Pusan Kyŏngnam Math J. 9(1993), No. 2, pp 225-234

A NOTE ON THE CLASS A_{1,\aleph_0}

HAN SOO KIM AND MI KYUNG JANG

1. Introduction

Let \mathcal{H} denote a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . A *dual algebra* is a *weak*^{*} closed unital subalgebra of $\mathcal{L}(\mathcal{H})$. Recall that if \mathcal{A} is a dual algebra and m and n are cardinal numbers, where $1 \leq m, n \leq \aleph_0$, then \mathcal{A} is said to have property $(\mathbf{A}_{m,n})$ if each system of simultaneous equations

(1)
$$[L_{i,j}] = [x_i \otimes y_j], \quad 0 \le i < m, \quad 0 \le j < n$$

in the predual Q_A of A has a solution $\{x_i : 0 \le i < m\}, \{y_j : 0 \le j < n\}$, where x_i and y_j are vectors from \mathcal{H} .

Here $[x \otimes y]$ denotes the class in Q_A of the rank-one operator defined by $(x \otimes y)(z) = (z, y)x, z \in \mathcal{H}$.

If $\rho > 0$ then \mathcal{A} has property $(\mathbf{A}_{m,n}(\rho))$ if for each $s > \rho$, vectors x_i and y_j can be chosen to satisfy (1), and also the inequalies

$$||x_i|| < (s \sum_{0 \le j < n} ||[L_{i,j}]||)^{1/2}, \quad 0 \le i < m$$

and

(2)
$$||y_j|| < (s \sum_{0 \le i < m} ||[L_{i,j}]||)^{1/2}, \quad 0 \le j < n$$

It is clear that if m and n are finite cardinals and \mathcal{A} has property $(\mathbf{A}_{m,n}(\rho))$ for some $\rho > 0$, then \mathcal{A} also has property $(\mathbf{A}_{m,n})$. In this note, we are concerned with several classes of contractions appearing in the theory of dual algebras and we continue the study of a geometric

Received August 10, 1993

This work was partially supported by a research from TGRC-KOSEF .

criterion for membership in the class \mathbf{A}_{1,\aleph_0} (or more precisely, one of the classes $\mathbf{A}_{1,\aleph_0}(\rho)$). The results of this note and [2] are same with different methods. And the following theorem is generalization of [6].

2. Notations and preliminaries

The notation and terminology herein agree with that in [2], [4]. Let N be the set of positive integers, and let D be the open unit disc in C. set $\Lambda \subset \mathbf{D}$ is said to be *dominating* for $\mathbf{T} = \partial \mathbf{D}$ if almost every point of T is a nontangential limit of a sequence of points from Λ . The spaces $L^p = L^p(\mathbf{T})$ and $H^p = H^p(\mathbf{T})$, $1 \leq p \leq \infty$, are the usual Lebesque and Hardy function spaces relative to normalized Lebesque measure on T.

If $T \in \mathcal{L}(\mathcal{H})$ then \mathcal{A}_T denotes the dual algebra generated by T in $\mathcal{L}(\mathcal{H})$ and Q_T denotes the predual $Q_{\mathcal{A}_T}$ of \mathcal{A}_T . If T is also absolutely continuous (i.e., if the maximal unitary direct summand of T is either absolutely continuous or acts on the space(0)), then one knows (cf. 1. Thm 4.1]) that the Sz-Nagy - Foias functional calculus Φ_T is a weak^{*}- continuous, norm-decreasing, algebra homomorphism of H^{∞} onto a weak^{*} dense subalgebra of \mathcal{A}_T and $\mathbf{A} = \mathbf{A}(\mathcal{H})$ denotes the class of all absolutely continuous contractions for which the Sz-Nagy-Foias functional calculus Φ_T is an isometry. If $T \in \mathbf{A}$, then it follows easily from general principals that there exists an isometry ϕ_T from Q_T onto L^1/H_0^1 (the predual of H^∞) such that $\phi_T^* = \Phi_T$. If m and n are cardinal numbers, $1 \leq m, n \leq \aleph_0$, then we define the class $\mathbf{A}_{m,n}$ to be the set of those $T \in \mathbf{A}$ such that the dual algebra \mathcal{A}_T has property $(\mathbf{A}_{m,n})$ and the class $\mathbf{A}_{m,n}(\rho)$ similarly. We recall from [4] that if \mathcal{M} is a weak*-closed subspaces of $\mathcal{L}(\mathcal{H})$ and $0 \leq \theta < 1$, then $\mathcal{E}_{\theta}^{r}(\mathcal{M})$ denotes the set of all [L] in $Q_{\mathcal{M}}$ for which there exist sequences $\{x_n\}$ and $\{y_n\}$ in the closed unit ball of \mathcal{H} satisfying

