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BLOCH FUNCTIONS AND THE BLOCH NUMBER

JONG SU AN AND TaAl SUNG SONG

1. Introduction

Let § be a hyperbolic region in the complex plane C and Aq (2} |dz]
the hyperbolic metric on Q. Recall that

ldz|
1-[2}?

is the hyperbolic metric on D, where D is the open unit disk in C. The
density Ag of the hyperbolic metric on 2 is determined from

Ap(z)ldzl =

A (p (2} He' ()] = Ap (2},

where ¢ : D — @ is any holomorphic universal covering projection of
D onto §2. A general discussion of the hyperbolic metric can be found
in [1],[3}, and (4]. |

A holomorphic function f on a hyperbolic region {2 is called a Bloch
function if

1f' (2)] }
=supy < :2€ Q< oo
The quantity ||f{l 5 is called the Bloch norm of f. Let ég(z) = dist
(2z,0Q); this is the radius of the largest disk in { with center 2. We
define the quasi-Bloch norm || fijg 5 by

Ifllgs = sup {ba (2)|f'(2)] : 2 € Q}.

Next, we define the Bloch number of a holomorphic function f in
a hyperbolic region Q. For more details, see [4] and [5]. For z in
let 7(z, f) be the radius of the largest unramified disk about f(z)
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in the Riemann image surface Ry of f; set r(z, f) = 0 in case f(2)
is a branch point of Ry. An unramified disk in Ry with center f(z)
and radius r means an open disk D(f(z),r) = {w: |w— f(z)| < r}
with the property that there exists a simply connected region A C §2
and f|A is a conformal mapping of § onto D (f(z),r). By the Bloch
number r(f) of f is meant the radius of the largest upramified disk
contained in f(2). That is,

r(f) =sup{r(z,f): z € Q}.
In this paper we show that for a function f holomorphic in a hyper-
bolic region, the quantities || fi| 5, || fligp and r(f) are all comparable.

2. Main results

Lemma 1. Let f be a nonconstant holomorphic function in a hy-
perbolic region Q, and a be a complezs number. Then for any complex
number z €

(a)r(z, af) = |Q] r(z, f)a (b)r(z,f - 0!) = T‘(Z, f)

Proof. To prove (a), let ry = r(z,af) and r; = r(z, f). Without
loss of generality, we may assume that a # 0. First, we show that
ry < la|rs. If r; = 0, then we are done. Otherwise, there is a simply
connected region A C § such that 2 € A,af|A is univalent, and
(af)(A)= D(af(z),r1). Hence, f|A is univalent and

F(8) = Z@N(@) = 2D (afe)r) =D (1), 7).

Jer|

Therefore, ]’T}[ < 7 or r; < |ajry. Next, we prove that |ajr, < ry.
Suppose r; # 0. Then there exists a simply connected region A C Q2
such that z € A, f|{A is univalent and f(A) = D(f(z),r2). It follows
that a f|A is univalent and

(af)(A) = aD (f(z),r2) = D(af(2),lajr).
This yields |a|r; < ry. The proof of (b) is analogous.
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Lemma 2. Let f be a nonconstant holomorphic function in e hy-
perbolic region §2,and let b be o conformal automorphism of Q. Then
for any 2€ Q

r{z,foh) =r(h(z), f).

Proof. Let r; = r(z,foh) and ry = r(h(2), f). Without loss of
generality, we may assume that r; # 0 and ro # 0. First, we show
that 7y < ry. There is a simply connected region A C £ such that
z € A, foh|A is univalent, and (f o B) (A) = D {((f o h)(z),r1). Then
A* = h(D) C Q is simply connected, h(z) € A*, and f|A* is univalent.
Also, we have

F(AY)={foh)(A)=D(f(h(z)),r1)-

Hence r; < ry. Next, we prove that ro < ry. There is a simply connected
region A C 2 such that h(2) € A, f|A is univalent, and f(A) =
D(f(h(2)),r2). Since h € Aut(Q), A* = A7 {A) C Q is simply
connected. Clearly, z € A*, and f o h|A* is univalent. We also have

(foh)(A"Y=f(AY=D((foh)(z),r2).
This yields ry < 7q. .
Lemma 3. Let f de o nonconstant holomorphic function wn a hy-

perbolic regron {2, and let ¢ : D — Q be a holomorphic universal
covering projection. Then for any z€ D

r(z,fop) =r(p(z), f).

