Pusan Kyŏngnam Math. J. 9(1993), No. 2, pp. 371-379

FUZZY WEAKLY IRRESOLUTE MAPPINGS

SAM-YOUL YOON AND SANG-HO PARK

The concept of a fuzzy set, which was introduced in [9], provides a natural framework for generalizing many of the concepts of general topology to what might be called fuzzy topological spaces. The idea of fuzzy topological spaces was introduced by Chang [3]. The idea is more or less a generalization of oridinary topological spaces.

In [2], Chae, Dube and Panwar have studied weakly irresolute mappings in topological spaces. In this paper, we generalize the concept of weakly irresolute mappings in fuzzy setting.

Let X and Y be two sets of points. A fuzzy set in X is a mapping from X into the closed unit interval I = [0,1] on the real line. For X, I^X denotes the collection of all mappings from X into I. The union $\bigcup \lambda_{\alpha}$ (the intersection $\cap \lambda_{\alpha}$) of a family $\{\lambda_{\alpha}\}$ of fuzzy sets in X is defined to be the mapping $\sup \lambda_{\alpha}(\inf \lambda_{\alpha})$. For any two members λ and μ of I^X ; $\lambda \leq \mu$ if and only if $\lambda(x) \leq \mu(x)$ for each $x \in X$, and in this case λ is said to be contained in μ , or μ is said to contain λ . 0 and 1 denote constant mappings taking whole of X to 0 and 1, respectively. The complement λ' of a fuzzy set λ in X is $1 - \lambda$, defined by $(1 - \lambda)(x) = 1 - \lambda(x)$ for each $x \in X$.

A fuzzy point p in X is a fuzzy set in X defined by

$$p(x) = \begin{cases} k \in (0,1) & \text{for } x = x_p, \\ 0 & \text{otherwise }, \end{cases}$$

for each $x \in X$, where x_p and k are the support (written x_p =supp p) and the value of p, respectively. A fuzzy point p is said to belong to a fuzzy set λ in X, written $p < \lambda$, iff $p(x_p) < \lambda(x_p)$.

Let $f: X \to Y$ be a mapping. If λ is a fuzzy set in X, then $f(\lambda)$ is a fuzzy set in Y defined by

$$f(\lambda)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \lambda(z) & \text{if } f^{-1}(y) \neq \phi, \\ 0 & \text{otherwise} \end{cases}$$

Received October 30,1993

for each $y \in Y$. If p is a fuzzy point in X with the support x_p and $p(x_p) = k$, then f(p) is also a fuzzy point in Y defined by

$$f(p)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} p(z) = k & \text{if } y = f(x_p) \\ 0 & \text{otherwise} \end{cases}$$

for each $y \in Y$. If μ is a fuzzy set in Y, then $f^{-1}(\mu)$ is a fuzzy set in X defined by $f^{-1}(\mu)(x) = \mu(f(x))$ for each $x \in X$.

A subfamily τX of I^X is called a fuzzy topology on X ([1, 3]) if (i) 0 and 1 belong to τX , (ii) any union of members of τX is in τX , (iii) a finite intersection of members of τX is in τX .

Members of τX are called fuzzy open sets in X and their complements fuzzy closed sets. A set X with fuzzy topology τX is called a fuzzy topological space, written $(X, \tau X)$ (or shortly, X).

In what follows, $(X, \tau X)$ and $(Y, \tau Y)$ (or shortly X and Y) would mean fuzzy topological spaces unless otherwise specified.

DEFINITION 1 ([1]). Let λ be a fuzzy set in X. The closure Cl λ and the interior Int λ of λ are defined by

$$\operatorname{Cl}\lambda = \inf\{\nu : \nu \ge \lambda, \ \nu' \in \tau X\},\$$

and

Int
$$\lambda = \sup\{\nu : \nu \le \lambda, \ \nu \in \tau X\}.$$

DEFINITION 2 ([1]). Let λ be a fuzzy set in X.

(a) λ is called a fuzzy semi-open set in X if there exists $\nu \in \tau X$ such that $\nu \leq \lambda \leq C l \nu$.

(b) λ is called a fuzzy semi-closed set in X if there exists $\nu' \in \tau X$ such that $\operatorname{Int} \nu \leq \lambda \leq \nu$.