- (a) $\overline{\lim} \|[L] [x_n \otimes y_n]\| \le \theta$ and
- $(b^r) ||[x_n \otimes z]|| \to 0 \quad \forall z \in \mathcal{H}$
- (c^r) $\{y_n\}$ converges weakly to zero. The corresponding subset $\mathcal{E}^l_{\theta}(\mathcal{M})$ of $Q_{\mathcal{M}}$ is obtained by replacing conditions (b^r) and (c^r) by
- $(b^l) ||[z \otimes y_n]|| \to 0 \quad \forall z \in \mathcal{H}$
- (c^l) $\{x_n\}$ converges weakly to zero.

 $\mathbf{226}$

We next recall from [4] that a weak*-closed subspace \mathcal{M} of $\mathcal{L}(\mathcal{H})$ is said to have property $E_{\theta,\gamma}^r$ (for some $0 \leq \theta < \gamma \leq 1$) if the closed absolutely convex hull of the set $\mathcal{E}_{\theta}^r(\mathcal{M})$ (notation : $\overline{aco}\{\mathcal{E}_{\theta}^r(\mathcal{M})\}$) contains the closed ball in $Q_{\mathcal{M}}$ centered at 0 with radius γ ; property $E_{\theta,\gamma}^l$ is defined similarly.

It is well-known fact that every contraction $T \in \mathbf{A}(\mathcal{H})$ has a minimal co-isometric extension $B = B_T \in \mathcal{L}(\mathcal{K})$ that is unique up to untary equivalence. We have under consideration an absolutely continuous contraction T in $\mathcal{L}(\mathcal{H})$ whose minimal coisometric extension B has a Wold Decomposition $B = S^* \oplus R$, where $S \in \mathcal{L}(S)$ is a unilateral shift of some multiplicity and $R \in \mathcal{L}(\mathcal{R})$ is an absolutely continuous unitary operator.

The projection of \mathcal{K} onto \mathcal{S} is denoted by Q, the projection of \mathcal{K} onto \mathcal{R} by A, and the projection of \mathcal{K} onto \mathcal{H} by P.

Thus every vector $x \in \mathcal{K}$ has a unique decomposion $x = Qx + Ax = Qx \oplus Ax$.

PROPOSITION 1 [2. PROPOSITION.2.1]. Suppose $T \in \mathbf{A}(\mathcal{H})$ and its minimal co-isometric extension $B = S^* \oplus R$ in $\mathcal{L}(\mathcal{K})$.

Then $B \in \mathbf{A}(\mathcal{K})$, $\Phi_T \circ \Phi_B^{-1}$ is an isometric algebra isomorphism and a weak*-homeomorphism from \mathcal{A}_B onto \mathcal{A}_T , and $J = \varphi_B^{-1} \circ \varphi_T$ is a linear isometry of Q_T onto Q_B satisfying

$$J([x \otimes y]_T) = [x \otimes y]_B, \quad x, y \in \mathcal{H},$$

and and

$$[x \otimes z]_B = [x \otimes Pz]_B, \quad z \in \mathcal{K}.$$

PROPOSITION 2 [2. PROPOSITION.2.2]. Suppose that T is an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$, and $B = S^* \oplus R$ is its minimal co-isometric extension in $\mathcal{L}(S \oplus \mathcal{R})$ with $\mathcal{R} \neq (0)$.

