k}}\right)=\gamma_{2, \imath_{k}, E_{2,2_{k}}}$ for some nonzero complex number $\gamma_{t, 2_{k}}$. From this we have the following theorem.

Theorem 1. Let $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism such that $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$. Then there exist $2 n$ nonzero complex numbers $\gamma_{2, r_{k}}(1 \leq \imath \leq n, 1 \leq k \leq 2)$ such that $\rho\left(E_{\imath, \imath_{k}}\right)=$ $\gamma_{2, \imath_{k}} E_{i, t_{k}}$.

Let $\gamma_{1,2_{k}}(1 \leq i \leq n, 1 \leq k \leq 2)$ be $2 n$ nonzero complex numbers. Define a linear map $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ by $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq$ $p \leq 2 n)$ and $\rho\left(E_{i, \imath_{k}}\right)=\gamma_{\imath, \imath_{k}} E_{\imath, i_{k}}$ for all \imath and $k(1 \leq \imath \leq n, 1 \leq k \leq 2)$.

Then clearly ρ is an automorphism. From this we have the following theorem.

Theorem 2. If $\gamma_{\mathrm{z}, i_{k}}(1 \leq i \leq n, 1 \leq k \leq 2)$ be $2 n$ nonzero complex numbers, then there exists an automorphism $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ such that $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$ and $\rho\left(E_{r, 2_{k}}\right)=\gamma_{\gamma_{2}, r_{k}} E_{i, 2_{k}}$ for all \imath and $k(1 \leq i \leq n, 1 \leq k \leq 2)$.

TheOREM 3. Let $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism such that $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$ and let $\rho\left(E_{i, i_{k}}\right)=\gamma_{2, r_{k}} E_{2, i_{k}}, \gamma_{2, i_{k}} \neq$ 0 , for all $\imath, k(1 \leq i \leq n, 1 \leq k \leq 2)$. Then ρ is spatially implemented by $T=\left(t_{u v}\right)$ if and only if T is diagonal and $\gamma_{i, 2_{k}}=t_{22} t_{i_{k}, r_{k}}^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$.

Proof. Let $A=\left(a_{v}\right)$ be in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ and $T=\sum_{u=1}^{2 n} t_{u u} E_{u u}$. Then $\rho(A) T=T A$. Hence $\rho(A)=T A T^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Conversely, suppose that ρ is spatialty implemented by $T=\left(t_{u v}\right)$. Since $\rho\left(E_{p p}\right)=$ $E_{p p}, E_{p p} T=T E_{p p}$ for all $p=1,2, \cdots, 2 n$. Hence $t_{p q}=0$ for all $p, q(p \neq q)$. Thus T is diagonal. Let $T=\sum_{u=1}^{2 n} t_{u u} E_{u u}$ and $\rho\left(E_{t, 1_{k}}\right)=$ $\gamma_{1, i_{k}} E_{1, l_{k}}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$. Then

$$
\begin{aligned}
& \rho\left(E_{2, \imath_{k}}\right) T=\left(\gamma_{1, \imath_{k}} E_{i, \imath_{k}}\right)\left(\sum_{u=1}^{2 n} t_{u u} E_{u u}\right)=\gamma_{i, \imath_{k}} t_{r_{k}, \imath_{k}} E_{1, \imath_{k}} \text { and } \\
& T E_{\imath, r_{k}}=\left(\sum_{u=1}^{2 n} t_{u u} E_{u u}\right) E_{\imath, z_{k}}=t_{u z} E_{\mathbf{u}, \mathbf{t}_{k}}
\end{aligned}
$$

