ON SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF A SASAKIAN SPACE FORM

Jong Joo Kim

0. Introduction

One of typical submanifolds of a Sasakian manifold is the so-called contact $C R$ submanifold which are defned as follows: Let M be a submanifold of a Sasakian manifold \tilde{M} tangent to the structure vector field V with almost contact metric structure (ϕ, G, V). If there exists a differentiable distribution such that it is invariant under ϕ and the complementary orthogonal distribution is totally real with respect to $\phi[9],[10],[12]$. Many subjects for such submanifolds of a Sasakian space form have been studied in [1], [3], [4], [5], [6], [7] and so on, one of which done by Ki and Kon asserts that the following:

Theorem $\mathrm{A}([5])$. Let M be an $(n+1)$-dimensional contact $C R$ submanifold of a Sasakian space form $\tilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector. If the f-structure Q in the normal bundle is parallel, and if the second fundamental forms A^{x} and the f-structure f on M commute, then each eigenvalue of the operator A^{*} in the direction of the mean curvature vector is constant.

The purpose of this paper is to improve Theorem A.

1. Preliminaries

In this section, the basic properties of submanifolds of a Sasakian manifold are recalled [2], [10], [11].

Let \tilde{M} be a Sasakian manifold of dimension $2 m+1$ with almost contact metric structure (ϕ, G, V). Then for any vector fields X and Y on \tilde{M}, we have

$$
\phi^{2} X=-X+v(X) V, G(\phi Y, \phi X)=G(Y, X)-v(Y) v(X)
$$

Received October 11, 1993
Research supported by Dong-A University, 1992.

$$
v(\phi X)=0, \quad \phi V=0, \quad v(V)=1, \quad G(X, V)=v(X)
$$

We denote by $\tilde{\nabla}$ the operator of covariant differentiation with respect to the metric G on \tilde{M}. We then have

$$
\begin{equation*}
\tilde{\nabla}_{X} V=\phi X, \quad\left(\tilde{\nabla}_{X} \phi\right) Y=-G(X, Y) V+v(Y) X \tag{1.1}
\end{equation*}
$$

Let M be an $(n+1)$-dimensional Riemannian manifold covered by a system of local coordinate neighborhoods $\left\{U ; x^{h}\right\}$ and immersed isometrically in \tilde{M} by the immersion $i: M \longrightarrow \tilde{M}$. When the argument is local, we may identify M with $i(M)$. We represent the immersion \imath locally by

$$
y^{A}=y^{A}\left(x^{1}, \cdots, x^{n+1}\right), \quad(A=1, \cdots, n+1, \cdots, 2 m+1)
$$

and put $B_{j}{ }^{A}=\partial_{j} y^{A}, \quad\left(\partial,=\partial x^{3}\right)$ then $B_{j}=\left(B_{j}{ }^{A}\right)$ are $(n+1)$-linearly independent local tangent vector fields of M. We choose $2 m-n \mathrm{mu}-$ tually orthogonal unit normals $C_{x}=\left(C_{x}{ }^{A}\right)$ to M. Throughout this paper, the indices h, i, j, \cdots run over the range $\{1, \cdots, n+1\}$ and u, v, w, \cdots the range $\{n+2, \cdots, 2 m+1\}$ and the summation convention will be used with respect to those indices. The immersion being isometric, the induced Riemannian metric tensor g on M and the metric tensor δ of the normal bundle are then respectively obtained:

$$
g_{y}=G\left(B_{y}, B_{2}\right), \quad \delta_{y x}=G\left(C_{y}, C_{x}\right) .
$$

In the sequel, we assume that the submanifold M of \tilde{M} is tangent to the structure vector field V. Then we have

$$
\begin{equation*}
V=\xi^{\prime} B_{i}, \quad \xi^{2}=G\left(B_{i}, V\right) \tag{1.2}
\end{equation*}
$$