Then there exists a Borel set $\sigma \subset \mathbf{T}$ such that $m|\sigma$ is a scalar spectral measure for R. Moreover, \mathcal{R} contains a reducing subspace \mathcal{R}_0 for R such that:

- (a) $R_0 = R | \mathcal{R}_0$ is unitarily equivalent to multiplication by the position function on $L^2(\sigma)$
- (b) if we denote by \mathcal{R}_0^+ the subspace of \mathcal{R}_0 corresponding to $H^2(\sigma)$ under the unitary equivalence in (a), then $\mathcal{R}_0^+ \subset \overline{AH}$.

In the case where \mathcal{M} is the dual algebra generated by an absolutely continuous contraction, we consider now the weak property $F_{\theta,\gamma}^r$ and $F_{\theta,\gamma}^l$.

DEFINITION 3 [2. Definition.3.2] Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$ with minimal coisometric extension $B = S^* \oplus R$ in $\mathcal{L}(\mathcal{K})$ and let $\sigma \subset \mathbf{T}$ be as in Proposition 2 (if $\mathcal{R} = (0)$, then $\sigma = \phi$).

We say that the dual algebra \mathcal{A}_T has property $F^r_{\theta,\gamma}$ (for some $0 \leq \theta < \gamma \leq 1$) if

$$\overline{aco}\{\mathcal{E}_{\theta}^{r}(\mathcal{A}_{T})\cup\varphi_{T}^{-1}\{[f]:f\in L^{1}(\sigma),\|f\|\leq 1\}\}$$

contains the closed ball in Q_T of radius γ centered at the origin. Moreover, we say that \mathcal{A}_T has property $F^l_{\theta,\gamma}$ if \mathcal{A}_{T^*} has property $F^r_{\theta,\gamma}$.

Obviously, we say that if \mathcal{A}_T has property $E^r_{\theta,\gamma}$, then it has property $F^r_{\theta,\gamma}$.

Let A_0 denote the orthogonal projection of \mathcal{K} onto \mathcal{R}_0 and let $z \mapsto \{z\}$ denote the isomorphism from \mathcal{R}_0 onto $L^2(\sigma(R))$.

The following Lemma is proved in [2].

LEMMA 4. [2. Proposition.3.4] If $T \in \mathbf{A}(\mathcal{H})$ with minimal coisometric extension $B \in \mathcal{L}(S \oplus \mathcal{R})$ and \mathcal{A}_T has property $F^r_{\theta,\gamma}$ (for some $0 < \theta < \gamma \leq 1$).

Suppose that we are given $0 < \rho < 1$, $N \in \mathbb{N}$, $\{[V_j]_B\}_{\supset=1}^N \subset Q_B$, $a \in \mathcal{H}, \{w_j\}_{j=1}^N \subset S, \{b_j\}_{j=1}^N \subset \mathcal{R}_0$ and positive scalars $\{\mu_j\}_{j=1}^N, \{d_s\}_{j=1}^t \subset \mathcal{K}, \{z_l\}_{l=1}^t \subset S$ satisfying

$$||[V_j]_B - [a \otimes (w_j + b_j)]_B|| < \mu_j, \quad 1 \le j \le N.$$

Then there exist $a \in \mathcal{H}, u \in \mathcal{H}, \{w_j^{'}\}_{j=1}^n \subset S, \{b_j^{'}\}_{j=1}^N \subset \mathcal{R}_0$ such that

$$\|[V_{j}]_{B} - [a^{'} \otimes (w^{'}_{j} + b^{'}_{j})]_{B}\| < (\frac{\theta}{\gamma})\mu_{j}, \quad 1 \leq j \leq N,$$

