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ON SUBMANIFOLDS WITH
PARALLEL MEAN CURVATURE

VECTOR OF A SASAKIAN SPACE FORM

Jong Joo Kim

0. Introduction
One of typical submanifolds of a Sasakian manifold is the so-called 

contact CR submanifold which are defined as follows: Let M be a 
submanifold of a Sasakian manifold M tangent to the structure vec
tor field V with almost contact metric structure (饱 G/f). If there 
exists a differentiable distribution such that it is invariant under ' 
and the complementary orthogonal distribution is totally real with re
spect to <f> [9], [10], [12]. Many subjects for such submanifolds of a 
Sasakian space form have been studied in [1], [3], [4], [5], [6], [7] and 
so on, one of which done by Ki and Kon asserts that the following:

THEOREM A([5]). Let M be an (n + lydimensional contact CR 
submanifold of a Sasakian space form M2m+1(c) with nonvajiishing 
parallel mean curvature vector. If the f-structure Q in the normal 
bundle is parallel and if the second fundamental forms Ax and the 
f-structure f on M commute, then each eigenvalue of the operator A* 
in the direction of the mean curvature vector is constant.

The purpose of this paper is to imp호ove Theorem A.

1. Preliminaries
In this section, the basic properties of submanifold요 of a Sasakian 

manifold are recalled [2], [10], [11].
Let M be a Sasakian manifold of dimension 2m + 1 with almost 

contact metric structure (知 G〉V). Then for any vector fields X and 
Y on M, we have

</>2X = —X + v(X)V5 G(e3X) =(구(KX) — v(y)v(x),
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咐X)= 0, w = o, v(y)= i, g(x, v)=讽X)。

We denote by V the operator of covariant differentiation with respect 
to the metric G on M. We then have

(i.i) vxv = <t>x. (vx^)r = —g(x, y)v + 讽y)x・

Let M be an (n + l)-dimensional Riemannian manifold covered by 
a System of local coordinate neighborhoods {U; and immersed iso
metrically in M by the immersion i : M ——> M. When the argument 
is local, we may identify M with i(M). We represent the immersion z 
locally by

yA =俨絲己…(4 = 1,…+ 1,…，2m + 1)

and put BjA = d}yA.(毎=dx3} then B3 =(与勻 are (n+l)-linearly 
independent local tangent vector fields of M. We choose 2m 一 n mu
tually orthogonal unit normals Cx = (CXA) to M. Throughout this 
paper, the indices 如幻么•… rim over the range {1,• • * ,n + 1} and 
tz, v, w, - - - the range (n + 2, ••- , 2m + 1} and the summation conven
tion will be used with respect to tho잉e indices. The immersion being 
isometric, the induced Riemannian metric tensor g on M and the met
ric tensor 8 of the normal bundle are then respectively obtained :

9 = 시(皂»饥), ^yx = G((為, C")

In the sequel, we assume that the submanifold M of M is tangent to 
the structure vector field V. Then we have

(1-2) U = f = G(玖,U).

마he transforms of Bi and Cx by <j> are respectively represented in 
each coordinate neighborhood as follows:

(1-3) 奶+ J广 c

(L4) 姒= —m + Q/q,
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where we have put

= G((/(為)，Jx3 = —G(</>Cx,Bj),

Q^ = G0Cx,Cg\ 扑=f", J/ = Q"=Q々舛，

6yz being the contravariant components of 6yz and (g») = (g”)-"'. 
From the웒。definitions, we verify that f3l + = 0, J并 = JXj and
Qxy + Qyx = 0.

By the properties of the Sasakian structure tensor, it follows from
(1.2),  (1.3) and (4.4) that we have

(1.5) //// = —T + 泌 + 矿罗,= -6/ +

(1.6) //J/ + J/Q/=0,

(1.7) = 0, ^fjh = 0, = 1.

By denoting Vj the operator of van der Waerden-Bortolotti covari
ant differentiation with respect to g and G, the equations of Gauss and 
Weingarten for the submanifold  ̂M are respectively given by

(1-8) ▽丿E =，頌 XCX, ^3CX = —4也风，

where x are the second fundamental forms in the direction of Cx 
and related by -

A；\ = A理g'h = AJt ^gth8yx.