The transforms of B_{i} and C_{x} by ϕ are respectively represented in each coordinate neighborhood as follows:

$$
\begin{equation*}
\phi B_{j}=f_{j}{ }^{i} B_{\mathrm{t}}+J_{j}{ }^{x} C_{x}, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\phi C_{x}=-J_{x}{ }^{i} B_{t}+Q_{x}{ }^{y} C_{y}, \tag{1.4}
\end{equation*}
$$

where we have put

$$
\begin{gathered}
f_{y z}=G\left(\phi B_{j}, B_{\imath}\right), \quad J_{3 x}=\left(\phi B_{3}, C_{x}\right), \quad J_{x}=-G\left(\phi C_{x}, B_{3}\right) \\
Q_{x y}=G\left(\phi C_{x}, C_{y}\right), \quad f_{j}^{h}=f_{3 z} g^{2 h}, \quad J_{y}^{x}=J_{3 y} \delta^{y x}, \quad Q_{x}^{y}=Q_{x z} \delta^{z y}
\end{gathered}
$$ $\delta^{y z}$ being the contravariant components of $\delta_{y z}$ and $\left(g^{j i}\right)=\left(g_{j z}\right)^{-1}$. From these definitions, we verify that $f_{j 2}+f_{2 j}=0, J_{j x}=J_{x j}$ and $Q_{x y}+Q_{y x}=0$.

By the properties of the Sasakian structure tensor, it follows from (1.2), (1.3) and (1.4) that we have

$$
\begin{equation*}
f_{j}{ }^{t} f_{t}^{h}=-\delta_{j}^{h}+\xi_{j} \xi^{h}+J_{j}^{x} J_{x}^{h}, Q_{x}^{y} Q_{y}^{z}=-\delta_{x}^{z}+J_{x}^{t} J_{t}{ }^{z} \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
f_{3}{ }^{t} J_{t}^{x}+J_{3}^{y} Q_{y}^{x}=0 \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\xi^{3} J_{j}^{x}=0, \quad \xi^{3} f_{3}^{h}=0, \quad \xi_{\jmath} \xi^{3}=1 \tag{1.7}
\end{equation*}
$$

By denoting ∇, the operator of van der Waerden-Bortolotti covariant differentiation with respect to g and G, the equations of Gauss and Weingarten for the submanifold M are respectively given by

$$
\begin{equation*}
\nabla, B_{2}=A_{y_{2}}{ }^{x} C_{x}, \quad \nabla, C_{x}=-A_{j x}^{h} B_{h}, \tag{1.8}
\end{equation*}
$$

where $A_{y^{2}}{ }^{x}$ are the second fundamental forms in the direction of C_{x} and related by

$$
\dot{A}_{j x}^{h}=A_{\jmath x x} g^{i h}=A_{y:}^{y} g^{i h} \delta_{y x}
$$

Differentiating (1.3) and (1.4) covariantly along M and making use of (1.1), (1.8) and these equations, we easily find

$$
\begin{equation*}
\nabla f_{z}^{h}=\delta_{j}^{h} \xi_{2}-g_{y 2} \xi^{h}+A_{y_{x}}^{h} J_{2}^{x}-A_{y_{2}}^{x} J_{x}^{h} \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{3} J_{z}^{x}=A_{y z}^{y} Q_{y}^{x}-A_{y t}^{x} f_{z}^{t} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{\jmath} Q_{y}^{x}=A_{j t}^{x} J_{y}^{t}-A_{\jmath t y} J^{t x} \tag{1.11}
\end{equation*}
$$

We also have from (1.2)

$$
\begin{gather*}
\nabla_{j} \xi_{1}=f_{j ı} \tag{1.12}\\
A_{j t}^{x} \xi^{t}=J_{j}^{x}
\end{gather*}
$$

because of (1.1), (1.3) and (1.8).
In the rest of this section we suppose that the ambient Sasakian manifold \tilde{M} is of constant ϕ-holomorphic sectional curvature c, which is called a Sasakian space form, and is denoted by $\tilde{M}^{2 m+1}(c)$. Then we see, using (1.2), (1.3), (1.4) and (1.8), that equations of the Gauss, Codazzi and Ricci for M are respectively given by