228

$$\begin{aligned} \|a' - a\| &< \frac{3}{\gamma^{1/2}} (\sum_{j=1}^{N} \mu_j)^{1/2}, \\ \|w_j' - w_j\| &< (\mu_j/\gamma)^{1/2}, \quad 1 \le j \le N, \\ \|b_j'\| &< \frac{1}{\rho} \{\|b_j\| + (\mu/\gamma)^{1/2}\}, \quad 1 \le j \le N, \\ \|\{A_0a'\}(e^{it})\| \ge \rho |\{A_0(a+u)(e^{it})\|, \quad e^{it} \in \mathbf{T}, \\ \|[u \otimes d_s]\| &< \epsilon, \quad 1 \le s \le t, \\ \|[(a'-a) \otimes z_l]\| &< \epsilon, \quad 1 \le l \le r. \end{aligned}$$

3. Main Results

We are now prepared to prove the main result. It's proof follows the main ideas from [5. Lemma 5] and [4. Theorem 4.7].

THEOREM 5.. Suppose $T \in \mathbf{A}(\mathcal{H})$ with minimal co isometric extension $B \in \mathcal{L}(S \oplus \mathcal{R})$ and suppose that \mathcal{A}_T has property $F_{\theta,\gamma}^r$ (for some $0 < \theta < \gamma \leq 1$).

Then for each sequence of element $\{[L_j]_T : j \ge 1\}$ from Q_T such that $\sum_{j=1}^{\infty} ||[L_j]_T||^{1/2} < \infty$, there exist $\hat{a} \in \mathcal{H}$ and $\{w_j + b_j\}_{j=1}^{\infty} \subset S \oplus \mathcal{R}$ such that

$$[L_j] = [\hat{a} \otimes P(w_j + b_j)] \quad , \quad j \ge 1,$$

$$\begin{split} \|\hat{a}\| &\leq \frac{3}{1 - (\theta/\gamma^{1/2})} \cdot \sum_{j \geq 1} \mu_j^{1/2}, \\ \|w_j\| &\leq \frac{1}{1 - (\theta/\gamma^{1/2})} \cdot \mu_j^{1/2} \quad , \quad j \geq 1, \\ \|b_j\| &\leq \frac{2}{1 - (\theta/\gamma^{1/2})} \cdot \mu_j^{1/2} \quad , \quad j \geq 1. \end{split}$$

In particular, \mathcal{A}_T has property $(\mathbf{A}_{1,\aleph_0})$.

proof. Let $\{[L_j]_T\}_{j=1}^{\infty} \subset Q_T$ and let $[V_j]_B = \varphi_B^{-1} \circ \varphi_T([L_j]_T)$ for each positive integer j. Let $\mu_j > 0$ such that $\sum \mu_j^{1/2} < \infty$.

Assume that $||[V_j]_B|| < \mu_j$, for each j.

Let us denote $\epsilon_{j,k} = \mu_j (\frac{\theta}{\gamma})^k$, for all $j \ge 1$, $k \ge 0$.

We select a strictly decreasing sequence $\{s_n\}_{n=1}^{\infty}$ of positive numbers such that $s_1 = 1$ and $\lim_{n \to \infty} s_n = \frac{1}{2}$ and let $\rho_n = \frac{s_{n+1}}{s_n}$, $n \ge 1$.

Let $B : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ be a bijection such that $j \leq j'$ and $k \leq k'$ implies $B(j,k) \leq B(j',k')$.

Let $w_{j,0} = 0$ in \mathcal{S} , $b_{j,0}^n = 0$ in $\mathcal{R}_0 \ \forall j \ge 1, n \ge 1$.

We shall construct, by the induction (on the range of B) sequence $\{a_n\} \subset \mathcal{H}, \{w_{j,k}\}_{j,k\geq 1} \subset S$ for $n \geq 1$, finite sequence $\{b_{j,k}^n\}_{B(j,k)\leq n} \subset \mathcal{R}_0$ such that

(3)
$$||[V_j]_B - [a_n \otimes (w_{j,k} + b_{j,k}^n)]_B|| < \epsilon_{j,k}, \qquad B(j,k) \le n,$$

(4)
$$||a_n - a_{n-1}|| < 3\epsilon_{j,k-1}^{1/2}$$
, for $n = B(j,k)$

(5)
$$||w_{j,k} - w_{j,k-1}|| < \epsilon_{j,k-1}^{1/2}, \quad \forall j,k \ge 1$$

(6)
$$||b_{j,k}^k|| < \frac{1}{\rho_n} ||b_{j,k}^{n-1}||$$
 if $n > B(j,k)$

(7)
$$||b_{j,k}^n|| < \frac{1}{\rho_n} \{ ||b_{j,k-1}^{n-1}|| + \epsilon_{j,k-1}^{1/2} \}$$
 if $n = B(j,k)$

For n = 1 = B(1, 1).

