Pusan Kyŏngnam Math. J. 9(1993), No. 2, pp. 275-282

SIMPLER AXIOMATIC SYSTEMS OF LATTICE TOPOLOGIES

J. MENG*, Y. B. JUN** AND X. L. XIN*

In 1984, P. Z. Wang [3] gave several axiomatic systems of lattice topology, and obtained some results.

In this paper, we simplify some axiomatic systems. In particular, the 7 axioms of net convergence relation are simplified into 5 axioms of it.

DEFINITION 1. Let $(L; \geq)$ be a complete lattice with the greatest element 1 and the least element 0. Then $(L; \geq)$ is said to be dual if there is a map $c: L \to L$ such that

(1) $(\alpha^c)^c = \alpha$ for all $\alpha \in L$,

(2)
$$(\alpha \lor \beta)^c = \alpha^c \land \beta^c$$
 and $(\alpha \land \beta)^c = \alpha^c \lor \beta^c$ for all $\alpha, \beta \in L$.

Throughout this paper, L always means a complete dual lattice and we note that the relation " \leq " is the inverse of " \geq ".

For any nonempty subsets A and B of L, define $A \sim B$ if and only if $\forall \alpha \in A \ \exists \beta \in B$ such that $\alpha \geq \beta$, and $\forall \beta \in B \ \exists \alpha \in A$ such that $\beta \geq \alpha$.

DEFINITION 2. A nonempty subset R of L is called a filter if

(3) $\forall \alpha, \beta \in L \ \alpha \geq \beta \text{ and } \beta \in R \Rightarrow \alpha \in R$,

(4) $\forall \alpha, \beta \in R \ \exists \gamma \in R \text{ such that } \alpha \geq \gamma \text{ and } \beta \geq \gamma.$

Denote by $\tau(L)$ the set of all filters of L. We first give a characterization of filters.

LEMMA 1. A nonempty subset R of L is a filter of L if and only if it satisfies (3) and

(5) $\forall \alpha, \beta \in R, \alpha \land \beta \in R$, where $\alpha \land \beta = \inf{\{\alpha, \beta\}}$.

Proof. It is sufficient to show that if R satisfies (3) then the conditions (4) and (5) are equivalent. The fact that (5) implies (4) is

Received October 6, 1993 .

obvious, because $\alpha, \beta \geq \alpha \land \beta$. If R satisfies (4), that is, $\forall \alpha, \beta \in R$ $\exists \gamma \in R$ such that $\alpha \geq \gamma$ and $\beta \geq \gamma$, then $\alpha \land \beta \geq \gamma$. It follows from (3) that $\alpha \land \beta \in R$. This completes the proof.

LEMMA 2. If $R_t, t \in T$, is an indexed family of filters of L, then $\cap \{R_t : t \in T\}$ is a filter of L.

Proof. Obvious.

DEFINITION 3. Denote

$$n_L = \{n | n : L \rightarrow \tau(L) \text{ such that } (n1) - (n3)\},$$

where

- (n1) n(0) = L,
- (n2) $\beta \in n(\alpha) \Rightarrow (\exists \gamma)((\beta \ge \gamma \ge \alpha)((\forall \delta)(\gamma \ge \delta \Rightarrow \gamma \in n(\delta))),$ (n3) $n(\forall \{\alpha_t : t \in T\}) = \cap \{n(\alpha_t) : t \in T\}.$

Then $n \in n_L$ is called a neighborhood structure of L, $n(\alpha)$ is called a neighborhood system of α , and $N = \bigcup \{n(\alpha) : \alpha \in L\}$ is called the neighborhood system of L.

THEOREM 1. If $n \in n_L$ then (n4) $\beta \in n(\alpha) \Rightarrow \beta \ge \alpha$.

Proof. By (n2), we know that

$$\beta \in n(\alpha) \Rightarrow (\exists \gamma)(\beta \ge \gamma \ge \alpha) \Rightarrow \beta \ge \alpha.$$

REMARK 1. In [4], the axiomatic system of the neighborhood structure of L was given by (n1) - (n4). But Theorem 1 above shows that it can be defined by (n1) - (n3) only.

