Pusan Kyǒngnam Math J. 9(1993), No. 2, pp. 321-332

HYPERBOLIC CURVATURE ON PLANE REGIONS

Tai Sung Song

1. Introduction

Let γ be a smooth curve in a hyperbolic plane region Ω and $K_{\Omega}(z, \gamma)$ denote the hyperbolic curvature of the curve γ at the point $z \in \gamma$. Flinn and Osgood[5] proved that if f is a conformal mapping of a hyperbolic simply connected region Ω into a hyperbolic simply connected region Δ, then

$$
\max \left\{K_{\Omega}(z, \gamma), 2\right\} \leq \max \left\{K_{\Delta}(f(z), f \circ \gamma), 2\right\}
$$

for any smooth curve γ in Ω. This result gives the monotonicity theorem for the hyperbolic curvature.

Monotonicity Theorem. Suppose Ω and Δ are hyperbolic simply connected regions in the complex plane \mathbf{C} and $\Omega \subset \Delta$. If $K_{\Omega}(z, \gamma) \geq 2$, then for any smooth curve γ in $\Omega K_{\Omega}(z, \gamma) \leq K_{\Delta}(z, \gamma)$.

In this paper we investigate a type of monotonicity property for the hyperbolic curvature under a holomorphic mapping from a hyperbolic region to a hyperbolic region. In section 2 we obtain an inequality for the change in the euclidean curvature under a conformal mapping of the open unit disk into itself. In section 3 we discuss basic properties of the hyperbolic metric and hyperbolic curvature. In section 4 we prove that the monotonicity theorem for the hyperbolic curvature remains valid if Ω is a simply connected subregion of an arbitrary hyperbolic region Δ in the complex plane C.

[^0]
2. The change of euclidean curvature

Suppose f is holomorphic and univalent in the open unit disk D and normalized by $f(0)=0, f^{\prime}(0)=1$; say

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

Then deBranges' Theorem[3] asserts that $\left|a_{n}\right| \leq n$ for $n=2,3, \ldots$ with equality if and only if $f=K_{\theta}$, where θ is a real number and

$$
K_{\theta}(z)=\frac{z}{\left(1-e^{2 \theta} z\right)^{2}}=z+2 e^{2 \theta} z^{2}+3 e^{2 z \theta} z^{3}+\ldots
$$

is a Koebe function.

Lemma. If f is a conformal mapping of D into itself with $f(0)=0$, then

$$
\left|f^{\prime \prime}(0)\right| \leq 4\left|f^{\prime}(0)\right|\left(1-\left|f^{\prime}(0)\right|\right)
$$

Proof. Since f is univalent, it follows from Schwarz' Lemma that $0<\left|f^{\prime}(0)\right| \leq 1$. For a real number ϕ we consider

$$
h(z)=\frac{1}{f^{\prime}(0)} e^{-\imath \phi} K_{\theta}\left(f\left(e^{\imath \phi} z\right)\right) .
$$

Now,

$$
\begin{gathered}
K_{\theta}(f(z))=f(z)+2 e^{2 \theta}[f(z)]^{2}+\ldots \\
=f^{\prime}(0) z+\left(\frac{f^{\prime \prime}(0)}{2}+2 e^{2 \theta} f^{\prime}(0)^{2}\right) z^{2}+O\left(z^{3}\right)
\end{gathered}
$$

so that

$$
h(z)=z+\left[\frac{f^{\prime \prime}(0)}{2 f^{\prime}(0)} e^{\imath \phi}+2 f^{\prime}(0) e^{z(\theta+\phi)}\right] z^{2}+O\left(z^{3}\right)
$$

The function h is holomorphic and univalent in D, and $h(0)=0, h^{\prime}(0)$ $=1$. Select θ and ϕ so that

$$
\frac{f^{\prime \prime}(0)}{f^{\prime}(0)} e^{s \phi}>0 \text { and } 2 f^{\prime}(0) e^{\varepsilon(\theta+\phi)}>0 .
$$

Then deBranges' Theorem gives

$$
2 \geq\left|\frac{f^{\prime \prime}(0)}{2 f^{\prime}(0)} e^{i \phi}+2 f^{\prime}(0) e^{z(\theta+\phi)}\right|=\frac{\left|f^{\prime \prime}(0)\right|}{2\left|f^{\prime}(0)\right|}+2\left|f^{\prime}(0)\right| .
$$

This completes the proof.