$$
R_{k j \imath h}=\frac{1}{4}(c+3)\left(g_{k h} g_{j t}-g_{j h} g_{k t}\right)+A_{k h}^{x} A_{j t x}-A_{j h}^{x} A_{k i x}
$$

$$
\begin{align*}
& +\frac{1}{4}(c-1)\left(\xi_{k} \xi_{i} g_{j h}-\xi_{3} \xi_{1} g_{k h}+\xi_{3} \xi_{h} g_{k i}-\xi_{k} \xi_{h} g_{j z}\right. \tag{1.14}\\
& \left.+f_{k h} f_{j 2}-f_{j h} f_{k z}-2 f_{k j} f_{z h}\right)
\end{align*}
$$

$$
\begin{equation*}
\nabla_{k} A_{j z}^{x}-\nabla_{\jmath} A_{k i}^{x}=\frac{1}{4}(c-1)\left(J_{k}^{x} f_{\jmath \imath}-J_{\jmath}^{x} f_{k i}-2 J_{i}^{x} f_{k \jmath}\right) \tag{1.15}
\end{equation*}
$$

$$
\begin{align*}
R_{j z y x}= & \frac{1}{4}(c-1)\left(J_{j x} J_{z y}-J_{z x} J_{j y}-2 f_{j x} Q_{y x}\right) \tag{1.16}\\
& +A_{j t x} A_{i y}^{t}-A_{i t x} A_{j y}^{t}
\end{align*}
$$

where $R_{k j t h}$ and $R_{j i y x}$ are the Riemannian curvature tensor of M and that with respect to the connection induced in the normal bundle of M respectively. We see from (1.14) that the Ricci tensor S of M can be expressed as follows:
(1.17)

$$
\begin{aligned}
S_{j z}= & \frac{1}{4}\{n(c+3)+2(c-1)\} g_{j i}-\frac{1}{4}(c-1)(n+2) \xi_{j} \xi_{j} \\
& -\frac{3}{4}(c-1) J_{j}^{z} J_{i z}+h^{x} A_{j i x}-A_{j}^{t x} A_{i t x}
\end{aligned}
$$

with the aid of (1.5), where $h^{x}=g^{32} A_{j 1}^{x}$.
Differentiating (1.13) covariantly along M and using (1.10) and (1.12), we find

$$
\left(\nabla_{k} A_{j r x}\right) \xi^{r}+A_{j r x} f_{k}^{r}=A_{k y}{ }^{y} Q_{y x}-A_{k r x} f_{j}{ }^{r},
$$

which together with (1.7) and (1.15) implies that

$$
\begin{equation*}
\xi^{r} \nabla_{\mathrm{r}} A_{j k x}=A_{k j}{ }^{y} Q_{y x}-A_{k r x} f_{j}{ }^{r}-A_{y_{r x}} f_{k}^{r} . \tag{1.18}
\end{equation*}
$$

On the other hand, the Lie derivative of the shape operator A^{x} in the direction of C_{x} with respect to the structure vector field ξ is given by

$$
L_{\xi} A_{3}^{h x}=\xi^{r} \nabla_{r} A_{j}^{h x}+A_{\mathrm{r}}^{h x} f_{j}^{r}-A_{j}^{r x} f_{r}^{h}
$$

because of (1.12). From the last two equations, it follows that we have

$$
\begin{equation*}
L_{\xi} A_{\jmath}{ }^{h x}=A_{j}^{h y} Q_{y}{ }^{x} . \tag{1.19}
\end{equation*}
$$

A submanifold of a Sasakian manifold is called a generic submanifold if Q vanishes identically [9]. If a submanifold of a Sasakian space form $\tilde{M}^{2 m+1}(c)$ is generic, then $L_{\xi} A^{x}=0$ is satisfied.

Let H be a mean curvature vector field of M in a Sasakian manifold. Namely, it is defined by

$$
H=g^{\jmath} A_{\jmath 1}{ }^{x} C_{x} /(n+1)=h^{x} C_{x} /(n+1),
$$

which is independent of the choice of the local field of orthonormal frames $\left\{C_{x}\right\}$.