Hence $\gamma_{i_{2} \imath_{k}}=t_{t i} t_{\imath_{k}, \imath_{k}}^{-1}$ for all $\imath(1 \leq \imath \leq n)$ and $k(1 \leq k \leq 2)$.
Theorem 4. Let $\phi: \mathcal{A}_{2 n}^{\left(\mathcal{S}_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism. Then for each $j(1 \leq j \leq 2 n)$, either there exist an integer p with $1 \leq p \leq n$ and complex numbers $\alpha_{p, p_{1}}$ and $\alpha_{p, p_{2}}$ such that $\phi\left(E_{\jmath}\right)=E_{p p}+\alpha_{p, p_{1}} E_{p, p_{1}}+$ $\alpha_{p, p_{2}} E_{p, p_{2}}$ or there exist an integer q with $n+1 \leq q \leq 2 n$ and complex numbers $\beta_{q^{(1)}, q}$ and $\beta_{q^{(2)}, q}$ such that $\phi\left(E_{\jmath}\right)=E_{q q}+\beta_{q^{(1)}, q} E_{q^{(1)}, q}+$ $\beta_{q^{(2)}, q} E_{q^{(2)}, q}$.

Proof. Let $\phi\left(E_{\jmath \jmath}\right)=\left(\begin{array}{cc}D_{1} & S \\ 0 & D_{2}\end{array}\right)$ be in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Since $\phi\left(E_{\jmath}\right)^{2}=$ $\phi\left(E_{J J}\right)$, we have $D_{1}^{2}=D_{1}, D_{2}^{2}=D_{2}$ and $D_{1} S+S D_{2}=S$. Hence each
diagonal element of $\phi\left(E_{\jmath}\right)$ is 1 or 0 . Since all diagonal elements of $\phi\left(E_{J \jmath}\right)$ is 0 implies $\phi\left(E_{\jmath \jmath}\right)^{2}=0$, the (p, p)-component of $\phi\left(E_{J \jmath}\right)$ is 1 for some $p(1 \leq p \leq 2 n)$. If the ($r, r)$-component of $\phi\left(E_{j \jmath}\right)$ is 1 for some r such that $r \neq p$ and $1 \leq r \leq 2 n$, then the (p, p)-component and the (r, r)-component of $\phi\left(E_{j}\right)$ are 1 . So there exists k with $1 \leq k \leq 2 n$ and $j \neq k$ such that one of the (p, p)-component or the (r, r)-component of $\phi\left(E_{k k}\right)$ is 1 , and so $0=\phi\left(E_{\jmath} E_{k k}\right)=\phi\left(E_{\jmath \jmath}\right) \phi\left(E_{k k}\right) \neq 0$ which is a contradiction. Hence the (p, p)-component of $\phi\left(E_{\jmath}\right)$ is 1 for one and only one $p(1 \leq p \leq 2 n)$. If the (p, p)-component of $\phi\left(E_{\jmath,}\right)$ is 1 for some p with $1 \leq p \leq n$, then $\phi\left(E_{J J}\right)=E_{p p}+\left(\begin{array}{ll}0 & S \\ 0 & 0\end{array}\right)$. So $\phi\left(E_{j \jmath}\right)=\phi\left(E_{\jmath}\right)^{2}=E_{p p}+\alpha_{p, p_{1}} E_{p, p_{1}}+\alpha_{p, p_{2}} E_{p, p_{2}}$ for some complex numbers $\alpha_{p, p_{1}}$ and $\alpha_{p_{1}, p_{2}}$. If the ($\left.q, q\right)$-component of $\phi\left(E_{\jmath}\right)$ is 1 for some q with $n+1 \leq q \leq 2 n$, then $\phi\left(E_{\jmath \jmath}\right)=E_{q q}+\left(\begin{array}{ll}0 & S \\ 0 & 0\end{array}\right)$. So $\phi\left(E_{j \jmath}\right)=\phi\left(E_{\jmath \jmath}\right)^{2}=E_{q q}+\beta_{q^{(1)}, q} E_{q^{(1)}, q}+\beta_{q^{(2)}, q} E_{q^{(2)}, q}$ for some complex numbers $\beta_{q^{(1)}, q}$ and $\beta_{q^{(2)}, q}$.

Theorem 5. Let $\phi \cdot \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism (1) If $1 \leq \imath \leq n$ and the (p, p)-component of $\phi\left(E_{22}\right)$ is 1 , then $1 \leq p \leq n$
(2) If $n+1 \leq \jmath \leq 2 n$ and the ($q, q)$-component of $\phi\left(E_{\mu}\right)$ is 1 , then $n+1 \leq q \leq 2 n$.