LEMMA 1 ([1]). Let λ be a fuzzy set in X. Then the following are equivalent:

- (a) λ is a fuzzy semi-closed set.
- (b) λ' is a fuzzy semi-open set.
- (c) $IntCl\lambda \leq \lambda$.
- (d) $ClInt\lambda' \geq \lambda'$.

DEFINITION 3 ([8]). Let λ be a fuzzy set in X. The semi-closure sCl λ and the semi-interior sInt λ of λ are defined by

$$sCl\lambda = inf\{\mu : \lambda \le \mu, \ \mu \text{ is fuzzy semi-closed}\}$$

and

$$\operatorname{sInt} \lambda = \sup\{\mu : \mu \leq \lambda, \ \mu \text{ is fuzzy semi-open}\}.$$

LEMMA 2 ([7]). Let
$$f: X \to Y$$
 be a mapping. Then;
(a) If $\lambda \leq \mu$ for any $\lambda, \mu \in I^X$, then $f(\lambda) \leq f(\mu)$.
(b) If $\lambda \leq \mu$ for any $\lambda, \mu \in I^Y$, then $f^{-1}(\lambda) \leq f^{-1}(\mu)$.
(c) If $\lambda \in I^X$, then $\lambda \leq f^{-1}(f(\lambda))$.
(d) If $\lambda \in I^Y$, then $f(f^{-1}(\lambda)) \leq \lambda$ and $f^{-1}(\lambda') = (f^{-1}(\lambda))'$.
(e) If $\lambda_i \in I^Y$ for each $i \in T$, $f(\bigcup_{i \in T} \lambda_i) = \bigcup_{i \in T} f(\lambda_i)$.
(f) If $\lambda_i \in I^Y$ for each $i \in T$, $f^{-1}(\bigcup_{i \in T} \lambda_i) = \bigcup_{i \in T} f^{-1}(\lambda_i)$.
(g) If $\lambda_i \in I^Y$ for each $i \in T$, $f^{-1}(\bigcap_{i \in T} \lambda_i) = \bigcap_{i \in T} f^{-1}(\lambda_i)$.
(h) If f is one to one and $\lambda \in I^X$, then $f^{-1}(f(\lambda)) = \lambda$.
(i) If f is onto and $\lambda \in I^Y$, then $f(f^{-1}(\lambda)) = \lambda$.
(j) Let g be a function from Y to Z . If $\lambda \in I^Z$ and $\mu \in I^X$, then $(g \circ f)^{-1}(\lambda) = f^{-1}(g^{-1}(\lambda))$ and $(g \circ f)(\mu) = g(f(\mu))$.
(k) If f is bijective and $\lambda \in I^X$, then $f(\lambda)' = f(\lambda')$.

LEMMA 3 ([8]). Let λ and μ be fuzzy sets in X satisfying $\lambda \leq \mu$. Then;

(a) $sCl\lambda \leq sCl\mu$, (b) $sInt\lambda \leq sInt\mu$, (c) $\lambda \leq sCl\lambda \leq Cl\lambda$, (d) $\lambda \geq sInt\lambda \geq Int\lambda$.

PROPOSITION 1. Let λ be a fuzzy set in X. Then;

$$1 - sInt\lambda = sCl(1 - \lambda)$$
 and $1 - sCl\lambda = sInt(1 - \lambda)$.

Proof.

$$\begin{split} &\mathrm{sCl}(1-\lambda) \\ &= \inf\{\mu: 1-\lambda \leq \mu, \ \mu \text{ is a fuzzy semi-closed set in } X\} \\ &= \inf\{1-(1-\mu): \lambda \geq 1-\mu, \ 1-\mu \text{ is a fuzzy semi-open set in } X\} \\ &= 1-\sup\{1-\mu: \lambda \geq 1-\mu, \ 1-\mu \text{ is a fuzzy semi-open set in } X\} \\ &= 1-\mathrm{sInt}\lambda \end{split}$$

and

 $sInt(1 - \lambda)$ = sup{ $\mu : 1 - \lambda \le \mu$, μ is a fuzzy semi-open set in X} = sup{ $1 - (1 - \mu) : \lambda \le 1 - \mu$, $1 - \mu$ is a fuzzy semi-closed set in X} = $1 - \inf\{1 - \mu : \lambda \le 1 - \mu, 1 - \mu$ is a fuzzy semi-closed set in X} = $1 - sCl\lambda$.