DEFINITION 4. Denote

$$r_L = \{ \mathbf{l} \in \mathcal{P}(\tau(L) \times L) | \mathbf{l} \text{ satisfies } (\mathbf{r}1) - (\mathbf{r}5) \},\$$

where

(r1) $(R,0) \in \uparrow \Rightarrow R = L$,

(r2) $\forall \alpha \in L, (\dot{\alpha}, \alpha) \in l^{*}$, where $\dot{\alpha} = \{\beta \in L | \beta \geq \alpha\}$,

(r3) $\forall t \in T, (R_t, \alpha) \in \uparrow$ and $R \supset \cap \{R_t : t \in T\} \Rightarrow (R, \alpha) \in \uparrow$.

Define $\beta[\alpha \text{ if and only if } (\forall R \in \tau(L))((R, \alpha) \in \Gamma \Rightarrow \beta \in R).$

(r4) $\beta[\alpha \Rightarrow (\exists \gamma)((\beta \ge \gamma \ge \alpha))((\forall \delta)(\gamma \ge \delta \Rightarrow \gamma[\delta))),$ (r5) $\forall t \in T$ $\beta[\alpha, \Rightarrow \beta]$ $\forall t \in T$

(r5)
$$\forall t \in T, \beta | \alpha_t \Rightarrow \beta | \bigvee_{t \in T} \alpha_t.$$

Then $l \in r_L$ is called a filter convergence relation of L. If $(R, \alpha) \in l$, we say that R converges to α , and is denoted by $R \nmid \alpha$.

276

PROPOSITION 1. If $t \in r_L$ then $\forall t \in T, \beta[\alpha_t \Leftrightarrow \beta[\bigvee_{t \in T} \alpha_t]$.

Proof. Sufficiency. If $\beta[\bigvee_{t\in T} \alpha_t \text{ then by } (r4) \text{ we have }$

$$(\exists \gamma)((\beta \geq \gamma \geq \bigvee_{t \in T} \alpha_t)((\forall \delta)(\gamma \geq \delta \Rightarrow \gamma[\delta))).$$

Since $\alpha_t \leq \bigvee_{t \in T} \alpha_t \leq \gamma$ for every $t \in T$, it follows that $\gamma[\alpha_t \text{ for all } t \in T]$. Let $R \in \tau(L)$ satisfy $R \upharpoonright \alpha_t \ (\forall t \in T)$. Then $\gamma \in R$. Combining $\beta \geq \gamma$, we get $\beta \in R$ by (3). This shows that $\beta[\alpha_t \ (\forall t \in T)]$.

Necessity is clear from (r5). The proof is complete.

THEOREM 2. Let $\mathbf{f} \in r_L$. Then (r6) $R \restriction \alpha$ and $R \subset R' \Rightarrow R' \restriction \alpha$. (r7) $R_t \restriction \alpha \; (\forall t \in T) \Rightarrow \cap \{R_t : t \in T\} \restriction \alpha$. Conversely if $\mathbf{f} \in \mathcal{P}(\tau(L) \times L)$ satisfies (r1), (r2), (r4), (r5), (r6) and (r7) then (r3) holds, and hence $\mathbf{f} \in r_L$.

Proof. (r6) follows directly from (r3). By Lemma 2 we know that $\cap \{R_t : t \in T\}$ is a filter of L. Hence (r7) holds by (r3).

Conversely let $l \in \mathcal{P}(\tau(L) \times L)$ satisfy (r1), (r2), (r4), (r5), (r6) and (r7). Suppose $R_t \not \vdash \alpha$ ($\forall t \in T$) and let $R \supset \cap \{R_t : t \in T\}$. Then by (r7), $\cap \{R_t : t \in T\} \not \vdash \alpha$. It follows from (r6) that $R \not \vdash \alpha$. Thus (r3) holds.

REMARK 2. The axiomatic system of filter convergence relation in [3] consisted of (r1), (r2), (r4), (r5), (r6) and (r7). Theorem 2 above shows that the above conditions are equivalent to the conditions (r1), (r2), (r3), (r4) and (r5). Hence Definition 4 is a simplification of axiomatic system of filter convergence relation in [3].

In the proof of the following proposition, P. Z. Wang have been used the notion of neighborhhood system. But we prove it without the notion of neighborhood system.

PROPOSITION 2 ([3, PROPOSITION 2.3]). If $r \in r_L$, then (r8) $R \restriction \alpha$ and $\alpha' \ge \alpha \Rightarrow R \restriction \alpha'$.