Proof. (1) Suppose that $n+1 \leq p \leq 2 n$. Then $\phi\left(E_{n}\right)=E_{p p}+$ $\alpha_{p^{(1)}, p} E_{p^{(1)}, p}+\alpha_{p^{(2)}, p} E_{p^{(2)}, p^{\prime}}$. Let $\phi\left(E_{\left.2,2_{1}\right)}\right)=\left(\gamma_{u v}\right)$ be in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Then

$$
\begin{aligned}
& \phi\left(E_{1,2_{1}}\right)=\phi\left(E_{\imath}\right) \phi\left(E_{\imath, 2_{1}}\right) \phi\left(E_{t_{1}, 2_{1}}\right) \\
& =\left(E_{p p}+\alpha_{p^{(1)}, p} E_{p^{(1)}, p}+\alpha_{p^{(2)}, p} E_{p^{(2)}, p}\right) \phi\left(E_{2, i_{1}}\right) \phi\left(E_{\imath_{1}, 1_{1}}\right) \\
& =\left(\gamma_{p p} E_{p p}+\alpha_{p^{(1)}, p} \gamma_{p p} E_{p^{(1), p}}+\alpha_{p^{(2), p}} \gamma_{p p} E_{p^{(2), p}}\right) \phi\left(E_{1_{1}, 2_{1}}\right) .
\end{aligned}
$$

Since the (p, p)-component of $\phi\left(E_{\imath_{1}, 1_{1}}\right)$ is $0, \phi\left(E_{\imath, t_{1}}\right)=0$. It is a contradiction. Hence $1 \leq p \leq n$.
(2) By similar proof of (1), (2) holds.

Theorem 6. Let $\phi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism and let $1 \leq t \leq n$. If

$$
\begin{aligned}
\phi\left(E_{z 2}\right) & =E_{p p}+\alpha_{p, p_{1}} E_{p, p_{1}}+\alpha_{p, p_{2}} E_{p, p_{2}} \text { and } \\
\phi\left(E_{t_{k}, i_{k}}\right) & =E_{q q}+\beta_{q^{(1)}, q} E_{q^{(1)}, q}+\beta_{q^{(2)}, q} E_{q^{(2)}, q} \text { for } k=1 \text { or } 2,
\end{aligned}
$$

then there exists a nonzero complex number $\gamma_{p q}$ such that $\phi\left(E_{i, \imath_{k}}\right)=$ $\gamma_{p q} E_{p q}$, and $\beta_{p q}=-\alpha_{p q}$.

Proof. Since $1 \leq i \leq n$, we have $n+1 \leq i_{k} \leq 2 n$. Hence $1 \leq p \leq n$ and $n+1 \leq q \leq 2 n$. Let $\phi\left(E_{z, z_{k}}\right)=\sum_{p=1}^{2 n} \gamma_{p p} E_{p p}+\sum_{t=1}^{n} \gamma_{t, z_{1}} E_{z, 2_{1}}+$ $\sum_{i=1}^{n} \gamma_{2,2_{2}} E_{t, 2_{2}}$. Then