PROPOSITION 2. If λ is a fuzzy semi-open set in X, then sCl λ is also a fuzzy semi-open set in X.

Proof. Since λ is a fuzzy semi-open set in X, there exists a fuzzy open set μ in X such that $\mu \leq \lambda \leq Cl\mu$. Then by Lemma 3, we have $\mu \leq sCl\mu \leq sCl\lambda \leq Cl\mu$. So, $sCl\lambda$ is a fuzzy semi-open set in X.

In [2], Chae, Dube and Panwar defined the notion of a weakly irresolute mapping in topological spaces as follows;

DEFINITION 4. A mapping $f: X \to Y$ is called a weakly irresolute mapping if for each $x \in X$ and each semi-nbd $V \subset Y$ of f(x), there exists a semi-nbd U of x such that $f(U) \subset sCl(V)$.

We generalize the above definition in fuzzy setting.

DEFINITION 5. A mapping $f : X \to Y$ is called a fuzzy weakly irresolute mapping if for each fuzzy point p in X and each fuzzy semiopen set λ in Y satisfying $f(p) < \lambda$, there exists a fuzzy semi-open set μ in X such that $p < \mu$ and $f(\mu) \leq \mathrm{sCl}\lambda$

THEOREM 1. Let $f: X \to Y$ be a mapping. Then the following are equivalent:

(a) f is fuzzy weakly irresolute.

(b) For any fuzzy semi-open set λ in Y, $f^{-1}(\lambda) \leq sInt(f^{-1}(sCl\lambda))$.

(c) For any fuzzy semi-closed set λ in Y, $sCl(f^{-1}(sInt\lambda)) \leq f^{-1}(\lambda)$.

(d) For any fuzzy semi-open set λ in Y, $sCl(f^{-1}(\lambda)) \leq f^{-1}(sCl\lambda)$.

Proof. (a) \Longrightarrow (b) Let λ be any fuzzy semi-open set in Y and $p \leq f^{-1}(\lambda)$. Then by Lemma 2, $f(p) \leq f(f^{-1}(\lambda)) \leq \lambda$. Also, since f is a fuzzy weakly irresolute mapping, there exists a fuzzy semi-open set λ in X such that $p < \mu$ and $f(\mu) \leq sCl\lambda$. This implies $p < \mu \leq f^{-1}(sCl\lambda)$

374

and so by Lemma 3, $p \leq \mu = \operatorname{sInt} \mu \leq \operatorname{sInt}(f^{-1}(\operatorname{sCl}\lambda))$. Thus, we have $f^{-1}(\lambda) \leq \operatorname{sInt}(f^{-1}(\operatorname{sCl}\lambda))$.

(b) \Longrightarrow (a) Let p be a fuzzy point in X and λ a fuzzy semi-open set in Y satisfying $f(p) < \lambda$. Then by (a), we have

$$p \leq f^{-1}(\lambda) \leq \operatorname{sInt}(f^{-1}(\operatorname{sCl}\lambda)).$$

Putting $\mu = \operatorname{sInt}(f^{-1}(\operatorname{sCl}\lambda))$, then μ is a fuzzy semi-open set in X satisfying $p < \mu$. Thus, by Lemma 2,

$$f(\mu) \le f(f^{-1}(\mathrm{sCl}\lambda)) \le \mathrm{sCl}\lambda.$$

(b) \Longrightarrow (c) Let λ be a fuzzy semi-closed set in Y. Then λ' is a fuzzy semi-open set in Y and by (b), we have $f^{-1}(\lambda') \leq \operatorname{sInt}(f^{-1}(\operatorname{sCl}\lambda'))$. Now, by Lemma 2 and Proposition 1, we also have

$$\begin{split} \{f^{-1}(\lambda)\}' &= f^{-1}(\lambda') \leq \operatorname{sInt}(f^{-1}(\operatorname{sCl}\lambda')) \\ &= \operatorname{sInt}(f^{-1}((\operatorname{sInt}\lambda)')) = \operatorname{sInt}(f^{-1}(\operatorname{sInt}\lambda))' \\ &= \{\operatorname{sCl}(f^{-1}(\operatorname{sInt}\lambda))\}', \end{split}$$

so that $sClf^{-1}(sInt\lambda) \leq f^{-1}(\lambda)$.

By the same method, we conclude that $(c) \Longrightarrow (b)$.

