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HYPERBOLIC CURVATURE ON PLANE REGIONS

Tai Sung Song

1. Introduction

Let 7 be a smooth curve in a hyperbolic plane region Q and 7) 
denote the hyperbolic curvature of the curve 7 at the point z £ y Flinn 
and Osgood[5] proved that if / is a conformal mapping of a hyperbolic 
simply connected region Q into a hyperbolic simply connected region 
A, then

max {瓦2(2,7), 2) < max {&、(/(z), fog), 2}

for any smooth curve 7 in 0. This result gives the monotonicity theo
rem for the hyperbolic curvature.

Monotonicity Theorem. Suppose Q and △ are hyperbolic simply 
connected regions in the complex plane C and Q U △. If 7) > 2? 
then for any smooth curve 7 in

In this paper we investigate a type of monotonicity property for the 
hyperbolic curvature under a holomorphic mapping from a hyperbolic 
region to a hyperbolic region. In section 2 we obtain an inequality for 
the change in the euclidean curvature under a conf。호mal mapping of 
the open unit disk into itself. In section 3 we discuss basic properties of 
the hyperbolic metric and hyperbolic curvature. In section 4 we prove 
that the monotonicity theorem for the hyperbolic curvature remains 
valid if Q is a simply connected subregion of an arbitrary hyperbolic 
region △ in the complex plane C.
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2. The change of euclidean curvature

Suppo용e f is holomorphic and univalent in the open unit disk D and 
normalized by /(0) = 0, /z(0) = 1; say

oo
f(.z) = Z + y^anzn.

n=2

Then deBrangesJ Theorem[3] asserts that \an\ < n for n = 2,3,…with 
equality if and only if f = K&, where 0 is a real number and

K。(z) =------ ------2 = z + 2etBz2 + 3e2l^z3 + ...
(1-邪子

is a Koebe function.

Lemma。If f is a conformal mapping of D into itself with /(0) = 03 
then

顷(0)1 W 4 If (0)1(1 니f (0)1).

Proof. Since f is univalent, it follows from Schwarz5 Lemma that 
0 < |yz(0)| < L For a real number § we consider

Now,

(/W) = /W + 2e^ [/(< + ...

=f (0)z + (亨)+ 2舛广(0)2)z2 + O (事)

so that

雄) = z + 1 黑祟次> + 2广(0)次어씨，事 + O(z3).
.z/ (U丿 .
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The function h is holomorphic and univalent in Z), and ^(0) = 0, hz(0) 
=1. Select 0 and(/) so that

带*扩 >0and 2f'(0)e'(어W)> 0.

Then deBranges5 Theorem gives

2 > 滞e" + (0)*°+"I = + 2 |/(0)| -

This completes the proof.

Let 7 be a smooth curve in C with parametrization z = z(t). The 
euclidean curvature Ke (z,g)of the curve 7 at the point z = z(t) is the 
rate of change of the angle 6 that the tangent vector makes with the 
positive real axis with respect to arc length:

宀、d8 d6 dt 1 r f z〃(t) 1
Ae(z,7)=瓦=瓦瓦=W)I f而} .

If f is holomorphic and locally univalent in a neighborhood of 7, then 
/ o 7 is also a smooth curve. The formula for the change of euclidean 
curvature under f is given by [7]

Ke O 7) If (z)| = Ke (z, 7) + Im { ¥ } •

We now obtain an inequality for the change of euclidean curvature 
at the origin under a conformal mapping of the open unit disk into 
itself that fixes the origin.

Theorem 19 Suppose f is a coafom시 mapping of D into itself 
with /(0) = Q 耳 了 zs q smooth curve through the ongm, then

max {KJO, f 07),4) > max {KJO,7),4}-
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Proofl We need only consider the case in which ife(0,7)> 4.The 
formula for the change of euclidean curvature gives

KJO, / o 7)lf'(0)| > KJO, 7) - I •

The previous Lemma gives |J히(0)| < 4|尸(0)| (1 — l/^O)!) .Therefore,

|/z(0)|[^e(0,/o7)-4]>^e(0,7)-4.

But 0 V |f'(0)| < 1, so the desired result follows immediately.

3. The hyperbolic metric and hyperbolic curvature

We begin this section with a brief introduction to the hyperbolic 
metric. For a general discussion of the hyperbolic metric we refer the 
reader to [1], [6], and [9].