$$
\begin{aligned}
& \phi\left(E_{i, r_{k}}\right)=\phi\left(E_{i t}\right) \phi\left(E_{i, r_{k}}\right) \phi\left(E_{i_{k}, r_{k}}\right) \\
& =\left(E_{p p}+\alpha_{p, p_{1}} E_{p, p_{1}}+\alpha_{p, p_{2}} E_{p, p_{2}}\right) \phi\left(E_{\imath, \imath_{k}}\right) \phi\left(E_{\varepsilon_{k}, r_{k}}\right) \\
& =\left(\gamma_{p p} E_{p p}+\lambda_{1} E_{p, p_{1}}+\lambda_{2} E_{p, p_{2}}\right)\left(E_{q q}+\beta_{q^{(1)}, q} E_{q^{(1)}, q}+\beta_{q^{(2)}, q} E_{q^{(2), q}}\right)
\end{aligned}
$$ where $\lambda_{1}=\gamma_{p, p_{1}}+\alpha_{p, p_{1}} \gamma_{p_{1}, p_{1}}, \lambda_{2}=\gamma_{p, p_{2}}+\alpha_{p, p_{2}} \gamma_{p_{2}, p_{2}}$. So every component of $\phi\left(E_{z, z_{k}}\right)$ is 0 except the (p, q)-component. Hence $\gamma_{p p}=0$ for all $p(1 \leq p \leq 2 n)$. Since $\phi\left(E_{r, 2_{k}}\right) \neq 0$, we have $\phi\left(E_{2,2_{k}}\right)=\gamma_{p q} E_{p q}$. Since $\gamma_{p q} \neq 0$, either $p_{1}=q$ or $p_{2}=q$ and either $q^{(1)}=p$ or $q^{(2)}=p$. Let $A=E_{t t}+E_{\imath, \imath_{k}}+E_{t_{k}, \imath_{k}}$. Then $A^{2}=E_{t z}+2 E_{\imath, i_{k}}+E_{\imath_{k}, \imath_{k}}$. Since $\phi\left(A^{2}\right)=\phi(A)^{2}$, the (p, q)-components of $\phi(A)^{2}$ and $\phi\left(A^{2}\right)$ are equal. So $\alpha_{p q}+\beta_{p q}+2 \gamma_{p q}=2\left(\alpha_{p q}+\beta_{p q}+\gamma_{p q}\right)$. Hence $\alpha_{p q}=-\beta_{p q}$.

From Theorem 6, we have the following theorem.
Theorem 7. Let $\phi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism. If $E_{p q}$ is in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ with $p \neq q$, then there exist \imath and $\imath_{k}(1 \leq \imath \leq n, 1 \leq k \leq 2)$ such that $\phi\left(E_{\imath z}\right)=E_{p p}+\alpha_{p q} E_{p q}+\alpha_{p q^{\prime}} E_{p q^{\prime}}$ and $\phi\left(E_{\imath_{k}, \imath_{k}}\right)=E_{q q}+\beta_{p q} E_{p q}+$ $\beta_{p^{\prime} q} E_{p^{\prime} q}$ for some complex numbers $\alpha_{p q}, \alpha_{p, q^{\prime}}, \beta_{p q}$ and $\beta_{p^{\prime} q}$ and there exists a nonzero complex number $\gamma_{p q}$ such that $\phi\left(E_{t, v_{k}}\right)=\gamma_{p q} E_{p q}$. Moreover $\alpha_{p q}=-\beta_{p q}$.

From Theorem 7, we have the following theorem.
THEOREM 8. Let $\varphi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism such that the (p, p)-component of $\varphi\left(E_{p p}\right)$ is 1 for all $p(1 \leq p \leq 2 n)$. Then (1) for eich $\imath(1 \leq i \leq n), \varphi\left(E_{\imath \imath}\right)=E_{\imath 2}+\alpha_{t, t_{1}} E_{i, t_{1}}+\alpha_{t, 2_{2}} E_{\imath, t_{2}}$ for some complex numbers $\alpha_{2,1_{1}}$ and $\alpha_{1, t_{2}}$.
(2) for each $j(n+1 \leq j \leq 2 n), \varphi\left(E_{j}\right)=E_{\jmath,}-\alpha_{\jmath^{(1)}, j} E_{j^{(1)}, j}-$ $\alpha_{j^{(2)}, 3} E_{j^{(2)}, j}$ for some complex numbers $\alpha_{j^{(1), j}}$ and $\alpha_{\jmath^{(2)}, \mathcal{J}}$.
(3) for each $E_{\imath, i_{k}}(1 \leq i \leq n, 1 \leq k \leq 2), \varphi\left(E_{i, i_{k}}\right)=\gamma_{\imath, i_{k}} E_{t, i_{k}}$ for some nonzero complex number $\gamma_{i, t_{k}}$.