Proof. Let r;y = r(z,fop) and 79 = r{p(z), f). First, we show
that ry < ro. If »; = 0, then we are done. Otherwise, there is a
simply connected region A C D such that 2 € A, f o »|A is univa-

lent and (f o ¢) (,&) = D((fo@){(z),r1). Then @|A is also univa-
lent, A = ¢ (&) is simply connected, f|A is univalent and f(A) =

D(f{(o(z)),ry). This yields r; < r,. Next, we prove that ro < r}.
There is a simply connected region A C Q2 such that ¢(z) € A, flAis
univalent, and f(A) = D (f{y(z)),r2). Because A is simply connected
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and ¢ is a covering, there is a unique simply connected region AcCD
such that z € A, (A) = A and gol& is univalent. Then f o ¢|A is
univalent and (f o ) (Z.) =D{(fop)(z),rz), s0 72 <ry.

Let S be the family of all functions f holomorphic on the open unit
disk D and normalized by f/(0) = 1. The Block constant § is the largest
number such that any f € S has the property that f(D) contains an
unramified disk of radius 8 :

B =inf{r(f): f € S}.
It is well known[2,p.47] that 0.433< ¥2 < 8 < 0.472.
Theorem 1. If f i3 holomorphic in ¢ hyperbolic region Q, then

dﬁﬁmmas%?.

Proof. To prove the left hand inequality, let ¢ : D — § be a
holomorphic universal covering projection. Then f o ¢ is holomorphic
in D, and

Wee) =)
o) , 2 € D.

This inequality is a result of Seidel and Walsh[6]. We have

nﬂm=mm{%%%:wen}

_ G ew) () _
—SUP{W-ZED =|[foulp-

r(zfoy) <

Therefore, Lemma 3 yields 7(f) < || fll5 -

Now, we prove the right hand inequality. First, we assume the
validity of the right hand ineguality for the open unit disk D. Let
¢ : D — Q be a holomorphic universal covering projection. Then
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I opllp < L2

Therefore, Lemma 3 yields || f|| g < '—(BQ All that remains is to establish
the right hand inequality in the special case 2 = D. If f is constant
on D, there is nothing to prove. Suppose f is not constant. Let a be
a point in D such that f'(a) # 0. Then the function

o= ifgan f () - )

is a nonconstant holomorphic function in D with A'(0} = 1. By Lemma

1, we have
) = e (4 (7))

Since the mapping z — fﬁ; 1s a conformal automorphism of D,
Lemma 2 yields

(i) (2tan) oo

Since h € S, it follows that

» Ml =llfeelis-

Ap(a)

prh) <

i r(f)-

This completes the proof.

Koebe’s one-quarter theorem|[1,p.72] asserts the following: If f is
univalent holomorphic in the open unit disk D and normalized by
f(0) = 0,|f(0)} = 1, then f(z) # wq for {z| < 1 implies |wq| > 1.

Theorem 2. If f 1s holomorphic in ¢ hyperbolic region Q,then r(f)
<4{lfllgs-

Proof. Fix a € { and set b = f(a). Without loss of generality, we
may assume that r(a, f) # 0. Then there exists a simply connected
region A C @ such that a € A and f|A is a conformal mapping of A
onto D (b,r(a, f)). Set g = (fiA)™" . Define h: D — Q by
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g(b+r(a, flw) — g(b)
h{w) = .

)= e pe®
Then # is a one-to-one holomorphic in D and h(Q) = 0,4'(0) = 1 -t
z be a point in 8D (a, bq(a)) N 0Q. Then

z - g(b)
e * MO

The Koebe’s —theorem implies that A(D) D D (0, 1), so that
z-g() | 1

r(a, flg'()] ~ 4

But |z — ¢(b)] = |z — a|] = §g(a) and ¢'(b)f'(a) = 1, so we have

batf'(a)l 1
Haf) 24

This yields the desired inequality.

The inequality Aq(z) < ﬁl(z_) is a direct consequence of the mono-
tonicity theorem for the hyperbolic metric. This inequality gives || f{lo5
< |Ifli g - Therefore, we obtain the following result.

Corollary. . If f 1s holomorphic 1n a hyperbolic region 2, then

1flop < I1fll5 < gufqu.
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