In the following we suppose that the mean curvature vector field H of M is nonzero and is parallel in the normal bundle. Then we may choose a local field $\left\{e_{x}\right\}$ in such a way that $H=\sigma C_{n+2}=\sigma C_{*}$, where $\sigma=|H|$ is nonzero constant. Because of the choice of the local field, the parallelism of H yields

$$
\left\{\begin{array}{l}
h^{x}=0, \quad x \geq n+3 \tag{1.20}\\
h^{*}=(n+1) \sigma .
\end{array}\right.
$$

In the sequel the index $n+2$ will be denoted by the symbol $*$.

2. Lemmas

Let M be a submanifold satisfying $L_{\xi} A^{x}=0$ of a Sasakian space form $\tilde{M}^{2 m+1}(c)$. Then by (1.19) we have

$$
\begin{equation*}
A_{j z}{ }^{x} Q_{x y}=0 . \tag{2.1}
\end{equation*}
$$

This together with (1.6) and (1.13) implies that

$$
\begin{equation*}
f_{j}^{t} J_{t}^{x}=0, \quad J_{j}^{y} Q_{y}^{x}=0 \tag{2.2}
\end{equation*}
$$

Hence, by (1.5) we see that $f^{3}+f=0$ and $Q^{3}+Q=0$, namely f and Q define the f-structure in M and that in the normal bundle of M respectively [8]. In such a case M is called a contact $C R$ submanifold of a Sasakian manifold [5], [12].

Since the mean curvature vector assumed to be parallel in the normal bundle, it is, using (1.18), seen that $h^{y} Q_{y x}=0$. Accordingly by (1.20) we obtain

$$
\begin{equation*}
Q_{x}^{*}=0 \tag{2.3}
\end{equation*}
$$

which join with the second equation of (1.5) implies

$$
\begin{equation*}
J_{y x} J^{j^{*}}=\delta_{x}^{*} \tag{2.4}
\end{equation*}
$$

H being a normal vector field on M, the curvature tensor $R_{32 y x}$ of the connection in the normal bundle shows that $R_{j_{i * x}}$ vanishes identically for any index x. Thus the Ricci equation (1.16) yields

$$
\begin{equation*}
A_{y t x} A_{t}^{t *}-A_{z t x} A_{j}^{t *}=\frac{1}{4}(c-1)\left(J_{y *} J_{t x}-J_{t *} J_{j x}\right) \tag{2.5}
\end{equation*}
$$

because of (2.3).
Lemma 2.1. Let M be an $(n+1)$-dimensional submanifold tangent to the structure vector field of a $(2 m+1)$-dimensional Sasakian space form. Suppose that the mean curvature vector field is nonzero and parallel in the normal bundle. If $L_{\xi} A^{x}=0$ and $\nabla_{\xi} A^{*}=0$ on M, then we have

$$
\begin{equation*}
A_{j i y} A^{j * *}=h^{*} P_{y * *}+\frac{1}{4}(n-1)(c+3) \delta_{y *}+2 \delta_{y *} \tag{2.6}
\end{equation*}
$$

Proof. By (1.18) and (2.3), we have

$$
\begin{equation*}
A_{3 r}{ }^{*} f_{2}^{r}+A_{2 r}{ }^{*} f_{3}^{r}=0 \tag{2.7}
\end{equation*}
$$

because we assumed to be $\nabla_{\xi} A^{*}=0$. Transforming (2.7) by f_{k}^{2} and making use of (1.5) and (1.13), we get

$$
\left(A_{\jmath r *} J_{z}^{r}\right) J_{k}^{z}+\xi_{k} J_{j *}-A_{j k *}+A_{s r *} f_{j}^{r} f_{k}^{s}=0
$$

from which, taking the skew-symmetric part

$$
\left(A_{j r *} J_{z}{ }^{r}\right) J_{k}{ }^{z}-\left(A_{k r *} J_{z}^{r}\right) J_{j}{ }^{z}+\xi_{k} J_{3 *}-\xi_{\jmath} J_{k *}=0
$$