Theorem 9. Let $\varphi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism such that the (p, p)-component of $\varphi\left(E_{p p}\right)$ is 1 for all $p(1 \leq p \leq 2 n)$. Then there exists an operator T in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ such that $\varphi(A)=T \rho(A) T^{-1}$ for
all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$, where $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ is an automorphism such that $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$.
 and $\varphi\left(E_{\jmath \jmath}\right)=E_{\jmath \jmath}-\alpha_{j^{(2)}, j} E_{j^{(1), j}}-\alpha_{j^{(2)}, j} E_{j^{(2)}, j}$ for all $j(n+1 \leq j \leq 2 n)$. Then there exist $2 n$ nonzero complex numbers $\gamma_{2, \imath_{k}}(1 \leq \imath \leq n, 1 \leq k \leq$ 2) such that $\varphi\left(E_{z, 2_{k}}\right)=\gamma_{k, t_{k}} E_{i, i_{k}}$. Define an isomorphism $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow$ $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$ by $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$ and $\rho\left(E_{\imath, 2_{k}}\right)=\gamma_{\mathrm{t}, 2_{k}} E_{\imath_{2} \imath_{k}}$ for all $\imath(1 \leq \imath \leq n)$ and $k(1 \leq k \leq 2)$. Let $T=\sum_{p=1}^{2 n} E_{p p}-$ $\sum_{t=1}^{n} \alpha_{\imath, i_{1}} E_{\imath, 2_{1}}-\sum_{t=1}^{n} \alpha_{2, z_{2}} E_{i, 2_{2}}$. For each $\imath(1 \leq i \leq n)$, since $\varphi\left(E_{12}\right)=$ $E_{12}+\alpha_{2,1_{1}} E_{2,2_{1}}+\alpha_{2, z_{2}} E_{2,1_{2}}$ for some complex numbers $\alpha_{3, z_{1}}, \alpha_{1, z_{2}}$ and $\rho\left(E_{i z}\right)=E_{i z}$, we have $\varphi\left(E_{i i}\right) T=E_{i t}=T E_{i}=T \rho\left(E_{i t}\right)$. For each $j(n+$ $1 \leq j \leq 2 n)$, since $\varphi\left(E_{j \jmath}\right)=E_{3 j}-\alpha_{j^{(1)}, j} E_{\jmath^{(1)}, \jmath}-\alpha_{j^{(2)}, j} E_{j^{(2)}, j}$ for some complex numbers $\alpha_{\jmath^{(1)}, \jmath}, \alpha_{\jmath(2), \jmath}$ and $\rho\left(E_{\jmath \jmath}\right)=E_{\jmath \jmath}$, we have $\varphi\left(E_{\jmath \jmath}\right) T=$ $E_{j \jmath}-\alpha_{j^{(1)}, j} E_{j^{(2), j}}-\alpha_{j^{(2)}, j} E_{j(2), j}=T E_{j \jmath}=T \rho\left(E_{j \jmath}\right)$. For each $i, k(1 \leq$ $\imath \leq n, 1 \leq k \leq 2)$, since $\varphi\left(E_{\imath, z_{k}}\right)=\gamma_{\imath, \imath_{k}} E_{\imath, \imath_{k}}=\rho\left(E_{\imath, \imath_{k}}\right)$, we have $\varphi\left(E_{\imath, \imath_{k}}\right) T=\left(\gamma_{1, \imath_{k}} E_{\imath, \imath_{k}}\right) T=\gamma_{\imath, \imath_{k}} E_{\imath, \imath_{k}}=T\left(\gamma_{\imath, \imath_{k}} E_{\imath, \imath_{k}}\right)=T \rho\left(E_{\imath, \imath_{k}}\right)$. Thus $\varphi(A)=T \rho(A) T^{-1}$ for all A in $\mathcal{A}_{2 \pi}^{\left(S_{0}\right)}$.