Let γ be a smooth curve in \mathbf{C} with parametrization $z=z(t)$. The euclidean curvature $K_{e}(z, \gamma)$ of the curve γ at the point $z=z(t)$ is the rate of change of the angle θ that the tangent vector makes with the positive real axis with respect to arc length:

$$
K_{\mathrm{e}}^{\prime}(z, \gamma)=\frac{d \theta}{d s}=\frac{d \theta}{d t} \frac{d t}{d s}=\frac{1}{\left|z^{\prime}(t)\right|} \operatorname{Im}\left\{\frac{z^{\prime \prime}(t)}{z^{\prime}(t)}\right\} .
$$

If f is holomorphic and locally univalent in a neighborhood of γ, then $f \circ \gamma$ is also a smooth curve. The formula for the change of euclidean curvature under f is given by [7]

$$
K_{e}(f(z), f \circ \gamma)\left|f^{\prime}(z)\right|=K_{e}(z, \gamma)+\operatorname{Im}\left\{\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\} .
$$

We now obtain an inequality for the change of euclidean curvature at the origin under a conformal mapping of the open unit disk into itself that fixes the origin.

Theorem 1. Suppose f is a conformal mapping of D into itself with $f(0)=0$. If γ is a smooth curve through the origin, then

$$
\max \left\{K_{e}(0, f \circ \gamma), 4\right\} \geq \max \left\{K_{e}(0, \gamma), 4\right\} .
$$

Proof. We need only consider the case in which $K_{\mathrm{e}}(0, \gamma) \geq 4$.The formula for the change of euclidean curvature gives

$$
K_{e}(0, f \circ \gamma)\left|f^{\prime}(0)\right| \geq K_{e}(0, \gamma)-\left|\frac{f^{\prime \prime}(0)}{f^{\prime}(0)}\right| .
$$

The previous Lemma gives $\left|f^{\prime \prime}(0)\right| \leq 4\left|f^{\prime}(0)\right|\left(1-\left|f^{\prime}(0)\right|\right)$.Therefore,

$$
\left|f^{\prime}(0)\right|\left[K_{e}(0, f \circ \gamma)-4\right] \geq K_{e}(0, \gamma)-4 .
$$

But $0<\left|f^{\prime}(0)\right| \leq 1$, so the desired result follows immediately.

3. The hyperbolic metric and hyperbolic curvature

We begin this section with a brief introduction to the hyperbolic metric. For a general discussion of the hyperbolic metric we refer the reader to [1], [6], and [9].

The hyperbolic metric on the open unit disk D in \mathbf{C} is defined by

$$
\lambda_{D}(z)|d z|=\frac{2|d z|}{1-|z|^{2}} .
$$

A region Ω in \mathbf{C} is called hyperboluc if the complement of Ω with respect to \mathbf{C} contains at least two points. If a region Ω is hyperbolic, then, by the uniformization theorem [4,p.39], there is a holomorphic universal covering projection φ of D onto Ω. If Ω is simply connected, then φ is just a conformal mapping of D onto Ω. The density of the hyperbolic metric $\lambda_{\Omega}(z)|d z|$ on a hyperbolic region Ω is obtained from

$$
\left.\lambda_{\Omega}(\varphi(z)) \mid \varphi^{\prime}(z)\right\}=\lambda_{D}(z),
$$

where φ is any holomorphic universal covering projection of D onto Ω. The hyperbolic density is independent of the choice of the covering projection since

$$
\frac{2\left|T^{\prime}(z)\right|}{1-|T(z)|^{2}}=\frac{2}{1-|z|^{2}}
$$

for any conformal automorphism T of D. The hyperbolic metric is invariant under holomorphic covering projections: If $f: \Omega \rightarrow \Delta$ is a holomorphic covering projection, then

$$
\lambda_{\Delta}(f(z))\left|f^{\prime}(z)\right||d z|=\lambda_{\Omega}(z)|d z| .
$$

