Pusan Kyöngnam Math. J 9(1993), No. 2, pp. 313-319

BLOCH FUNCTIONS AND THE BLOCH NUMBER

JONG SU AN AND TAI SUNG SONG

1. Introduction

Let Ω be a hyperbolic region in the complex plane C and $\lambda_{\Omega}(z)|dz|$ the hyperbolic metric on Ω . Recall that

$$\lambda_{D}\left(z
ight)\left|dz
ight|=rac{\left|dz
ight|}{1-\left|z
ight|^{2}}$$

is the hyperbolic metric on D, where D is the open unit disk in \mathbb{C} . The density λ_{Ω} of the hyperbolic metric on Ω is determined from

$$\lambda_{\Omega}\left(arphi\left(z
ight)
ight)\left|arphi'\left(z
ight)
ight|=\lambda_{D}\left(z
ight),$$

where $\varphi : D \to \Omega$ is any holomorphic universal covering projection of D onto Ω . A general discussion of the hyperbolic metric can be found in [1], [3], and [4].

A holomorphic function f on a hyperbolic region Ω is called a *Bloch* function if

$$\|f\|_{B} = \sup\left\{rac{|f'(z)|}{\lambda_{\Omega}(z)} : z \in \Omega
ight\} < \infty.$$

The quantity $||f||_B$ is called the Bloch norm of f. Let $\delta_{\Omega}(z) = dist(z, \partial \Omega)$; this is the radius of the largest disk in Ω with center z. We define the quasi-Bloch norm $||f||_{QB}$ by

$$\|f\|_{QB} = \sup \left\{ \delta_{\Omega}\left(z\right) |f'\left(z\right)| : z \in \Omega \right\}.$$

Next, we define the Bloch number of a holomorphic function f in a hyperbolic region Ω . For more details, see [4] and [5]. For z in Ω let r(z, f) be the radius of the largest unramified disk about f(z)

Received October 22, 1993

in the Riemann image surface R_f of f; set r(z, f) = 0 in case f(z)is a branch point of R_f . An unramified disk in R_f with center f(z)and radius r means an open disk $D(f(z), r) = \{w : |w - f(z)| < r\}$ with the property that there exists a simply connected region $\Delta \subset \Omega$ and $f|\Delta$ is a conformal mapping of Ω onto D(f(z), r). By the Bloch number r(f) of f is meant the radius of the largest unramified disk contained in $f(\Omega)$. That is,

$$r(f) = \sup \left\{ r(z, f) : z \in \Omega \right\}.$$

In this paper we show that for a function f holomorphic in a hyperbolic region, the quantities $||f||_B$, $||f||_{QB}$ and r(f) are all comparable.

2. Main results

Lemma 1. Let f be a nonconstant holomorphic function in a hyperbolic region Ω , and α be a complex number. Then for any complex number $z \in \Omega$

$$(a)r(z,\alpha f) = |\alpha| r(z,f), (b)r(z,f-\alpha) = r(z,f).$$

Proof. To prove (a), let $r_1 = r(z, \alpha f)$ and $r_2 = r(z, f)$. Without loss of generality, we may assume that $\alpha \neq 0$. First, we show that $r_1 \leq |\alpha| r_2$. If $r_1 = 0$, then we are done. Otherwise, there is a simply connected region $\Delta \subset \Omega$ such that $z \in \Delta, \alpha f | \Delta$ is univalent, and $(\alpha f)(\Delta) = D(\alpha f(z), r_1)$. Hence, $f | \Delta$ is univalent and

$$f(\Delta) = \frac{1}{\alpha} (\alpha f)(\Delta) = \frac{1}{\alpha} D(\alpha f(z), r_1) = D\left(f(z), \frac{r_1}{|\alpha|}\right).$$

Therefore, $\frac{r_1}{|\alpha|} \leq r_2$ or $r_1 \leq |\alpha| r_2$. Next, we prove that $|\alpha| r_2 \leq r_1$. Suppose $r_2 \neq 0$. Then there exists a simply connected region $\Delta \subset \Omega$ such that $z \in \Delta$, $f | \Delta$ is univalent and $f(\Delta) = D(f(z), r_2)$. It follows that $\alpha f | \Delta$ is univalent and

$$(\alpha f)(\Delta) = \alpha D(f(z), r_2) = D(\alpha f(z), |\alpha| r_2).$$

This yields $|\alpha| r_2 \leq r_1$. The proof of (b) is analogous.