Differentiating (1.3) and (1.4) covariantly along M and making use 
of (1.1), (1.8) and these equations, we easily find

(1.9) ▽,"=狀-g3te +1 - % XJX\

(L10) 巧 =

(Lil) V3Q^=A}txJyt-AJtyJtx.
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We also have from (1.2)

(1-12) "=h，

(1-13) 4户吒=J/

because of (1.1), (1.3) and (1.8).
In the rest of this section we suppose that the ambient Sasaki an 

manifold M is of constant ^-holomorphic sectional curvature c, which 
is called a Sasakian space form, and is denoted by M2m+1(c), Then 
we see, using (1.2), (1.3), (1.4) and (1.8), that equations of the Gauss, 
Codazzi and Ricci for M are respectively given by

Rkjih —T(c + 3)(9妇四2 — + 厶扁"Ajh； —X^-kix4

(1.14) + ~(c 一 1)(6左&g项五——CjCidkh + &}&国虹，—CkChSjt

+ fkhfjt — fjhfkt — 2亦」盘\

(LM)一 ▽即侦 1 一 V,Afej ' = ；(c — 1)(4%, - J3xfkl - 2J/AJ,

(1.16) Rjtyx = a(C — 一 IxJjy _ 2j项 Qgs)

+ 一 AttXA^yy

where Rgh and R3iyx are the Riemannian curvature tensor of M and 
that with respect to the connection induced in the normal bundle of 
M respectively. We see from (1.14) that the Ricci tensor S of M can 
be expressed as follows : 

(1-17)
S” =；{n(c + 3) + 2(c - - |-(c - l)(n + 2)&&

3
一 M(c — l)JjZJiz + hxAjiX — AjXAltx.
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with 난aid of (1.5), where hx = g•七烦 七

Differentiating (1.13) covariantly along M and usi교g (1.10) and
(1.12),  we find

(VM7r.)r + m 이Qg _ Akrxf3\

which together with (1.7) and (1.15) implies that

(1-18) 厂虹 = 入幻 하Qg — Akrx"「一 AgJLL

On the othe호 hand, the Lie derivative of the shape operator Ax in 
the direction of Cx with respect to the structure vector field f i요 given 
by

L^Ajhx = + Arhxf3r — A；xfrh

because of (1.12). From the last two equations, it follows that we have

(1.19) L&A 投=ApQj.

A submanifold of a Sasakian manifold is called a generic submanifold 
if Q vanishes identically [9]. If a submanifold of a Sasakian space form 
阪2m+i(c)is generic, then L^AX = 0 is satisfied.

Let H be a mean curvature vecto호 field of M in a Sasakian manifold. 
Namely, it is defined by

H = g^A3t xCx/(n + 1) = hxCx/(n + 1), 

which is independent of the choice of the local field of orthonormal 
frames {Cx}.

In the following we suppose that the mean curvature vector field H 
of M is nonzero and is parallel in the normal bundle. Then we may 
choose a local field {ex} in such a way that H = crCn-^2 = oGm where 
a = |H| is nonzero constant. Because of the choice of the local field, 
the parallelism of H yields

. 、 (hx = x > n + 3
(1.20) < 1 J 7l /产=(n + l)a.

In the sequel the index n + 2 will be denoted by the symbol 札
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2. Lemmas
Let M be a submanifold satisfying L^AX = 0 of a Sasaki an space 

form M2m+1(c). Then by (1.19) we have

(2.1) XQxy = 0.

This together with (1.6) and (1.13) implies that

(2.2) = 0, J/Q/ = 0.

Hence, by (1.5) we see that J3 + / = 0 and Q3 + Q = 0, namely f and 
Q define the /-structure in M and that in the normal bundle of M 
respectively [8]. In such a case M is called a contact CR submanifold 
of a Sasaki an manifold [5], [12].

Since the mean curvature vector assumed to be parallel in the normal 
bundle, it is, using (1.18), seen that hyQyx — 0. Accordingly by (1.20) 
we obtain

(2-3) Q： = 0,

which join with the 양econd equation of (1.5) implies

(2-4) = &*.