Example 1. (1) For $a \in \mathbf{C}$ and $r>0$ set $D(a, r)=\{z:|z-a|<r\}$ and

$$
\lambda_{D(a, \mathrm{r})}(z)=\frac{2 r}{r^{2}-|z-a|^{2}} .
$$

Now, $f(z)=a+r z$ is a conformal mapping of D onto $D(a, r)$ and $\lambda_{D(a, r)}(f(z))\left|f^{\prime}(z)\right|=\lambda_{D}(z)$, so $\lambda_{D(a, r)}(z)|d z|$ is the hyperbolic metric on $D(a, r)$.
(2) Set $D^{\prime}=\{z: 0<|z|<1\}$ and

$$
\lambda_{D^{\prime}}(z)=\frac{1}{|z| \log \frac{1}{|z|}} .
$$

The holomorphic function $f(z)=\exp \left(\frac{z+1}{z-1}\right)$ maps D onto D^{\prime} and $\lambda_{D^{\prime}}(f(z))\left|f^{\prime}(z)\right|=\lambda_{D}(z)$, so $\lambda_{D^{\prime}}(z)|d z|$ is the hyperbolic metric on D^{\prime}.
(3) The hyperbolic metric on the upper half plane $H=\{z: \operatorname{Imz}>0\}$ is

$$
\left.\lambda_{H}(z) \mid d z\right\}=\frac{1}{\overline{I m} z} .
$$

Next, we define the hyperbolic curvature of a smooth curve. We refer the reader to [5], [8], [9], [10] for further details. If γ is a smooth curve in a hyperbolic region Ω with parametrization $z=z(t)$, then the hyperbolic curvature of γ at the point $z=z(t)$ is given by

$$
K_{\Omega}(z, \gamma)=\frac{1}{\lambda_{\Omega}(z)}\left[K_{\mathrm{e}}(z, \gamma)-\frac{\partial \log \lambda_{\Omega}(z)}{\partial n}\right]
$$

$$
=\frac{1}{\lambda_{\Omega}(z)}\left[K_{e}(z, \gamma)+2 \operatorname{Im}\left\{\frac{\partial \log \lambda_{\Omega}(z)}{\partial z} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}\right],
$$

where is $n=n(z)$ the unit normal to γ at z.

Example 2. For the open unit disk D we have

$$
\begin{gathered}
K_{D}(z, \gamma)=\frac{1-|z|^{2}}{2}\left[K_{e}(z, \gamma)+2 \operatorname{Im}\left\{\frac{\bar{z}}{1-|z|^{2}} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}\right] \\
=\frac{1}{2}\left(1-|z|^{2}\right) K_{e}(z, \gamma)+\operatorname{Im}\left\{\frac{\overline{z(t)} z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\} .
\end{gathered}
$$

In particular, $K_{D}(0, \gamma)=\frac{1}{2} K_{e}(0, \gamma)$. Suppose γ is given by $z(t)=$ $a+r e^{\mathrm{rt}}$, where a is a real number, $r>0$ and $\alpha<t<\beta$ is an interval so that $z(t) \in D$ for $\alpha<t<\beta$. Then

$$
\begin{aligned}
& K_{D}(z, \gamma)=\frac{1}{2}\left(1-|z|^{2}\right) K_{e}(z, \gamma)+\operatorname{Im}\left\{\frac{\overline{z(t)} z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\} \\
= & \frac{1}{2}\left(1-a^{2}-r^{2}-2 a r \cos t\right) \frac{1}{r}+a \cos t+r=\frac{1+r^{2}-a^{2}}{2 r} .
\end{aligned}
$$

This gives the following results.
(1) If γ is completely contained inside of D, then $K_{D}(z, \gamma)>1$.
(2) If γ is tangent to the unit circle at 1 , then $K_{D}(z, \gamma)=1$.
(3) If γ is properly intersects the unit circle, then $0 \leq K_{D}(z, \gamma)<1$.
(4) If γ is orthogonal to the unit circle, then $K_{D}(z, \gamma)=0$. In this case γ is a hyperbolic geodesic.