314

Lemma 2. Let f be a nonconstant holomorphic function in a hyperbolic region Ω , and let h be a conformal automorphism of Ω . Then for any $z \in \Omega$

$$r(z, f \circ h) = r(h(z), f).$$

Proof. Let $r_1 = r(z, f \circ h)$ and $r_2 = r(h(z), f)$. Without loss of generality, we may assume that $r_1 \neq 0$ and $r_2 \neq 0$. First, we show that $r_1 \leq r_2$. There is a simply connected region $\Delta \subset \Omega$ such that $z \in \Delta$, $f \circ h | \Delta$ is univalent, and $(f \circ h)(\Delta) = D((f \circ h)(z), r_1)$. Then $\Delta^* = h(D) \subset \Omega$ is simply connected, $h(z) \in \Delta^*$, and $f | \Delta^*$ is univalent. Also, we have

$$f\left(\Delta^{*}\right)=\left(f\circ h
ight)\left(\Delta
ight)=D\left(f\left(h(z)
ight),r_{1}
ight).$$

Hence $r_1 \leq r_2$. Next, we prove that $r_2 \leq r_1$. There is a simply connected region $\Delta \subset \Omega$ such that $h(z) \in \Delta$, $f|\Delta$ is univalent, and $f(\Delta) = D(f(h(z)), r_2)$. Since $h \in Aut(\Omega)$, $\Delta^* = h^{-1}(\Delta) \subset \Omega$ is simply connected. Clearly, $z \in \Delta^*$, and $f \circ h|\Delta^*$ is univalent. We also have

$$(f \circ h)(\Delta^*) = f(\Delta) = D((f \circ h)(z), r_2).$$

This yields $r_2 \leq r_1$.

Lemma 3. Let f be a nonconstant holomorphic function in a hyperbolic region Ω , and let $\varphi : D \longrightarrow \Omega$ be a holomorphic universal covering projection. Then for any $z \in D$

$$r\left(z,f\circarphi
ight)=r\left(arphi(z),f
ight).$$

Proof. Let $r_1 = r(z, f \circ \varphi)$ and $r_2 = r(\varphi(z), f)$. First, we show that $r_1 \leq r_2$. If $r_1 = 0$, then we are done. Otherwise, there is a simply connected region $\tilde{\Delta} \subset D$ such that $z \in \tilde{\Delta}$, $f \circ \varphi | \tilde{\Delta}$ is univalent and $(f \circ \varphi) (\tilde{\Delta}) = D((f \circ \varphi)(z), r_1)$. Then $\varphi | \tilde{\Delta}$ is also univalent, $\Delta = \varphi (\tilde{\Delta})$ is simply connected, $f | \Delta$ is univalent and $f(\Delta) =$ $D(f(\varphi(z)), r_1)$. This yields $r_1 \leq r_2$. Next, we prove that $r_2 \leq r_1$. There is a simply connected region $\Delta \subset \Omega$ such that $\varphi(z) \in \Delta$, $f | \Delta$ is univalent, and $f(\Delta) = D(f(\varphi(z)), r_2)$. Because Δ is simply connected and φ is a covering, there is a unique simply connected region $\widetilde{\Delta} \subset D$ such that $z \in \widetilde{\Delta}, \varphi(\widetilde{\Delta}) = \Delta$ and $\varphi | \widetilde{\Delta}$ is univalent. Then $f \circ \varphi | \widetilde{\Delta}$ is univalent and $(f \circ \varphi)(\widetilde{\Delta}) = D((f \circ \varphi)(z), r_2)$, so $r_2 \leq r_1$.

Let S be the family of all functions f holomorphic on the open unit disk D and normalized by f'(0) = 1. The Bloch constant β is the largest number such that any $f \in S$ has the property that f(D) contains an unramified disk of radius β :

$$\beta = \inf \left\{ r(f) : f \in S \right\}.$$

It is well known[2,p.47] that $0.433 < \frac{\sqrt{3}}{4} < \beta < 0.472$.

Theorem 1. If f is holomorphic in a hyperbolic region Ω , then

$$r(f) \le \|f\|_{B} \le \frac{r(f)}{\beta}.$$

Proof. To prove the left hand inequality, let $\varphi : D \to \Omega$ be a holomorphic universal covering projection. Then $f \circ \varphi$ is holomorphic in D, and

$$r(z, f \circ \varphi) \leq \frac{\left| (f \circ \varphi)'(z) \right|}{\lambda_D(z)}, \ z \in D.$$

This inequality is a result of Seidel and Walsh[6]. We have

$$\begin{split} \|f\|_{B} &= \sup \left\{ \frac{|f'(w)|}{\lambda_{\Omega}(w)} : w \in \Omega \right\} \\ &= \sup \left\{ \frac{\left| (f \circ \varphi)'(z) \right|}{\lambda_{D}(z)} : z \in D \right\} = \|f \circ \varphi\|_{B} \,. \end{split}$$

Therefore, Lemma 3 yields $r(f) \leq ||f||_B$.