H being a normal vector field on M, the curvature tensor R3tyx of 
the connection in the normal bundle shows that Rj^x vanishes identi
cally for any index x. Thus the Ricci equation (1.16) yields

(2.5) A^A,** - AitxA^ = ：(c 一 1)0*儿一丄*必)

because of (2.3).

LEMMA 2.1. Let M be an (n + l)-diinensional submanifold tangent 
to the structure vector Held of a (2m + l)-dunensional Sasakian space 
form. Suppose that the wean curvature vector Geld is nonzero and 
parallel in the normal bundle. If L^AX = 0 이id = 0 on M, then
we have

(2.6) AjiyA^^ =r h*Py^ + —(n — l)(c + 3)勾* + 2頌.
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Proof. By (1.18) and (2.3), we have

(2.7) + = 0 

because we assumed to be = 0. Transforming (2.7) by f] and 
making use of (1.5) and (1.13), we get

(Ajr*Jzr)JkZ + EkJ3 黑—A3k* + Asr*f3rfkS = S

from which, taking the skew-symmetric part

— + h% —泓 * = 0。

If we transvect Jyk to above equation and make use of (1.5) and (2.2), 
we obtain

(2-8) A]r*Jyr = Pyz*J/ + 8y^3, 

where we have defined

丄yzx -皿•

Thus by (2.1) and (2.2) we get

(2-9) R心 03 = 0, PyzxQ^ = 0.

Transvecting JzJJy[ to (2.5), we find

where we have used (1.7), (2.2), (2.4), (2.8) and (2.9). Consequently 
we have

(2.10) Py2xP^ — PZPZX^ = ：(c + 3)3 - 1)&*, 

(2-11) Pzx ‘仔广-MP，** = ：(c + 3)(J；Jlx 一 爲*。；), 
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where we denote Pzzx = Px and J3XJ^X = p.
Differentiaing (2.8) covariantly and using (1.11), (1.12) and (2.9\ 

we find

(▽s项 *)V 一 A^Aksyf/ = (VfcP^)J/ 一 Pyz,Akr 7/ + E 

and hence, taking the skew-symmetric part with respect to indices k 
and j and taking account of (1.15), (2.2), (2.4) and (2.7)

(2.12)
A^^Ajsyfkr _ A^^Aksyf/

=(V『E)歸-+ 乌并(，据 zfkr 一 Akrzfjr)
+ i(c + 3)/fcj- 

厶

If we transvect fkj to the last equation and make use of (1.5), (1.13),
(1.20),  (2.4) and (2.8), we can obtain

*4" g = h*Py^ + PzwyPzw* - PzPyz, + 28； + l(c + 3)(n

Thus by (2.10) we arrive at (2.6).

For the shape operator A* in the direction of the mean curvature 
vector field, a tensor field (A*)a and a function 虹任)for any integer 
a > 2 are introduced as follows:

(%，*r = 曲)=£(& *r.
I

Thus, (2.6) implies that

(2.13) 九⑵=h* P*** + —(n — l)(c + 3) + 2.

When g = * in (2.12), we have

아

=(VfcP^)J/ - (%Pz**& + 2Pz^Ajr w + |(C + 3)/fc；
厶
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because of (2.7). Transforming by and making use of (1.5),
(1.13) , (2.4), (27)厂(2.8) and (2.9), we obtain

h,、一 P p W* p pWX^ pZ#* 丄 »
几(3) — w^*-^ rx — ^zwz-^ -f 十尸***

+ P^A]t ZA^ + ：(c + 3)(/z* - P*), 
J 4

which combine with (2.6) and (2.11) gives forth 

I 1
(2.14) h(3)= + —(c + 3)(n — 2)R** + —(c + 3)h* + 3R**,

where ||R**|F = PZ^PZ^,

LEMMA 2.2. Under the same assumptions as those in Lemma 2.1, 
the function Zi(2)is harmonic.