Example 3. For the hyperbolic region $D^{\prime}=\{z: 0<|z|<1\}$ we have

$$
\begin{gathered}
K_{D^{\prime}}(z, \gamma)=\frac{1}{\lambda_{D^{\prime}}(z)}\left[K_{e}(z, \gamma)+2 \operatorname{Im}\left\{\frac{\partial \log \lambda_{D^{\prime}}(z)}{\partial z} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}\right] \\
=\frac{K_{e}(z, \gamma)}{\lambda_{D^{\prime}}(z)}+\left(1-\log \frac{1}{|z|}\right) \operatorname{Im}\left\{\frac{\overline{z(t)}}{|z(t)|} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}
\end{gathered}
$$

Suppose γ is given by $z(t)=\rho e^{2 t}$, where $0 \leq t \leq 2 \pi$ and $0<\rho<$ 1. Then

$$
K_{D^{\prime}}(z, \gamma)=\frac{\frac{1}{\rho}}{\left(\rho \log \frac{1}{\rho}\right)^{-1}}+\left(1-\log \frac{1}{\rho}\right) \cdot 1=1
$$

This shows that the hyperbolic curvature of γ is independent of $\rho \in$ $(0,1)$.

Example 4. For the upper half plane H we have

$$
\begin{aligned}
K_{H}(z, \gamma)= & \frac{K_{e}(z, \gamma)}{\lambda_{H}(z)}+\frac{1}{\lambda_{H}(z)} 2 \operatorname{Im}\left\{\frac{i}{2} \lambda_{H}(z) \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\} \\
& =\frac{K_{e}(z, \gamma)}{\lambda_{H}(z)}+\operatorname{Re}\left\{\frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}
\end{aligned}
$$

Suppose γ is the line $z(t)=x_{0}+t e^{t \theta}, t>0$. Then

$$
K_{H}(z, \gamma)=0+R e e^{2 \theta}=\cos \theta
$$

For $\theta=\frac{\pi}{2}, \gamma$ is the hyperbolic geodesic and $K_{H}(z, \gamma)=0$.

Now, we show that the hyperbolic curvature is invariant under holomorphic covering projections.

Theorem 2. Suppose Ω and Δ are hyperbolic regions in \mathbf{C} and $f: \Omega \rightarrow \Delta$ is a holomorphic covering projection. Then $K_{\Omega}(z, \gamma)=$ $K_{\Delta}(f(z), f \circ \gamma)$ for any smooth curve γ in Ω.

Proof. Let $w=f(z)$ and $\delta=f \circ \gamma$. From $\lambda_{\Omega}(z)=\lambda_{\Delta}(f(z))\left|f^{\prime}(z)\right|$, we obtain

$$
\begin{aligned}
\frac{\partial \log \lambda_{\Omega}(z)}{\partial z}= & \frac{\partial}{\partial z}\left[\log \lambda_{\Delta}(f(z))+\frac{1}{2} \log f^{\prime}(z)+\frac{1}{2} \log \overline{f^{\prime}(z)}\right] \\
& =\frac{\partial \log \lambda_{\Delta}(w)}{\partial w} f^{\prime}(z)+\frac{1}{2} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}
\end{aligned}
$$

So, by the transformation law for euclidean curvature, we have

$$
\begin{align*}
& K_{\Omega}(z, \gamma)=\frac{K_{e}(z, \gamma)}{\lambda_{\Omega}(z)}+\frac{1}{\lambda_{\Omega}(z)} 2 \operatorname{Im}\left\{\frac{\partial \log \lambda_{\Omega}(z)}{\partial z} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\} \tag{}\\
& =\frac{1}{\lambda_{\Delta}(w)\left|f^{\prime}(z)\right|}\left[K_{e}(w, \delta)\left|f^{\prime}(z)\right|-\operatorname{Im}\left\{\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}\right] \\
& +\frac{1}{\lambda_{\Delta}(w)\left|f^{\prime}(z)\right|} 2 \operatorname{Im}\left[\frac{\partial \log \lambda_{\Delta}(w)}{\partial w} f^{\prime}(z) \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}+\frac{1}{2} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right] \\
& =\frac{1}{\lambda_{\Delta}(w)}\left[K_{e}(w, \delta)+2 \operatorname{Im}\left\{\frac{\partial \log \lambda_{\Delta}(w)}{\partial w} \frac{f^{\prime}(z)}{\left|f^{\prime}(z)\right|} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}\right] .
\end{align*}
$$

But $\frac{w^{\prime}(t)}{\left|w^{\prime}(t)\right|}=\frac{f^{\prime}(z)}{\left|f^{\prime}(z)\right|} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}$, so the desired result follows from $\left({ }^{*}\right)$.