Now, we prove the right hand inequality. First, we assume the validity of the right hand inequality for the open unit disk D. Let $\varphi: D \to \Omega$ be a holomorphic universal covering projection. Then

Bloch Functions and the Bloch Number

$$\|f \circ \varphi\|_B \leq \frac{r(f \circ \varphi)}{\beta}, \ \|f\|_B = \|f \circ \varphi\|_B.$$

Therefore, Lemma 3 yields $||f||_B \leq \frac{r(f)}{\beta}$. All that remains is to establish the right hand inequality in the special case $\Omega = D$. If f is constant on D, there is nothing to prove. Suppose f is not constant. Let a be a point in D such that $f'(a) \neq 0$. Then the function

$$h(z) = \frac{\lambda_D(a)}{|f'(a)|} \left[f\left(\frac{z+a}{1+\overline{a}z}\right) - f(a) \right]$$

is a nonconstant holomorphic function in D with h'(0) = 1. By Lemma 1, we have

$$r(z,h) = rac{\lambda_D(a)}{|f'(a)|} r\left(z, f\left(rac{z+a}{1+\overline{a}z}
ight)
ight).$$

Since the mapping $z \to \frac{z+a}{1+\overline{a}z}$ is a conformal automorphism of D, Lemma 2 yields

$$r\left(z, f\left(\frac{z+a}{1+\overline{a}z}\right)\right) = r\left(\frac{z+a}{1+\overline{a}z}, f\right) \le r(f).$$

Since $h \in S$, it follows that

$$\beta \leq r(h) \leq \frac{\lambda_D(a)}{|f'(a)|} r(f).$$

This completes the proof.

Koebe's one-quarter theorem [1,p.72] asserts the following: If f is univalent holomorphic in the open unit disk D and normalized by f(0) = 0, |f'(0)| = 1, then $f(z) \neq w_0$ for |z| < 1 implies $|w_0| \ge \frac{1}{4}$.

Theorem 2. If f is holomorphic in a hyperbolic region Ω , then $r(f) \leq 4 ||f||_{QB}$.

Proof. Fix $a \in \Omega$ and set b = f(a). Without loss of generality, we may assume that $r(a, f) \neq 0$. Then there exists a simply connected region $\Delta \subset \Omega$ such that $a \in \Delta$ and $f | \Delta$ is a conformal mapping of Δ onto D(b, r(a, f)). Set $g = (f | \Delta)^{-1}$. Define $h : D \to \Omega$ by

Jong Su An and Tai Sung Song

$$h(w) = \frac{g\left(b + r(a, f)w\right) - g(b)}{r(a, f)g'(b)}.$$

Then h is a one-to-one holomorphic in D and h(0) = 0, h'(0) = 1 for z be a point in $\partial D(a, \delta_{\Omega}(a)) \cap \partial \Omega$. Then

$$\frac{z-g(b)}{r(a,f)g'(b)}\notin h(D).$$

The Koebe's $\frac{1}{4}$ -theorem implies that $h(D) \supset D\left(0, \frac{1}{4}\right)$, so that

$$\left|\frac{z-g(b)}{r(a,f)g'(b)}\right| \geq \frac{1}{4}$$

But $|z - g(b)| = |z - a| = \delta_{\Omega}(a)$ and g'(b)f'(a) = 1, so we have

$$\frac{\delta_{\Omega} |f'(a)|}{r(a,f)} \geq \frac{1}{4}.$$

This yields the desired inequality.

The inequality $\lambda_{\Omega}(z) \leq \frac{1}{\delta_{\Omega}(z)}$ is a direct consequence of the monotonicity theorem for the hyperbolic metric. This inequality gives $||f||_{QB}$ $\leq ||f||_{B}$. Therefore, we obtain the following result.

Corollary. If f is holomorphic in a hyperbolic region Ω , then

$$\|f\|_{QB} \le \|f\|_{B} \le \frac{4}{\beta} \|f\|_{QB}$$

References

- 1. L.V Ahlfors, Conformal invariants. Topics in geometric function theory, Mc-Graw-Hill, New York, 1973.
- 2. M Heins, Selected topics in the classical theory of functions of a complex variable, Holt, Rinehart and Winston, New York, 1962.
- I Kra, Automorphic functions and Kleiman groups, W.A.Benjamin, Reading, Mass, 1972..
- 4. C.D. Minda, Bloch constant, J Analyse Math. 41 (1982), 54-84.
- Ch. Pommerenke, On Bloch functions, J. London Math.Soc. 2(2) (1970), 689-695.

318

6. W. Seidel and J L Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and p-valence, Trans. Amer Math. Soc. 52 (1942), 128-216

Department of Mathematics Pusan National University Pusan 609-735, Korea