Proof. Denote $\tau(\alpha) = \{R \in \tau(L) : R \upharpoonright \alpha\}$. Observe that $\beta[\alpha]$ is equivalent to $\beta \in \cap\{R : R \in \tau(\alpha)\}$. By Proposition 1, we have

$$\bigcap_{t\in T} \cap \{R: R\in \tau(\alpha_t)\} = \cap \{R: R\in \tau(\bigvee_{t\in T}\alpha_t)\}.$$

If $\alpha' \ge \alpha$ then $\alpha' \lor \alpha = \alpha'$. Thus $(\cap \{R : R \in \tau(\alpha)\}) \cap (\cap \{R : R \in \tau(\alpha')\})$ $= \cap \{R : R \in \tau(\alpha' \lor \alpha)\}$ $= \cap \{R : R \in \tau(\alpha')\}.$ Hence $\cap \{R : R \in \tau(\alpha)\} \supset \cap \{R : R \in \tau(\alpha')\}.$ If $R \upharpoonright \alpha$ then

$$R\supset \cap \{R:R\in \tau(\alpha)\}\supset \cap \{R:R\in \tau(\alpha')\}.$$

It follows from (r3) that $R \upharpoonright \alpha'$. This completes the proof.

A binary relation \geq directs a set T if T is non-void and

(a) if $m, n, p \in T$ are such that $m \ge n$ and $n \ge p$, then $m \ge p$;

(b) if $m \in T$, then $m \ge m$;

(c) if $m, n \in T$, then there is $p \in T$ such that $p \ge m$ and $p \ge n$.

A directed set is a pair (T, \geq) such that \geq directs T. A net is a pair (S, \geq) such that S is a function and \geq directs the domain of S.

DEFINITION 5. Let (T, \geq) be a directed set, (D_t, \geq_t) a directed set for each t in T, and let $\Pi = \prod_{t \in T} D_t \times T$. Define a map $\omega_{\Pi} : \Pi \to L$ by $\omega_{\Pi}(f,t) = \omega_t(f(t))$ for each $(f,t) \in \Pi$, where $\omega_t : D_t \to L$ $(t \in T)$ is a function. Then we say that ω_{Π} is the product net generated by $\{(D_t, \geq_t) : t \in T\}.$

Let W = W(L) be a set of nets in L. Consider the following conditions:

- (ω 1) If D is a filter of L, then $i_D \in W$, where i_D is the identity map of D.
- (ω 2) Let *D* be a directed set and let *D'* be a directed subset of *D*. If $\omega : D \to L$ is a net, then $\omega' = \omega |D'$ is also a net, where $\omega |D'$ is the restriction of ω on *D'*.
- (ω 3) Let $\omega_t : D_t \to L \ (\forall t \in T, a \text{ directed set})$. If $\omega_t \in W \ (t \in T)$, then the product net $\omega_{\Pi} \in W$.

DEFINITION 6. If W = W(L) satisfies the conditions $(\omega 1) - (\omega 3)$, then we say that W is sufficient.

Given a net $\omega: D \to L$ $((D, \geq)$ is a directed set), denote

 $F(\omega) = \{ \alpha \in L : \omega(d) \le \alpha \text{ eventually} \},\$

where " $\omega(d) \leq \alpha$ eventually" means that there exists $d_0 \in D$ such that $d \leq d_0$ implies $\omega(d) \leq \alpha$.

DEFINITION 7. Let W be a set of nets in L, which is sufficient. Denote

$$l_L = \{ \searrow | \searrow \subset W \times L \text{ such that } (l1) - (l5) \},\$$

where

 $\begin{array}{ll} (l1) \ (\omega,0) \in \searrow \Rightarrow \omega(d) = 0 \text{ eventually,} \\ (l2) \ \omega(d) \leq \alpha \text{ eventually} \Rightarrow (\omega,\alpha) \in \searrow, \\ (l3) \ (\omega_t,\alpha) \in \searrow \ (\forall t \in T) \text{ and } F(\omega) \supset \underset{t \in T}{\cap} F(\omega_t) \Rightarrow (\omega,\alpha) \in \searrow. \end{array}$ If for every $\omega \in W$

$$(\omega, \alpha) \in \searrow \Rightarrow \omega(d) \leq \beta$$
 eventually,

then we say that β covers α .

(14) If β covers α , then

$$(\exists \gamma)((\beta \geq \gamma \geq \alpha)((\forall \delta)(\gamma \geq \delta \Rightarrow \gamma \text{ covers } \delta))),$$

(15) If β covers α_t $(t \in T)$, then β covers $\bigvee_{t \in T} \alpha_t$.