4. The change of hyperbolic curvature

In the monotonicity theorem for the hyperbolic curvature, Ω is a simply connected subregion of the hyperbolic simply connected region Δ. Does the monotonicity theorem extend to multiply connected regions? The following example shows that in general the result fails if Δ is simply connected while Ω is allowed to be non-simply connected.

Example 5. Consider $\Omega=D^{\prime}=D-\{0\}$ and $\Delta=D$. Let

$$
\gamma: z(t)=x_{0}-\imath t,|t|<\sqrt{1-x_{0}^{2}}, 0<x_{0}<1 .
$$

Now, $K_{e}(z, \gamma)=0$ so that

$$
\begin{gathered}
K_{D}(z, \gamma)=\operatorname{Im}\left\{\frac{\overline{z(t)} z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right\}, \\
K_{D^{\prime}}(z, \gamma)=\left(1-\log \frac{1}{|z|}\right) \operatorname{Im}\left\{\frac{\overline{z(t)} z^{\prime}(t)}{|z(t)|\left|z^{\prime}(t)\right|}\right\} .
\end{gathered}
$$

We have $\frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}=-\imath$ so that

$$
K_{D}\left(x_{0}, \gamma\right)=\operatorname{Im}\left\{-\imath x_{0}\right\}=-x_{0}<0
$$

and

$$
\begin{aligned}
K_{D^{\prime}}\left(x_{0}, \gamma\right)= & \left(1-\log \frac{1}{x_{0}}\right) \operatorname{Im}\{-i\}=\log \frac{1}{x_{0}}-1 \in(0, \infty) \\
& \text { if } x_{0} \in\left(0, \frac{1}{e}\right) .
\end{aligned}
$$

In particular, for $0<x_{0}<\frac{1}{e^{3}}$ we have

$$
K_{D^{\prime}}\left(x_{0}, \gamma\right)>2 \text { while } K_{D}\left(x_{0}, \gamma\right)=-x_{0}<0
$$

Now, we prove that the monotonicity theorem for the hyperbolic curvature remains valid if Ω is simply connected subregion of an arbitrary hyperbolic region Δ.

Theorem 3. Suppose Δ is a hyperbolic region in the complex plane C and Ω is a simply connected subregion of Δ. If γ is a smooth curve in Ω, then

$$
\max \left\{K_{\Omega}(z, \gamma), 2\right\} \leq \max \left\{K_{\Delta}(z, \gamma), 2\right\}
$$

Proof. Fix $a \in \gamma$. We need only consider the case in which $K_{\Omega}(a, \gamma)$ ≥ 2. Let $f: D \rightarrow \Omega$ be a conformal mapping with $f(0)=a$ and $h: D \rightarrow$ Δ be a holomorphic universal covering projection with $h(0)=a$. Since Ω is simply connected and h is a covering projection, the Monodromy Theorem[2, p.295] implies that the branch of h^{-1} that satisfies $h^{-1}(a)=$ 0 is holomorphic and single-valued in Ω. Thus, $h^{-1}: \Omega \rightarrow D$ maps Ω into D. Since $h \circ h^{-1}$ is the identity mapping on Ω, h^{-1} is actually univalent on Ω. Let $g: \Omega \rightarrow \Delta$ be the inclusion map. Define $\tilde{g}=$ $h^{-1} \circ g \circ f$. Then \widetilde{g} is holomorphic in D, univalent in D and $\widetilde{g}(0)=0$. Let $\delta=g \circ \gamma$. If $\tilde{\gamma}=f^{-1} \circ \gamma$ and $\tilde{\delta}=h^{-1} \circ \delta$, then, by Theorem 2, we have

$$
K_{D}(0, \tilde{\gamma})=K_{\Omega}(a, \gamma), K_{D}(0, \tilde{\delta})=K_{\Delta}(a, \delta)
$$