Proof. By definition we have R** = A}2 Differentiating
this covariantly, we find

▽N»*=(▽妇烦 *)*4

because of (1.10), (2.1) and (2.2). Thus, the Laplacian of the function 
R녀迷 is given by

△尸*** = (△4〃 *)7/J/ + 2(VMJt *)/「▽七〃*•

This together with (1.5), (1.10), (1.13), (1.15) and (2.1) implies that

1
(2-15) Z\R** = (AA}1 *)<"妃--(c - 1)0* - P*).

厶

On the other hand, it is shown in the proof of Lemma 4.2 of [11 that
1
 
一
 2

Therefore (2.15) turns out to be〔、호*** = 0. Thus, the equation (2.13) 
implies that △九⑵=0 because the mean curvature vector is paralleL 
Hence we arrive at the conclusion.
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3。Theorems

Theorem 3.1. Let M be an (n + l)-dimensional submanifold of a 
Sasakian space form M2m+1(c) with nonvanishing parallel mean cur
vature vector. If L^AX = 0 and = 0 on M, then we have

(3.1) l|VA*||2 = |(c-l)2(n-p).
o

Proof. By a straightforward computation, we have

(3.2) A；xAirxA^Ar = Ajr xAtaxAra*A},* + {f(c - 1))2(P - 1),

where we have used (1.13), (2.4), (2.5) and (2.10).
We also have

(3.3) Akh*A^fk3fhl = h(2) - FR** - ：(c 一 l)(p-l)-(p + l)

because of (1.5), (1.13), (2.2), (2.7), (2.8) and (2.10).
Making use of (1.14) and (1.17), we can verify the following:

(3.4) S”/"*#* - Rk}thAkh*A^ = *(c 一 l)2(n - p),

where we have used (1.13), (2.6), (2.8), (2.10), (2.13), (2.14), (3.2) and 
(3.3).

By (1.9) we have

because of (1.20). Hence we have

=A^Akr*f/ftk + (R**广 _ e)(n6 -此八* + AtrxJ.r)

by virtue of (1.10) and (2.8), or using (1.13), (2.4), (2.13) and (3.3) we 
obtain

(3.5) 心4(" k) = j(c - l)(n - p).
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On the other hand, since the submanifold M has parallel mean 
curvature vetor field, the Laplacian △Aj? * of A* is given, using the 
Ricci fbrmtda for A* and (1.15), by
(3.6)

△4莉 * =S”4；* 一 RyiA1而

+ &(c—：g(J* 缶 + W/ + 2W/),

Transvecting AJi* to (3.6) and making use of (3.4) and (3.5), we 
have

Thus by Lemma 2.2, we obtain (3.1) because we have in general 
M靈(2)=4"紹鸟，* + ］卜當*||2

By (1.5), (1.15), (2.2) and (2.4) we have 
1 1

l|VM7l * + m(c—1)0点z +陽)||2 = ||%综 *||2-g(c-l)2(n-p)- 

This together with (3.1) yields
(3.7) VkAJt * = —：(c 一 1)0*儿 + J,*h)

Thus we have
THEOREM 3.2. Let M be an (n + 1)-dimensional submanifold of 

an odd-dimensional unit sphere S2rn+1(l) with nonvanishing parallel 
mean curvature vector. If L^AX = 0 and A*f = /A* on M, then A* 
is parallel.

For any point q in M we can choose a local orthonormal frame 
field {Et} so that the shape operato호 A* in the direction of the mean 
curvature vector field is diagonalizable at that point 务 say * — 
人技?"

Transvecting (3.7) with for any integer a > 2 and taking
account of (1.13), (2.2) and (2.8), we obtain = 0 and hence A(a) 
is constant. Since we have

”(a) = £(入)％ (a = 1,2,…)， 

t
it is seen that 시 is constant. Thus we obtain
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THEOREM 33 Let M be a submanifold of a Sasakian spcae form 
with nonvanishing parallel mean curvature vector. If L^AX = 0 and 
V&4* = 0, then each eigenvalue of A* is constant.

From (1.18) and (1.19) and Theorem 3.3, we have

COROLLARY 3.4 ([1]). Let M be a generic submanifold of a Sasakian 
space form with nonvanishing parallel mean curvature vector. IfV^A* 
= 0 or equivalently^ A*f = fA* on M, then each eigenvalue of A* is 
constant.
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