If we transvect $J_{y}{ }^{k}$ to above equation and make use of (1.5) and (2.2), we obtain

$$
\begin{equation*}
A_{j r}^{*} J_{y}{ }^{r}=P_{y z}{ }^{*} J_{j}{ }^{z}+\delta_{y}^{*} \xi_{j} \tag{2.8}
\end{equation*}
$$

where we have defined

$$
P_{y z x}=A_{\jmath ı x} J_{y}{ }^{2} J_{z}{ }^{2}
$$

Thus by (2.1) and (2.2) we get

$$
\begin{equation*}
P_{y z x} Q_{w}^{x}=0, \quad P_{y z x} Q_{w}^{z}=0 \tag{2.9}
\end{equation*}
$$

Transvecting $J_{z}{ }^{y} J_{y}{ }^{2}$, to (2.5), we find

$$
P_{u z x} P_{y}^{u *}-P_{u y x} P_{z}^{u *}=\frac{1}{4}(c+3)\left\{\delta_{z}^{*} J_{y}^{\imath} J_{x i}-\delta_{y}^{*} J_{z}^{\imath} J_{x \imath}\right\}
$$

where we have used $(1.7),(2.2),(2.4),(2.8)$ and (2.9). Consequently we have

$$
\begin{equation*}
P_{y z x} P^{y z *}-P^{z} P_{z x *}=\frac{1}{4}(c+3)(p-1) \delta_{x *} \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
P_{z x}^{*} P_{y}^{z *}-P_{z y x} P^{z * *}=\frac{1}{4}(c+3)\left(J_{y}^{i} J_{i x}-\delta_{y}^{*} \delta_{x}^{*}\right) \tag{2.11}
\end{equation*}
$$

where we denote $P_{z}{ }^{2 x}=P^{x}$ and $J_{3 x} J^{j x}=p$.
Differentiaing (2.8) covariantly and using (1.11), (1.12) and (2.9), we find

$$
\left(\nabla_{k} A_{j r}{ }^{*}\right) J_{y}{ }^{r}-A_{j}{ }^{r *} A_{k s y} f_{r}{ }^{s}=\left(\nabla_{k} P_{y z *}\right) J_{j}{ }^{z}-P_{y z *} A_{k r}{ }^{z} f_{j}{ }^{r}+\delta_{y}{ }^{+} f_{k j}
$$

and hence, taking the skew-symmetric part with respect to indices k and j and taking account of (1.15), (2.2), (2.4) and (2.7)
(2.12)

$$
\begin{aligned}
& A_{r}^{s}{ }_{*} A_{j s y} f_{k}^{r}-A_{r}{ }^{s} A_{k s y} f_{3}{ }^{r} \\
& =\left(\nabla_{k} P_{y z *}\right) J_{j}{ }^{z}-\left(\nabla_{j} P_{y z *}\right) J_{k}{ }^{z}+P_{y z *}\left(A_{3 r}{ }^{z} f_{k}^{r}-A_{k r}{ }^{z} f_{3 r}\right) \\
& \quad+\frac{1}{2}(c+3) f_{k_{3}} .
\end{aligned}
$$

If we transvect $f^{k 3}$ to the last equation and make use of (1.5), (1.13), (1.20), (2.4) and (2.8), we can obtain

$$
A_{j t}{ }^{*} A^{j v}=h^{*} P_{y * *}+P_{z w y} P^{z w *}-P^{z} P_{y z *}+2 \delta_{y}^{*}+\frac{1}{4}(c+3)(n-p) \delta_{y}^{*} .
$$

Thus by (2.10) we arrive at (2.6).
For the shape operator A^{*} in the direction of the mean curvature vector field, a tensor field $\left(A^{*}\right)^{a}$ and a function $h_{(a)}$ for any integer $a \geq 2$ are introduced as follows:

$$
\left(A_{\jmath 2}^{*}\right)^{a}=A_{\mu_{1}}{ }^{*} A_{i_{2}}{ }^{i_{1} *} \cdots A_{i}^{z_{a}-1 *}, \quad h_{(a)}=\sum_{j}\left(A_{i_{1}}{ }^{*}\right)^{a} .
$$