ThEOREM 10. Let $\alpha_{z, t_{k}}(1 \leq i \leq n, 1 \leq k \leq 2)$ be $2 n$ complex numbers and let $\gamma_{1, x_{k}}(1 \leq i \leq n, 1 \leq k \leq 2)$ be $2 n$ nonzero complex numbers. Then the linear map $\varphi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ defined by

$$
\begin{aligned}
\varphi\left(E_{\imath 2}\right) & =E_{\imath \imath}+\alpha_{i, i_{1}} E_{i, 2_{1}}+\alpha_{i, i_{2}} E_{2, t_{2}} \text { for all } \imath(1 \leq \imath \leq n) \\
\varphi\left(E_{\jmath \jmath}\right) & =E_{j \jmath}-\alpha_{j(1), j} E_{\jmath(1), j}-\alpha_{\jmath,(2), j} E_{j(2), j} \text { for all } j(n+1 \leq j \leq 2 n) \\
\varphi\left(E_{2, \imath_{k}}\right) & =\gamma_{t, \imath_{k}} E_{\imath, i_{k}} \text { for all }, k(1 \leq i \leq n, 1 \leq k \leq 2)
\end{aligned}
$$

is an automorphism.
Proof. Let T be as in Theorem 9. Then $\varphi\left(E_{p p}\right)=T \rho\left(E_{p p}\right) T^{-1}$ for all $p(1 \leq p \leq 2 n)$ and $\varphi\left(E_{\imath, t_{k}}\right)=T \rho\left(E_{\imath, \imath_{k}}\right) T^{-1}$ for all $\imath, k(1 \leq i \leq$ $n, 1 \leq k \leq 2)$, where $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ is an automorphism satisfying $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$ and $\rho\left(E_{1,2_{k}}\right)=\gamma_{i, t_{k}} E_{t, t_{k}}$ for all $\imath(1 \leq i \leq n)$ and $k(1 \leq k \leq 2)$. Hence φ is an automorphism

Theorem 11. Let $\alpha_{i, 2_{k}}, \gamma_{2, r_{k}}(1 \leq i \leq n, 1 \leq k \leq 2)$ and φ be as in Theorem 10 Let T be as in Theorem 9. Then φ is spatially
implemented by B if and only if $B=T S$ for some diagonal invertible matrix S satisfying $\gamma_{t, i_{k}}=s_{t_{i}} s_{i_{k}, i_{k}}^{-1}$ for all $i, k(1 \leq i \leq n, I \leq k \leq 2)$.

Proof. Suppose that φ is spatially implemented by B. Then $\varphi(B)=$ $B A B^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Let $\rho: \mathcal{A}_{2 n}^{\left(S_{o}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism defined by $\rho\left(E_{\jmath \jmath}\right)=E_{\jmath \jmath}$ for all $j(1 \leq j \leq 2 n)$ and $\rho\left(E_{2, z_{k}}\right)=\gamma_{i, 2_{k}} E_{i, i_{k}}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$. Since $\varphi(A)=T \rho(A) T^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$, we have $\varphi(A)=T \rho(A) T^{-1}=B A B^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Hence $\rho(A)=T^{-1} B A B^{-1} T=\left(T^{-1} B\right) A\left(T^{-1} B\right)^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Put $S=T^{-1} B=\left(s_{u v}\right)$. Then ρ is spatially implemented by S. By Theorem 3, S is diagonal and $\gamma_{2, i_{k}}=s_{i t} s_{\imath_{k}, \imath_{k}}^{-1}$ for all $\imath, k(1 \leq i \leq n, 1 \leq$ $k \leq 2$). Conversely, suppose that $B=T S$ for some diagonal matrix S satisfying $\gamma_{i, 2_{k}}=s_{i z} s_{2_{k}, i_{k}}^{-1}$ for all $i, k(1 \leq \imath \leq n, 1 \leq k \leq 2)$. Since S is diagonal and $\gamma_{2, \imath_{k}}=s_{v_{i}} s_{i_{k}, \imath_{k}}^{-1}, \rho$ is spatially implemented by $S=T^{-1} B$. Hence $\varphi(A)=T \rho(A) T^{-1}=T S A S^{-1} T^{-1}=B A B^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$.