Then $\searrow \in l_L$ is called a (W) net convergence relation on L. If $(\omega, \alpha) \in \searrow$, we say that ω converges to α , denoted by $\omega \searrow \alpha$.

PROPOSITION 3. If $\searrow \in l_L$, then β covers α_t $(t \in T)$ if and only if β covers $\bigvee_{t \in T} \alpha_t$.

Proof. Necessity follows from (15). Sufficiency. Suppose β covers $\bigvee_{t \in T} \alpha_t$. Then by (14),

$$(\exists \gamma)((\beta \geq \gamma \geq \bigvee_{t \in T} \alpha_t)((\forall \delta)(\gamma \geq \delta \Rightarrow \gamma \text{ covers } \delta))).$$

Since $\gamma \geq \bigvee_{t \in T} \alpha_t \geq \alpha_t$ $(t \in T)$, taking $\delta = \alpha_t$ we have that γ covers α_t $(t \in T)$, and hence β covers α_t $(t \in T)$. This completes the proof.

THEOREM 3. Let $\searrow \in l_L$. Then \searrow satisfies the following conditions:

- (16) If $\omega_t \searrow \alpha_t \in L$ $(t \in T)$ and $\omega^* \searrow \alpha$, where T is a directed set and $\omega^* : T \to L$ is defined by $\omega^*(t) = \alpha_t$ for each $t \in T$, then $\omega_{\Pi} \searrow \alpha$;
- (17) If $\omega \searrow \alpha$ and $\alpha' \ge \alpha$, then $\omega \searrow \alpha'$;

(18) Let ω be a net. If for each subnet ω' of ω , there is a subnet ω'' of ω' such that $\omega'' \searrow \alpha$, then $\omega \searrow \alpha$.

Proof. Denote $W(\alpha) = \{\omega \in W : \omega \searrow \alpha\}$ and

$$\Gamma(\alpha) = \{\beta \in L : \beta \text{ covers } \alpha, \text{ and } (\forall \delta) (\beta \ge \delta \Rightarrow \beta \text{ covers } \delta) \}.$$

The fact that β covers α is equivalent to

$$\beta \in \cap \{F(\omega) : \omega \in W(\alpha)\}.$$

Obviously (l4) means that

$$\cap \{F(\omega) : \omega \in W(\alpha)\} \sim \Gamma(\alpha).$$

Therefore $\omega \searrow \alpha \Leftrightarrow F(\omega) \supset \Gamma(\alpha)$. We now show that $\omega_{\Pi} \searrow \alpha$. Since $\omega^* \searrow \alpha$, therefore $F(\omega^*) \supset \Gamma(\alpha)$. Let $\gamma \in \Gamma(\alpha)$. Then there is $t_0 \in T$ such that $\omega^*(t) = \alpha_t \le \gamma$ whenever $t \le t_0$. So γ covers $\omega^*(t) = \alpha_t$ $(t \le t_0)$. It follows from $\omega_t \searrow \alpha_t$ that there is $d_t^* \in D_t$ such that $\omega_t(d_t) \le \gamma$ $(t \le t_0)$ whenever $d_t \le d_t^*$, where D_t is the domain of a net ω_t . If we take (f_0, t_0) in $\Pi = (\prod_{t \in T} D_t) \times T$, where

$$f_0(t) = \left\{ egin{array}{cc} d_t^*, & ext{if } t \leq t_0, \ ext{any element in } D_t, & ext{otherwise}, \end{array}
ight.$$

then for every $(f,t) \in \Pi$ with $(f,t) \leq (f_0,t_0)$, we have $t \leq t_0$ and $f(t) \leq f_0(t) = d_t^*$, where $f(t) \in D_t$. Thus $\omega_{\Pi}(f,t) = \omega_t(f(t)) \leq \gamma$. This proves that $F(\omega_{\Pi}) \supset \Gamma(\alpha)$. Therefore $\omega_{\Pi} \searrow \alpha$, and (l6) is true.