Thus, (2.6) implies that

$$
\begin{equation*}
h_{(2)}=h^{*} P_{* * *}+\frac{1}{4}(n-1)(c+3)+2 . \tag{2.13}
\end{equation*}
$$

When $y=*$ in (2.12), we have

$$
\begin{aligned}
& 2 A_{j}{ }^{r *} A_{r s *} f_{k}{ }^{s} \\
= & \left(\nabla_{k} P_{z * *}\right) J_{j}{ }^{z}-\left(\nabla_{j} P_{z * *}\right) J_{k}{ }^{z}+2 P_{z * *} A_{j r}{ }^{z} f_{k}{ }^{r}+\frac{1}{2}(c+3) f_{k j}
\end{aligned}
$$

because of (2.7). Transforming by $A_{t}{ }^{3 *} f^{k t}$ and making use of (1.5), (1.13), (2.4), (2.7), (2.8) and (2.9), we obtain

$$
\begin{aligned}
h_{(3)} & =P_{w z *} P^{z x *} P_{r}^{w *}-P_{x w z} P^{w x *} P^{z * *}+P_{* * *} \\
& +P_{z * *} A_{\jmath t}^{z} A^{\jmath *}+\frac{1}{4}(c+3)\left(h^{*}-P^{*}\right),
\end{aligned}
$$

which combine with (2.6) and (2.11) gives forth
$(2.14) h_{(3)}=h^{*}\left\|P_{z * *}\right\|^{2}+\frac{1}{4}(c+3)(n-2) P_{* * *}+\frac{1}{4}(c+3) h^{*}+3 P_{* * *}$, where $\left\|P_{z * *}\right\|^{2}=P_{z * *} P^{z * *}$.

LEMMA 2.2. Under the same assumptions as those in Lemma 2.1, the function $h_{(2)}$ is harmonic.

Proof. By definition we have $P_{* * *}=A_{\jmath_{2}}{ }^{*} J_{*}{ }^{3} J_{*}{ }^{2}$. Differentiating this covariantly, we find

$$
\nabla_{k} P_{* * *}=\left(\nabla_{k} A_{\jmath 2}{ }^{*}\right) J_{*}{ }^{3} J_{*}{ }^{2}
$$

because of (1.10), (2.1) and (2.2). Thus, the Laplacian of the function $P_{* * *}$ is given by

$$
\Delta P_{* * *}=\left(\Delta A_{j 2}^{*}\right) J_{*}^{\jmath} J_{*}^{\imath}+2\left(\nabla_{k} A_{j t}^{*}\right) J_{*}^{\imath} \nabla^{k} J^{j^{*}}
$$

This together with $(1.5),(1.10),(1.13),(1.15)$ and (2.1) implies that

$$
\begin{equation*}
\Delta P_{* * *}=\left(\Delta A_{\jmath_{2}}^{*}\right) J_{*}^{3} J_{*}^{*}-\frac{1}{2}(c-1)\left(h^{*}-P^{*}\right) \tag{2.15}
\end{equation*}
$$

On the other hand, it is shown in the proof of Lemma 4.2 of [1] that

$$
\left(\Delta A_{y z}^{*}\right) J_{*}^{3} J_{*}^{*}=\frac{1}{2}(c-1)\left(h^{*}-P^{*}\right)
$$

Therefore (2.15) turns out to be $\Delta P_{* * *}=0$. Thus, the equation (2.13) implies that $\Delta h_{(2)}=0$ because the mean curvature vector is parallel. Hence we arrive at the conclusion.