Theorem 12. Let $\phi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism. Then there exists a $2 n \times 2 n$ unitary matrix U and an automorphism φ : $\mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ with the (p, p)-component of $\varphi\left(E_{p p}\right)$ is 1 for all $p(1 \leq$ $p \leq 2 n$) such that $\phi(A)=U_{\varphi}(A) U^{*}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$

Proof. Let $\sigma=\left(\begin{array}{cccccc}1 & 2 & . & . & . & 2 n \\ \sigma(1) & \sigma(2) & . & . & . & \sigma(2 n)\end{array}\right)$ be a permutation such that the $(\sigma(i), \sigma(i))$-component of $\phi\left(E_{t z}\right)$ is 1 for all $i(1 \leq i \leq 2 n)$. Let V be $2 n \times 2 n$ matrix whose $(p, \sigma(p))$-component is 1 for all $p(1 \leq$ $p \leq 2 n)$ and all other components are 0 . Define $\varphi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ by $\varphi(A)=V \phi(A) V^{*}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Then by simple calculation, φ is an automorphism and the (p, p)-component of $\varphi\left(E_{p p}\right)$ is 1 for all $p(1 \leq p \leq 2 n)$. Put $U=V^{*}$. Then $\phi(A)=U \varphi(A) U^{*}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$.

From Theorems 9 and 12, we have the following theorem.
THEOREM 13. Let $\phi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(\mathcal{S}_{0}\right)}$ be an automorphism. Then there exist an automorphism $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ satisfying $\rho\left(E_{p p}\right)=$ $E_{p p}$ for all $p(1 \leq p \leq 2 n)$ and an invertible operator Y such that $\phi(A)=Y \rho(A) Y^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$.

Theorem 14. Let $\phi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ be an automorphism. Let

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & . & \cdot & . & 2 n \\
\sigma(1) & \sigma(2) & \cdot & \cdot & \cdot & \sigma(2 n)
\end{array}\right)
$$

be a permutation such that the $(\sigma(i), \sigma(i))$-component of $\phi\left(E_{\mathfrak{n}}\right)$ is 1 for all $i(1 \leq i \leq 2 n)$ and let $\phi\left(E_{z, \imath_{k}}\right)=\gamma_{\sigma(t), \sigma\left(z_{k}\right)} E_{\sigma(\imath), \sigma\left(\imath_{k}\right)}$ for all $E_{\imath, \imath_{k}}$ in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Then ϕ is spatially implemented by R if and only if $R=U T S$ for some diagonal invertible matrix $S=\left(s_{u v}\right)$ satisfying $\gamma_{\sigma(2), \sigma\left(\tau_{k}\right)}=$ $s_{1 i} s_{\imath_{k}, i_{k}}^{-1}$ for all $i, k\left(1 \leq{ }_{2} \leq n, 1 \leq k \leq 2\right)$, where $U^{*}=\sum_{p=1}^{2 n} E_{p, \sigma(p)}$ and $T=\sum_{p=1}^{2 n} E_{p p}-\sum_{i=1}^{n} \alpha_{t, t_{1}} E_{\imath, z_{1}}-\sum_{t=1}^{n} \alpha_{i, z_{2}} E_{2, z_{2}}$.

Proof. Note that the $(\sigma(p), \sigma(p))$-component of $\phi\left(E_{p p}\right)$ is 1 for all $p(1 \leq p \leq 2 n)$. By Theorem $6, \phi\left(E_{i, 2_{k}}\right)=\gamma_{\sigma(t), \sigma\left(t_{k}\right)} E_{\sigma(t), \sigma\left(i_{k}\right)}$ for some nonzero complex number $\gamma_{\sigma\left(\imath_{2}\right), \sigma\left(i_{k}\right)}$. From Theorem 12 , there exists an automorphism $\varphi: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ satisfying the (p, p)-component of $\varphi\left(E_{p p}\right)$ is 1 for all $p(1 \leq p \leq 2 n)$ such that $\phi(A)=U \varphi(A) U^{*}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Hence

$$
\begin{aligned}
\varphi\left(E_{z, z_{k}}\right) & =U^{*} \phi\left(E_{\imath, \imath_{k}}\right) U \\
& =\left(\sum_{p=1}^{2 n} E_{p, \sigma(p)}\right)\left(\gamma_{\sigma(\mathfrak{t}), \sigma\left(r_{k}\right)} E_{\sigma(\imath), \sigma\left(\mathfrak{t}_{k}\right)}\right)\left(\sum_{p=1}^{2 n} E_{\sigma(p), p}\right) \\
& =\gamma_{\sigma(\mathfrak{z}), \sigma\left(z_{k}\right)} E_{\imath, t_{k}}
\end{aligned}
$$