So it suffices to show that $K_{D}(0, \tilde{\gamma}) \leq K_{D}(0, \widetilde{\delta})$. This is equivalent to

$$
\begin{equation*}
K_{e}(0, \tilde{\gamma}) \leq K_{e}(0, \tilde{\delta}) \tag{**}
\end{equation*}
$$

We note that

$$
\tilde{\delta}=h^{-1} \circ \delta=h^{-1} \circ g \circ \gamma=h^{-1} \circ g \circ f \circ \tilde{\gamma}=\tilde{g} \circ \tilde{\gamma}
$$

Because

$$
K_{e}(0, \tilde{\gamma})=2 K_{D}(0, \tilde{\gamma})=2 K_{\Omega}(a, \gamma) \geq 4,
$$

the inequality (2) follows from Theorem 1.

Corollary 1. Suppose Ω and Δ are hyperbolic regions in C with Ω simply connected. If $f: \Omega \rightarrow \Delta$ ss a conformal mapping, then for any smooth curve γ in Ω

$$
\max \left\{K_{\Omega}(z, \gamma), 2\right\} \leq \max \left\{K_{\Delta}(f(z), f \circ \gamma), 2\right\}
$$

Proof. Since the hyperbolic curvature is a conformal invariant, we have

$$
K_{\Omega}(z, \gamma)=K_{f(\Omega)}(f(z), f \circ \gamma)
$$

Theorem 3 yields

$$
\max \left\{K_{f(\Omega)}(f(z), f \circ \gamma), 2\right\} \leq \max \left\{K_{\Delta}(f(z), f \circ \gamma), 2\right\}
$$

so this establishes the Corollary 1.

Corollary 2. Suppose Ω is any hyperbolic region in \mathbf{C}, γ is a smooth curve $\imath n \Omega, a \in \gamma$ and $\delta_{\Omega}(a)=\operatorname{dist}(a, \partial \Omega)$.If $K_{e}(a, \gamma) \geq \frac{4}{\delta_{\Omega}(a)}$, then $K_{\Omega}(a, \gamma) \geq 2$.

Proof. Consider the disk $D(a, \delta) \subset \Omega$, where $\delta=\delta_{\Omega}(a)$. Then

$$
K_{D(a, b)}(a, \gamma)=\frac{\delta}{2} K_{e}(a, \gamma)
$$

yields $K_{D(a, \delta)}(a, \gamma) \geq 2$. Because $D(a, \delta)$ is simply connected, Theorem 3 gives

$$
K_{\Omega}(a, \gamma) \geq K_{D(a, \delta)}(a, \gamma) \geq 2
$$

References

1 LV Ahlfors, Conformal invariants Topics $2 n$ geometric function theory, Mc-Graw-Hill, New York, 1973.
2 L V. Ahlfors, Complex Analyszs,3-rd ed, McGraw-Hill, New York, 1979
3. L deBranges, A proof of the Breberbach conjecture, Acta Math 154 (1985), 137-152
4. S D Fisher, Function theory on planar domains A second course in complex analysts, John Wiley \& Sons, New York, 1983
5. B Flinn and B Osgood, Hyperbolic curvature and conformal mapping, Bull. London Math Soc 18 (1986), 272-276
6 G.M Goluzin, Geometruc theory of functions of a complex varable. Translations of Mathematical Monographs, 26, Amer. Math. Soc., Providence, 1969.
7. A.W. Goodman, Curvature under an analytsc transformation, J London Math. Soc 43 (1968), 527-533.
8. D. Minda, Appheations of hyperbohc convexity to euchdean and spherical convexity, J Analyse Math. 49 (1987), 90-105
9. D. Minda, Hyperbohc curvature on Riemann surfaces, Complex Variables Theory Appl. 12 (1989), 1-8.
9. B. Osgood, Some propertres of $\frac{f^{\prime \prime}}{f^{\prime}}$ and the Porncaré metric, Indiana Umv Math J. 31 (1982), 449-461.

Department of Mathematics
Pusan National University
Pusan 609-735, Korea

[^0]: Received October 22, 1993.
 This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1992