We notice that Proposition 3 is equivalent to

(6)
$$\bigcap_{t \in T} \cap \{F(\omega) : \omega \in W(\alpha_t)\} = \cap \{F(\omega) : \omega \in W(\bigvee_{t \in T} \alpha_t)\}.$$

If $\alpha' \geq \alpha$ then $\alpha' \vee \alpha = \alpha'$. By (6) we have

$$\begin{aligned} (\cap \{F(\omega) : \omega \in W(\alpha)\}) \cap (\cap \{F(\omega) : \omega \in W(\alpha')\}) \\ &= \cap \{F(\omega) : \omega \in W(\alpha' \lor \alpha)\} \\ &= \cap \{F(\omega) : \omega \in W(\alpha')\}. \end{aligned}$$

Hence $\cap \{F(\omega) : \omega \in W(\alpha)\} \supset \cap \{F(\omega) : \omega \in W(\alpha')\}$. If $\omega \searrow \alpha$ then $\omega \in W(\alpha)$. Therefore

$$F(\omega) \supset \cap \{F(\omega) : \omega \in W(\alpha)\} \supset \cap \{F(\omega) : \omega \in W(\alpha')\}.$$

280

It follows from (13) that $\omega \searrow \alpha'$, which proves (17).

In order to prove (18), let $\omega : D \to L$ be a net such that for each subnet ω' of ω , there is a subnet ω'' of ω' satisfying $\omega'' \searrow \alpha$, but ω does not converge to α . Then by (13), we have $F(\omega) \not\supset \cap \{F(\omega) : \omega \in W(\alpha)\}$. Hence there exists $\beta_0 \in \cap \{F(\omega) : \omega \in W(\alpha)\}$, but $\beta_0 \notin F(\omega)$. The latter means that

(7) $(\forall d \in D)((\exists d' \in D)((d' \leq d)(\omega(d') \not\leq \beta_0))).$ Let $D' = \{d' \in D : \omega(d') \not\leq \beta_0\}$. Then (D', \geq) is a directed subset of (D, \geq) . Since W is sufficient, it follows that $\omega' \in W$. By (7) we have (8) $\omega'(d) \not\leq \beta_0$ for all $d \in D'$.

For each subnet ω'' of ω' , we will prove that ω'' does not converge to α . If $\omega'' \searrow \alpha$ then $\omega'' \in W(\alpha)$. Therefore

$$F(\omega'') \supset \cap \{F(\omega) : \omega \in W(\alpha)\}.$$

Hence

(9) $\beta_0 \in F(\omega'')$. Let $\bar{\omega} : \bar{D} \to L$ be a subnet of ω' such that there is a map $N : \bar{D} \to D'$ satisfying the axioms:

(a) $\bar{\omega} = \omega' \circ N$, i.e., $(\forall d \in \tilde{D}) (\bar{\omega}(d) = \omega'(N(d)))$,

(b) $\forall d' \in D' \exists \tilde{d} \in \tilde{D} \text{ such that } (\forall d \in \tilde{D})(d \leq \tilde{d} \Rightarrow N(d) \leq d').$ Thus (9) implies that

$$(\exists d_0 \in \overline{D})((\forall d \in \overline{D})(d \le d_0 \Rightarrow (\overline{\omega}(d) = \omega'(N(d)) \le \beta_0))).$$

This contradicts to (8), and hence (18) holds. This completes the proof.

THEOREM 4. If $\searrow \subset W \times L$ satisfies (l1) - (l3) and (l5) - (l7), then it satisfies (l4), and hence $\searrow \in l_L$.

Proof. It is similar to the final paragraph in the proof of [4; Theorem 4.1.3.

REMARK 3. In [3], the axiomatic system of net convergence relation was given by (l1) - (l3) and (l5) - (l8). But we know that, from Theorems 3 and 4, the conditions (l1) - (l3) and (l5) - (l8) are equivalent to that of Definition 7. Hence (l1) - (l5) are a simplication of axiomatic system of net convergence relation in [3].

REMARK 4. Following Definition 7, the non-uniqueness of the net convergence relation, i.e., (17), is a consequence of net convergence axioms.

REMARK 5. Theorems 3 and 4 also show that (18) is a consequence of (l1) - (l3) and (l5) - (l7). Hence the axiomatic system of net convergence relation in [3] is not independent.

References

- 1. O. Frink, Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569 582
- 2. X. W. Su,-Axiomatic descriptions on the pan-convergence relations and their pan-neighborhood structures (Chinese), J. of Engineering Math. 1 (1984), 69 -75
- 3. P Z Wang, The neighborhood structures and convergence relations on the lattice topology (Chinese), J of Beijing Normal Univ. 2 (1984), 19 - 34.
- 4. P. Z Wang, Fuzzy sets and projections of random sets (Chinese), Beijing Normal University Press (1985).

*Department of Mathematics Northwest University Xian 710069, P. R. China

Department of Mathematics Education **Gyeongsang National University Chinju 660-701, Korea

282