(c) \Longrightarrow (d) Let λ be a fuzzy semi-open set in Y. Then sCl λ is a fuzzy semi-closed set and by Lemma 3, $\lambda \leq \text{sInt}(\text{sCl}\lambda)$. Also, by (c), Proposition 2 and Lemma 2, we have

$$f^{-1}(\mathrm{sCl}\lambda) \ge \mathrm{sCl}(f^{-1}(\mathrm{sInt}(\mathrm{sCl}\lambda)))$$
$$= \mathrm{sCl}f^{-1}(\mathrm{sCl}\lambda)) \ge \mathrm{sCl}(f^{-1}(\lambda))$$

 $(d) \Longrightarrow (c)$ Let λ be a fuzzy semi-closed set in Y. Then $\operatorname{sInt} \lambda$ is a fuzzy semi-open set in Y and by Lemma 3, $\operatorname{sCl}(\operatorname{sInt}(\lambda)) \leq \lambda$. So, by Lemma 2 and (d), we have $\operatorname{sCl}(f^{-1}(\operatorname{sInt} \lambda)) \leq f^{-1}(\operatorname{sCl}(\operatorname{sInt} \lambda)) \leq f^{-1}(\lambda)$.

DEFINITION 6 ([1]). A fuzzy set λ in X is called (i) a fuzzy regular open set in X if $IntCl\lambda = \lambda$, and (ii) a fuzzy regular closed set in X if $ClInt\lambda = \lambda$.

LEMMA 4 ([1]).

(a) The closure of a fuzzy open set is a fuzzy regular closed set.

(b) The interior of a fuzzy closed set is a fuzzy regular open set.

PROPOSITION 3. Let λ be a fuzzy set in X. Then;

 $sCl\lambda = \lambda \cup IntCl\lambda.$

Proof. Let λ be a fuzzy set in X. Then sCl λ is a fuzzy semi-closed set. By Lemmas 1 and 3,

 $\operatorname{Int} \operatorname{Cl} \lambda \leq \operatorname{Int} (\operatorname{Cl}(\operatorname{sCl} \lambda)) \leq \operatorname{sCl} \lambda.$

This implies $\lambda \cup \text{IntCl}\lambda \leq s\text{Cl}\lambda$.

Conversely, it is clear that $\operatorname{IntCl} \lambda \leq \lambda \cup \operatorname{IntCl} \lambda \leq \operatorname{Cl} \lambda$. Hence, by Definition 2, we know that $\lambda \cup \operatorname{IntCl} \lambda$ is a fuzzy semi-closed set and so $\operatorname{sCl} \lambda \leq \lambda \cup \operatorname{IntCl} \lambda$. Thus we have $\operatorname{sCl} \lambda = \lambda \cup \operatorname{IntCl} \lambda$.

DEFINITION 7. Let λ be a fuzzy set in X. Then λ is called a fuzzy semi-regular open set in X if it is both fuzzy semi-open and fuzzy semi-closed.

REMARK. Following Proposition 2, we know that $sCl\lambda$ is a fuzzy semi-regular open set for a fuzzy semi-open set λ .

PROPOSITION 4. Let λ be a fuzzy set in X. Then the following are equivalent:

(a) λ is fuzzy semi-regular open.

(b) $\lambda = sInt(sCl\lambda)$.

(c) there exists a fuzzy regular open set μ in X such that $\mu \leq \lambda \leq C l \mu$.

Proof. (a) \Longrightarrow (b) If λ is fuzzy semi-regular open, then

$$\operatorname{sInt}(\operatorname{sCl}\lambda) = \operatorname{sInt}\lambda = \lambda.$$

(b)=>(c) Suppose $\lambda = \operatorname{sInt}(\operatorname{sCl}\lambda)$. By Proposition 3, $\operatorname{IntCl}\lambda \leq \operatorname{sCl}\lambda$ and so by Lemma 3, $\operatorname{IntCl}\lambda \leq \operatorname{sInt}(\operatorname{sCl}\lambda) = \lambda$. Also, since λ is fuzzy semi-open, $\lambda \leq \operatorname{ClInt}\lambda$. By Lemmas 1 and 3, we have $\operatorname{IntCl}\lambda \leq \lambda \leq \operatorname{ClInt}\lambda \leq \operatorname{ClIntCl}\lambda$. Taking $\mu = \operatorname{IntCl}\lambda$, we have that μ is fuzzy regular open.