3. Theorems

Theorem 3.1. Let M be an $(n+1)$-dimensional submanifold of a Sasakian space form $\tilde{M}^{2 m+1}(c)$ with nonvanishing parallel meau :urvature vector. If $L_{\xi} A^{x}=0$ and $\nabla_{\xi} A^{*}=0$ on M, then we have

$$
\begin{equation*}
\left\|\nabla A^{*}\right\|^{2}=\frac{1}{8}(c-1)^{2}(n-p) \tag{3.1}
\end{equation*}
$$

Proof. By a straightforward computation, we have
(3.2) $A_{j}{ }^{r x} A_{t r x} A^{2 s *} A_{s}{ }^{j *}=A_{j r}{ }^{x} A_{2 s x} A^{r s *} A^{j *}+\left\{\frac{1}{4}(c-1)\right\}^{2}(p-1)$, where we have used (1.13), (2.4), (2.5) and (2.10).

We also have
(3.3) $\quad A^{k h *} A^{\jmath z *} f_{k j} f_{h z}=h_{(2)}-P^{z} P_{z * *}-\frac{1}{4}(c-1)(p-1)-(p+1)$
because of (1.5), (1.13), (2.2), (2.7), (2.8) and (2.10).
Making use of (1.14) and (1.17), we can verify the following:

$$
\begin{equation*}
S_{j s} A_{1}^{s *} A^{\jmath *}-R_{k j t h} A^{k h *} A^{\jmath * *}=\frac{1}{16}(c-1)^{2}(n-p) \tag{3.4}
\end{equation*}
$$

where we have used (1.13), (2.6), (2.8), (2.10), (2.13), (2.14), (3.2) and (3.3).

By (1.9) we have

$$
\nabla_{k} f_{z}^{k}=n \xi_{z}-h^{*} J_{v *}-A_{z r}{ }^{x} J_{x}^{r}
$$

because of (1.20). Hence we have

$$
\begin{aligned}
& A^{\jmath t *} \nabla_{k}\left(J_{j *} f_{t}^{k}\right) \\
= & A^{\jmath t *} A_{k r}{ }^{*} f_{j}^{r} f_{z}^{k}+\left(P_{z * *} J^{t z}-\xi^{\imath}\right)\left(n \xi_{z}-h^{*} J_{z *}+A_{i}^{r x} J_{x r}\right)
\end{aligned}
$$

by virtue of (1.10) and (2.8), or using (1.13), (2.4), (2.13) and (3.3) we obtain

$$
\begin{equation*}
A^{\jmath *} \nabla_{k}\left(J_{j *} f_{z}^{k}\right)=\frac{1}{4}(c-1)(n-p) \tag{3.5}
\end{equation*}
$$

On the other hand, since the submanifold M has parallel mean curvature vetor field, the Laplacian $\Delta A_{j 2}^{*}$ of A^{*} is given, using the Ricci formula for A^{*} and (1.15), by

$$
\begin{align*}
\Delta A_{\jmath i}{ }^{*}= & S_{\jmath r} A_{i}^{r *}-R_{k j i h} A^{k h *} \tag{3.6}\\
& +\frac{1}{4}(c-1) \nabla_{k}\left(J_{*}{ }^{k} f_{j 3}+J_{j *} f_{z}{ }^{k}+2 J_{z *} f_{j}{ }^{k}\right),
\end{align*}
$$

Transvecting $A^{3 * *}$ to (3.6) and making use of (3.4) and (3.5), we have

$$
A^{3+*} \Delta A_{32}^{*}=-\frac{1}{8}(c-1)^{2}(n-p)
$$

Thus by Lemma 2.2, we obtain (3.1) because we have in general

$$
\frac{1}{2} \Delta h_{(2)}=A^{j * *} \Delta A_{32 *}+\left\|\nabla A^{*}\right\|^{2}
$$

By (1.5), (1.15), (2.2) and (2.4) we have
$\left\|\nabla_{k} A_{\jmath 1}{ }^{*}+\frac{1}{4}(c-1)\left(J_{j *} f_{k \mathrm{t}}+J_{t *} f_{k j}\right)\right\|^{2}=\left\|\nabla_{k} A_{j *}{ }^{*}\right\|^{2}-\frac{1}{8}(c-1)^{2}(n-p)$.
This together with (3.1) yields

$$
\begin{equation*}
\nabla_{k} A_{j_{\imath}}^{*}=-\frac{1}{4}(c-1)\left(J_{\jmath^{*}} f_{k \imath}+J_{\imath *} f_{k j}\right) \tag{3.7}
\end{equation*}
$$