The hyperbolic metric on the open unit disk D in C is defined by

\ I 2|dz| 人 D(z)]d 끼 = -_厂 
1一1기

A region £1 in C is called hyperbolic if the complement of with respect 
to C contains at least two points. If a region Q is hyperbolic, then, by 
the uniformization theorem [4,p.39], there is a holomorphic universal 
covering projection 7? of P onto Q. If Q is simply connected, then 甲 is 
just a conformal mapping of D onto Q。The density of the hyperbolic 
metric 人q(z) 히 on a hyperbolic region. Q, is obtained from

M(9(z))g'(z)| = Xd(z), 
where ip is any holomorphic univeisal covering projection of D onto 
Q. The hyperbolic density is independent of the choice of the covering 
projection since

2TOI 2
1 - B(이 2 " 1 - I 히2
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for any conformal automorphism T of D. The hyperbolic metric is 
invariant under holomorphic covering projections: If / : > A is a
holomorphic covering projection, then

M (了(z)) If (z)| |dz| = (z) |d히 .

Example 1。(1) For a GC and r > 0 set D(a, 7、)= {z : — V r}
and

2厂 
人 m,r)(z) = — j 可— \z — a\

Now, /(2)= a + rz is a conformal mapping of D onto P(a, r) and 
AD(a)r)(f(z)) I尸(z)| =入D(z), so AD(a,r) G) \dz\ is 血 hyperbolic met
ric on D(a, r).

(2) Set D1 = {z i 0 < \z\ < 1) and

5 =再虹.

The holomorphic function f(z) = exp (号픅) maps D onto Di and 
A£)< (f(2)) \ so 人°(z)|d히 is the Byperb시ic metric on
DL

(3) The hyperbolic metric on the upper half plane H = {z : Imz > 0) 
is

人H(z) |d히 = 亍丄
Imz

Next, we define the hyperbolic curvature of a smooth curve. We 
refer the reader to [5], [8], [9], [10] for further details. If 7 is a smooth 
curve in a hyperbolic region Q. with parametrization z = 2(t), then the 
hyperbolic curvature of 7 at the point z = z(t) is given by

Kq(z,7)= 1E）的，，）K W
dn
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Ke(z,y) + 2Im
(^logAn(z) z'(t)) 
l ―瓦

where is n = n(z) the unit normal to 7 at z.

Example 2. For the open unit disk D we have

Kd（z,，），）=—--一 
厶

乏 z")

1 一 |z|2 kz(i)|

1
2

Ke(z,g) + 21m <

2淮)z'(t) > 
~W J

In particular^ K」d(0)7)= *Ke(0,y). Suppose 7 is given by z(Z)= 
a + relt, where a is a real number^ r > 0 and a < t < is an interval 
so that z(t) E D for a < t < , Then

1 + r2 — a21 z 2 2 、1
——(1 — a — r — 2ar cos t)——F a cos i + r =

This gives the following results.
(1) If y is completely contained inside of D, then Kz)(z,y) > 1.
(2) Ifyis tangent to the unit circle at 1, then = 1.
(3) Ify is properly intersects the unit circle, then 0 < Kp(z,7)< 1.
(4) If y is orthogonal to the unit circle, then Kd(z)t) = 0. In this 

case 7 is a hyperbolic geodesic.
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Example 3。For the hyperbolic region D1 = {z : 0 V |히 V 1} we 
have

时，，）+5 쓰普）湍｝

人 D（Z）
씨씌制.

Suppose 7 is given by z(t) = pe*气 where 0 < t < 2% and Q < p < 
l.Then

■Kd，(z,7)= - ----- j- + fl - log .1 = 1-
(plogl) k P)

This shows that the hyperbolic curvature of 7 is independent of p E 
(0,1).

Example 4. E" the upper half plane H we have

寸 z 、 Ke(2,7) 1 _ -(』、/ 、z'(t))Rh(F)= +不2血{矿H⑵昂}

=Ke(zu) ( z'(t) \
- "+R

Suppose 7 is the line z(t)=如 + 心七 i > 0. Then

Kh(& *7) = 0 + Reel° = cos Q.

Fb호 8 = 흘is the hyperbolic geodesic and Kh(z)t) = 0.

Now, we show that the hyperbolic curvature is invariant under holo
morphic covering projections.
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Theorem 2. Suppose Q and △ are hyperbolic regions in C and 
/ : ft —> A a holomorphic covering projection. Then =
K4 (/(z),/ o 7) for any smooth curve 7 in Q.