(c) \Longrightarrow (a) Clearly, λ is a fuzzy semi-open set. By (c), $Cl\lambda = Cl\mu$ and so $IntCl\lambda = IntCl\mu = \mu \leq \lambda$. By Proposition 3, $sCl\lambda = \lambda \cup IntCl\lambda = \lambda$. and hence λ is fuzzy semi-closed.

376

THEOREM 2. Let $f: X \to Y$ be a mapping. Then the following are equivalent:

(a) f is fuzzy weakly irresolute.

(b) If λ is a fuzzy semi-regular open set in Y, then $f^{-1}(\lambda)$ is a fuzzy semi-regular open set in X.

Proof. Let λ be a fuzzy semi-regular open set in Y. Since f is fuzzy weakly irresolute,

$$sCl(f^{-1}(\lambda)) \le f^{-1}(sCl\lambda)$$

and

$$f^{-1}(\lambda) \leq s \operatorname{Int}(f^{-1}(s \operatorname{Cl}\lambda)).$$

By Proposition 2 and Lemma 3,

$$\begin{aligned} \operatorname{sInt}(\operatorname{sCl}(f^{-1}(\lambda))) &\leq \operatorname{sCl}(f^{-1}(\lambda)) \leq f^{-1}(\operatorname{sCl}\lambda) = f^{-1}(\lambda) \\ &\leq \operatorname{sInt}(f^{-1}(\operatorname{sCl}\lambda)) \leq \operatorname{sInt}(\operatorname{sCl}(f^{-1}(\operatorname{sCl}\lambda))) \\ &= \operatorname{sInt}(\operatorname{sCl}(f^{-1}(\lambda))). \end{aligned}$$

Thus we have $f^{-1}(\lambda) = \operatorname{sInt}(\operatorname{sCl}(f^{-1}(\lambda)))$ and so $f^{-1}(\lambda)$ is a fuzzy semi-regular open set.

Conversely, let p be a fuzzy point in X and λ a fuzzy semi-open set in Y satisfying $f(p) < \lambda$. Then sCl λ is a fuzzy semi-open set and a fuzzy semi-closed set and so sCl λ is a fuzzy semi-regular open set in Y. By hypothesis, $f^{-1}(\text{sCl}\lambda)$ is a fuzzy semi-open in X satisfying $p < f^{-1}(\text{sCl}\lambda)$. Putting $\mu = f^{-1}(\text{sCl}\lambda)$, by Lemma 2, $f(\mu) = f(f^{-1}(\text{sCl}\lambda)) \leq \text{sCl}\lambda$.

DEFINITION 8 ([8]). A mapping $f: X \to Y$ is a fuzzy irresolute mapping if for any fuzzy semi-open set λ in Y, $f^{-1}(\lambda)$ is a fuzzy semiopen set in X

REMARK 1. Clearly, every fuzzy irresolute mapping is a fuzzy weakly irresolute mapping. But a fuzzy weakly irresolute mapping need not be fuzzy irresolute as shown in the following example.

EXAMPLE 1. Let λ and μ be fuzzy sets in the unit closed interval *I* defined by $\lambda(x) = \frac{1}{3}(x)$ and $\mu(x) = \frac{2}{3}(x)$, respectively. Consider fuzzy topologies $\tau_1 I = \{0, 1, \lambda\}$, and $\tau_2 I = \{0, 1, \mu\}$ on *I*, and take $f: (I, \tau_1 I) \to (I, \tau_2 I)$ defined by f(x) = x for each $x \in I$. We will show that f is fuzzy weakly irresolute, but is not fuzzy irresolute. Let η be a fuzzy semi-open set in $(I, \tau_2 I)$. Then $\eta = 0$ or $\eta \ge \mu$. So, we have

$$f^{-1}(\mathrm{sCl}\eta) = \begin{cases} 0 & \text{if } \eta = 0\\ 1 & \text{if } \eta \ge \mu. \end{cases}$$

Also, in the case $\eta = 0$, $sClf^{-1}(\eta) = 0$. Thus, $sClf^{-1}(\eta) \leq f^{-1}(sCl\eta)$ and f is fuzzy weakly irresolute. While, let ν be a fuzzy set defined by $\nu(x) = \frac{2}{3}x + \frac{1}{3}$. Then ν is a fuzzy semi-open set in $(I, \tau_2 I)$. But, $f^{-1}(\nu) = \nu \circ f = \nu$ is not a fuzzy semi-open set in $(I, \tau_1 I)$ and hence f is not fuzzy irresolute.