Thus we have
Theorem 3.2. Let M be an ($n+1$)-dimensional submanifold of an odd-dimensional unit sphere $S^{2 m+1}(1)$ with nonvanishing parallel mean curvature vector. If $L_{\xi} A^{x}=0$ and $A^{*} f=f A^{*}$ on M, then A^{*} is parallel.

For any point q in M we can choose a local orthonormal frame field $\left\{E_{2}\right\}$ so that the shape operator A^{*} in the direction of the mean curvature vector field is diagonalizable at that point q, say $A_{32}{ }^{*}=$ $\lambda_{3} \delta_{31}$.

Transvecting (3.7) with $\left(A^{j i *}\right)^{a-1}$ for any integer $a \geq 2$ and taking account of (1.13), (2.2) and (2.8), we obtain $\nabla_{k} h_{(a)}=0$ and hence $h_{(a)}$ is constant. Since we have

$$
h_{(a)}=\sum_{i}\left(\lambda_{2}\right)^{a}, \quad(a=1,2, \cdots)
$$

it is seen that λ_{i} is constant. Thus we obtain

Theorem 3.3. Let M be a submanifold of a Sasakian spcae form with nonvanishing parallel mean curvature vector. If $L_{\xi} A^{x}=0$ and $\nabla_{\xi} A^{*}=0$, then each eigenvalue of A^{*} is constant.

From (1.18) and (1.19) and Theorem 3.3, we have
Corollary 3.4 ([1]). Let M be a generic submanifold of a Sasakian space form with nonvanishing parallel mean curvature vector. If $\nabla_{\xi} A^{*}$ $=0$ or equivalently, $A^{*} f=f A^{*}$ on M, then each eigenvalue of A^{*} is constant.

References

[1]. S.S Ahn and U-H. Ki, Generic submanifolds with parallel mean curvature vector of a Sasakan space form, J Korean Math. Soc., to appear.
[2]. U-H. Ki, N.-G. Kim, S.-B Lee and 1.-Y Yoo, Submanafolds with nonvanashang parallel mean curvature vector field of a Sasakzan space form, J. Korean Math. Soc., 30 (1993)
[3]. U-H. Ki, N-G. Kım and M Kon, Generzc submanifolds of an odd-dzmensıonal sphere, Nihonkai Math J., 4 (1993).
[4]. U-H. Ki and Y.H. Kim, Generic submanifolds with parallel mean curvature vector of an odd- dimenstonal sphere, Kodai Math J., 4 (1981), 353-370.
[5]. U-H. Ki and M Kon, Contact CR-submantfolds with parallel mean curvature vector of a Sasakian space form, Coll. Math., 64 (1993), 173-184
[6]. U-H. Ki and J.S. Pak, On totally real submanfolds with parallel mean curvature vector of a Sasakian space form, Bull. Korean Math Soc., 28 (1991), 55-64.
[7]. M. Kon, On some generic mansmal submanifolds of an odd-dimensional sphere, Coll Math, 56 (1988), 311-317.
[8]. K. Yano, On a structure defined by a tensor field of type (1,1) satzsfying $f^{3}+f=0$, Tensor N.S., 14 (1963), 99-109.
[9]. K. Yano and M. Kon, Genersc submantfolds of Sasaktan manzfolds, Kodai Math J., 3 (1980), 163-196.
[10]. K. Yano and M. Kon, CR submanıfolds of Kaehlerian and Sasakzan manıfolds, Birkhäuser, Boston Inc., 1983.
[11]. K. Yano and M. Kon, Structures on manvfolds, World Scientific Pub, 1984.
[12]. K. Yano and M. Kon, On contact CR submanıfolds, J Korean Math. Soc., 26 (1989), 231-262