Apply Lemma 4, with $N = 1, a = 0, w_{1,0} = 0 \in S, 0 = b_{1,0}^1 \in \mathcal{R}_0$, there exist $a_1 \in \mathcal{H}, w_{1,1} \in S, b_{1,1} \in \mathcal{R}_0$ such that

$$\|[V_{j}]_{B} - [a \otimes (w_{1,1} + b_{1,1}^{1})]\| < \epsilon_{1,1}$$
$$\|a_{1}\| < 3(\mu_{1}/\gamma)^{1/2}$$

230

$$\|w_{1,1}\| < \mu_1/\gamma)^{1/2}$$
$$\|b_{1,1}^1\| < \frac{1}{\rho_1}(\mu_1/\gamma)^{1/2}$$

Suppose now that vectors $\{a_1, \dots, a_n\} \subset \mathcal{H}, \{w_{j,k}\}_{B(j,k) \leq n} \subset S$, and $\{b_{j,k}^n\}_{B(j,k) \leq n} \subset \mathcal{R}_0$ have been chosen so that (3) - (5) are satisfied;

Let n + 1 = B(p, q).

Apply Lemme 4, with $[V_p], a = a_n$, $w = w_{p,q-1}$, $b = b_{p,q-1}^n$, $\rho = \rho_{n+1}, \mu = \epsilon_{p,q-1}, \{d_s\} = \{b_{j,k}^n\}_{B(j,k) \leq n}, \{z_l\} = \{w_{j,k}\}_{B(j,k) \leq n}$ and $\epsilon > 0$ sufficiently small to obtain $a_{n+1} \in \mathcal{H}, w_{p,q} \in \mathcal{S}, b_{p,q}^{n+1} \in \mathcal{R}_0, u_{n+1} \in \mathcal{H}$ such that

$$\|[V_p]_B - [a_{n+1} \otimes (w_{p,q} + b_{p,q}^{n+1})]_B\| < \epsilon_{p,q},$$

$$||a_{n+1}-a_n|| < 3\epsilon_{p,q-1}^{1/2},$$

$$||w_{p,q} - w_{p,q-1}|| < \epsilon_{p,q-1}^{1/2},$$

$$\|b_{p,q}^{n+1}\| < \frac{1}{\rho_{n+1}} \{\|b_{p,q-1}^n\| + \epsilon_{p,q-1}^{1/2}\},\$$

$$\begin{split} |\{A_0a_{n+1}\}(e^{it})| > \rho_{n+1}|\{A_0(a_n + u_{n+1})\}(e^{it})|, \quad e^{it} \in \mathbf{T}, \\ \|[(a_{n+1} - a_n) \otimes w_{j,k}]\| < \epsilon, \quad for \quad B(j,k) \le n, \end{split}$$

$$\|[u_{n+1}\otimes b_{j,k}^n]\|<\epsilon,\quad for\quad B(j,k)\leq n,$$

Let us define for each (j, k) with $B(j, k) \leq n$,

Han Soo Kim and Mi Kyung Jang

$$\overline{\{b_{j,k}^{n+1}\}}(e^{it}) = \begin{cases} \frac{\{A_0(a_n + u_{n+1})\}(e^{it})}{\{A_0(a_{n+1})\}(e^{it})} \cdot b_{j,k}^n(e^{it}) \\ if\{A_0(a_{n+1})\}(e^{it}) \neq 0 \\ 0 \\ 0 \\ if\{A_0(a_{n+1})\}(e^{it}) = 0. \end{cases}$$

then $b_{j,k}^{n+1} \in \mathcal{R}_0$, $||b_{j,k}^{n+1}|| < \frac{1}{\rho_{n+1}} ||b_{j,k}^n||$ and $[a_{n+1} \otimes b_{j,k}^{n+1}]_B = [(a_n + u_{n+1}) \otimes b_{j,k}^n]_B$ for all (j,k) such that $B(j,k) \le n$.