Define an automorphism $\rho: \mathcal{A}_{2 n}^{\left(S_{0}\right)} \rightarrow \mathcal{A}_{2 n}^{\left(S_{0}\right)}$ by $\rho\left(E_{p p}\right)=E_{p p}$ for all $p(1 \leq p \leq 2 n)$ and $\rho\left(E_{i, 2_{k}}\right)=\gamma_{\sigma(t), \sigma\left(\imath_{k}\right)} E_{\imath, \imath_{k}}$ for all $\imath(1 \leq i \leq n)$ and $k(1 \leq k \leq 2)$. Then from Theorem $9, \varphi(A)=T \rho(A) T^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. Suppose that ϕ is spatially implemented by R. Then $\phi(A)=$ $R A R^{-1}$ for all A in $\mathcal{A}_{2 n}^{\left(S_{0}\right)}$. So $\rho(A)=T^{-1} \varphi(A) T=T^{-1} U^{*} \phi(A) U T=$ $(U T)^{-1} R A R^{-1}(U T)$. Put $S=(U T)^{-1} R=\left(s_{u v}\right)$. Then ρ is spatially implemented by S. By Theorem 3, S is diagonal and $\gamma_{\sigma(2), \sigma\left(i_{k}\right)}=$ $s_{i i} s_{i_{k}, i_{k}}^{-1}$ for all $i, k(1 \leq i \leq n, 1 \leq k \leq 2)$. Conversely, suppose that $R=U T S$ for some invertible diagonal matrix $S=\left(s_{u v}\right)$ satisfying $\gamma_{\sigma(1), \sigma\left(i_{k}\right)}=s_{n_{1}} s_{i_{k}, i_{k}}^{-1}$ for all i and $k(1 \leq i \leq n, 1 \leq k \leq 2)$. Since S is diagonal and $\gamma_{\sigma(2), \sigma\left(z_{k}\right)}=s_{\imath \imath} s_{i_{k}, i_{k}}^{-1}$ for all $\imath, k(1 \leq i \leq n, 1 \leq$
$k \leq 2$), ρ is spatially implemented by S. Hence $\phi(A)=U \varphi(A) U^{*}=$ $U T \rho(A) T^{-1} U^{*}=U T S A S^{-1} T^{-1} U^{*}$. Hence ϕ is spatially implemented by $R=U T S$.

References

1. W. B Arveson, Operator algebras and 2nvariant subspaces, Annals of Math. 100, 2 (1974), 433-532
2. F Gilfeather, A Hopenwasser, and D. Larson, Reflexive algebras with finte width lattzces; tensor products, cohomology, compact perturbatıons, J. Funct. Anal. 55 (1984), 176-199
3. F. Gilfeather and D Larson, Commutants modulo the compact operators of certain CSL algebras, Oper. Theory Adv Appl 2 (1981), 105-120 Birkhauser, Basel.
4. F Gllfeather and R L. Moore, Isomorphisms of certain CSL-algebras, J. Funct. Anal. 67 (1986), 264-291
5. Y. S. Jo, Isometries of Tridzagonal algebras, Pacfic J. Math. 140 (1989), 97-115.
6. Y.S. Jo and J H. Kang, Isomorphisms of $\mathcal{A}_{2 n(k)}^{(3)}$, Math Japonica 37(2) (1992), 259-265
7. Y S. Jo and T Y Choi, Isomorphesms of $A \operatorname{Llg} \mathcal{L}_{n}$ and $\operatorname{Alg} \mathcal{L}_{\infty}$, Michigan Math J. 37 (1990), 305-314
8. T. Y. Choi and Y. S Jo, Isomorphzsms of Tridiagonal algebras, Perprint.

Department of Mathematics Education
Andong National University
Andong 760-749, Korea