Proof. Let w = f(z) and 8 =技丫 From M(z)=人△ (/(^)) 
we obtain

3 log 人이2) = 흐 
dz dz

log 足' (/(z)) + §log 尸(z) +

히 og 入 △(々，) 1 f”(z)
dw 71 J 2 ■尸(z) ,

So, by the transformation law for euclidean curvature, we have

(*)
… 쯔浮 端

~ 人g) 护(끼 g(心) 1/ ⑶ - Im( 广(z) |師)| }]

, 1 or [^logAA(w) , z\t) 1 f'\z} z'(t) 1
人△(u，)lf，(z)i ~■瓦J ⑺BW 2 W) 1*(圳」

_ ]

Aa(w)
K , 9r f 3log 人'(如尸(z) *(t)、"]

£( ,)+ I ——虱) J '

But [으带匕 = 鬲蘇由, so the desired result follows from (*).

4. The change of hyperbolic curvature

In the monotonicity theorem for the hyperbolic curvature, Q is a 
simply connected subregion of the hyperbolic simply connected region 
△. Does the monotonicity theorem extend to multiply connected re
gions? The following example shows that in general the result fails if 
△ is simply connected while Q is allowed to be non-simply connected.
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Example 5. Consider Q = D' = D — {0}and A = P. Let

7 : z(t) — Xq — z" |f| < yl — Xq,0 < Xo < 1.

Now, KJz, 7) = 0 so that

珀乂"）= 加 쏘브f
EE = （」1喝） 씨歸쁘广

We have 리% = —z so that

Kd (^o,7)= Im{-zxQ} = -xq < 0
and

KjD，(z()/y) — fl — log — J Im (—z} =： log ———1 e (0, oo) 
\ 瓦/ ⑦o

if xq e (s ：).

In particular, for Q < xq < we have

Kd> (x0, 7)> 2 while KD (x0,7)= ~x0 < 0.

Now, we prove that the monotonicity theorem for the hyperbolic 
curvature remains valid if Q is simply connected subregion of an arbi
trary hyperbolic region A.

Theorem 3. Suppose △ 姑 a hyperbolic region in the complex plane 
C and Q, is a simply connected subregion of If y is a smooth curve 
in Q； then

max{Kfi(z,7),2} < max(KA(2,7),2).
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ProoE Fix a € 7. We need only consider the case in which 7) 
> 2. Let / : Z) —> Q be a conformal mapping with f(0) = a and h : D 
A be a holomorphic universal covering projection with h(0) = a. Since 
Q is simply connected and 方 is a covering projection, the Monodromy 
Theorem[2, p.295] implies that the branch of satisfies = 
0 is holomorphic and single-valued in Q. Thus, /厂」:J2 —> D maps Q 
into D. Since h o /i-1 is the identity mapping on Q, h~x is actually 
univalent on Q. Let g : Q t △ be the inclusion map. Define g = 
h-1 ogo fa Then "is holomorphic in D, univalent in D and g (0) = 0. 
Let 6 = g o 7. If 7 = o 7 and 6 = h^1 o & then, by Theorem 2, we 
have

Kd (0,7) = Ka(a. 7), Kd(0，。)=电((機).

So it suffices to show that (0,7) < Kd (°")・ This is equivalent 
to

(**) Ke(0,7)<^e(0,6)

We note that

6 = h一' o 6 = hr，0^07 — 0^0/07 = 507.
Because

Ke (0,7) = 2Kd (0,7) = 2K"a, 7) > 4,
the inequality (2) follow^ from Theorem 1.

Corollary 1. Suppose Q and △ are hyperbolic regions in C with Q 
simply connected. If f : Q —누 △is a conformal mapping^ then for any 
smooth curve y in Q,

max{Kq(z,7),2} < max{JTA(f(z),^07),2).

Proof. Since the hjrperbolic curvature is a conformal invariant, we 
have
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7)= KfW (f(z), y 07).

Theorem 3 yields

max {K/(n) (f (z), / 07),2) < max {K% (f(z), f。이, 2} ,

so this establishes the Corollary 1.

Corollary 2, Suppose Q is any hyperbolic region m C, g zs a 
smooth curve m a E y (md &2(q) = dist(a^ dQ\If K"e(a,7)> 瓦我户 
then Kq(q点)> 2.

Proof. Consider 난ic disk D(aJ) C Q, where 6 = &)((】，). Then
8

^D(a,5)(ct,7)= -JTe(a,7) 
厶

yields 长必以)。“)> 2. Because D(q)6) is simply connected, Theorem 
3 gives

KQ(a,T)> KD(a,5)(a,g) > 2.
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