LEMMA 5 ([8]). Let $f: X \to Y$ be a mapping. Then the following are equivalent:

(a) f is fuzzy irresolute,

(b) For each fuzzy point p in X and each fuzzy semi-open set λ in Y satisfying $f(p) \leq \lambda$, there exists a fuzzy semi-open set μ in X such that $p \leq \mu \leq f^{-1}(\lambda)$,

(c) For each fuzzy point p in X and each fuzzy semi-open set λ in Y satisfying $f(p) \leq \lambda$, there exists a fuzzy semi-open set μ in X such that $p \leq \mu$ and $f(\mu) \leq \lambda$.

DEFINITION 9. A fuzzy space X is said to be fuzzy strongly semiregular if for each fuzzy point p in X and each fuzzy semi-open set ν satisfying $p < \nu$, there exists a fuzzy semi-open set μ in X such that $p < \mu \leq \mathrm{sCl}\mu \leq \nu$.

THEOREM 3. Let $f: X \to Y$ be a fuzzy weakly irresolute mapping. If Y is fuzzy strongly semi-regular, then f is fuzzy irresolute.

Proof. Let p be a fuzzy point in X and let λ be a fuzzy semi-open set in Y satisfying $f(p) \leq \lambda$. Since Y is fuzzy strongly semi-regular, there exists a fuzzy semi-open set μ in Y such that $f(p) \leq \mu \leq \operatorname{sCl} \mu \leq \lambda$. Also since f is fuzzy weakly irresolute, there exists a fuzzy semi-open set ν in X such that $p \leq \nu \leq f^{-1}(\operatorname{sCl}\mu) \leq f^{-1}(\lambda)$. Hence by Lemma 5, f is fuzzy irresolute.

THEOREM 4. Let $f : X \to Y$ and $g : Y \to Z$ be mappings. If f is fuzzy weakly irresolute and g is fuzzy weakly irresolute, then $g \circ f$ is fuzzy weakly irresolute.

378

Proof. Let p be a fuzzy point in X and λ a fuzzy semi-open set in Z satisfying $(g \circ f)(p) = g(f(p)) < \lambda$. Since g is fuzzy irresolute, there exists a fuzzy semi-open set ν in Y such that $f(p) < \nu$ and $g(\nu) \leq \text{sCl}\lambda$. Also, since f is fuzzy weakly irresolute, there exists a fuzzy semi-open set μ in X such that $p < \mu$ and $f(\mu) \leq \text{sCl}\nu$. So, by Theorem 1, we have

$$\begin{split} \mu &\leq f^{-1}(\mathrm{sCl}\nu) \leq f^{-1}(\mathrm{sCl}(g^{-1}(\mathrm{sCl}\lambda))) \\ &\leq f^{-1}(g^{-1}(\mathrm{sClsCl}\lambda)) = f^{-1}(g^{-1}(\mathrm{sCl}\lambda)) \\ &= (g \circ f)^{-1}(\mathrm{sCl}\lambda). \end{split}$$

Thus $g \circ f$ is fuzzy weakly irresolute.

References

- K K Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math Anal Appl 82 (1981), 14-32
- 2. G I Chae, K. K Eube and O S Panwar, A note on weakly irresolute mappings, Pusan kyongnam Math. J. 1 (1985), 89-100
- 3. C L Chang, Fuzzy topological spaces, J Math Anal Appl 24 (1968), 182-190
- 4 G. La Maio, On s-closed spaces, Indian J Pure Appl. Math 18 (1987), 226-233
- 5. T. Noin, A note on F-closed spaces, Kyungpook Math.J. 31 (1991), 269-273
- 6. S Saha, Fuzzy δ -continuous mappings, J. Math Anal. Appl. 126 (1987), 130-142
- 7 T. H. Yalvac, Fuzzy sets and functions on fuzzy spaces, J Math Anal. Appl 126 (1987), 409-423
- T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl. 132 (1988), 356-364.
- 9 L A Zadeh, Fuzzy sets, Inform Control 8 (1965), 338-353

Department of Mathematics Gyeongsang National University Chinju 660-701, Korea