For $\epsilon > 0$ sufficiently small,

$$\|[V_j]_B - [a_{n+1} \otimes (w_{j,k} + b_{j,k}^{n+1})]_B\| < \epsilon_{j,k}, \quad if \quad B(j,k) \le n+1.$$

Therefore (3)-(7) are fulfilled for n+1. and from (2),(3), we do obtain Cauchy sequences $\{a_n\}_{n=1}^{\infty}$ and for each $j \ge 1$, $\{w_{j,k}\}_{k=1}^{\infty}$, whose limits \hat{a} and w_j satisfy

$$\begin{aligned} \|\hat{a}\| &= \|\sum_{n=1}^{\infty} (a_n - a_{n+1})\| \le \sum_{n=1}^{\infty} \|(a_n - a_{n+1})\| \\ &= \sum_{j,k}^{\infty} 3\epsilon_{j,k}^{1/2} = 3\sum_{j=1}^{\infty} \sum_{k=0}^{\infty} \mu_j^{1/2} (\frac{\theta}{\gamma})^{1/2 \cdot k} \\ &= \frac{3}{1 - (\frac{\theta}{\gamma})^{1/2}} \cdot \sum_{j=1}^{\infty} \mu_j^{-1/2} \end{aligned}$$

Similarly,

$$\|w_j\| \le rac{1}{1-(rac{ heta}{\gamma})^{1/2}} \cdot {\mu_j}^{1/2} \quad ext{for all } j \ge 1.$$

And from (6), (7), $\{b_{j,k}\}_{k=1}^{\infty}$ is bounded sequence for all $j \ge 1$, where $b_{j,k} = b_{j,k}^{B(j,k)}$ for all $j,k \ge 1$. Hence we may suppose that $\{b_{j,k}\}_{k=1}^{\infty}$ converges weakly to some $b_j \in \mathcal{R}_0$. By Proposition 1,

$$[L_j]_T = [\hat{a} \otimes P(w_j + b_j)]_T$$
 for all $j \ge 1$.

From (6), (7),

$$\begin{split} s_{n+1} \|b_{j,k}\| &\leq s_{B(j,k-1)+1} \|b_{j,k-1}\| + \epsilon_{j,k}^{1/2} \\ &\leq s_{B(j,1)+1} \|b_{j,1}\| + \sum_{l=1}^{k-1} \epsilon_{j,l}^{1/2} \leq \sum_{l=0}^{k-1} \epsilon_{j,l}^{1/2} \\ &= \sum_{l=0}^{k-1} \mu_j^{1/2} (\frac{\theta}{\gamma})^{l/2} \leq \mu_j^{1/2} \frac{1}{1 - (\frac{\theta}{\gamma})} \end{split}$$

Letting $n \to \infty$, $s_{n+1} \to \frac{1}{2}$,

$$\|b_{j,k}\| < rac{2}{1-(rac{ heta}{\gamma})^{1/2}} \mu_j^{-1/2}, \quad for \ all \quad j \ge 1 \quad and \quad k \ge 0.$$

Hence

$$||b_j|| \le \frac{2\mu_j^{1/2}}{1-(\frac{\theta}{\gamma})^{1/2}}, \quad for \ all \quad j \ge 1.$$

From the above relations,

 $T \in \mathbf{A}_{1,\aleph_0}(\rho), \quad \text{where } \rho \leq \frac{3}{1-(\frac{\theta}{\gamma})^{1/2}}$

The following corollary is immediate from [4. Proposition.4.3] and Theorem 5.

COROLLARY. Suppose $T \in \mathbf{A}(\mathcal{H})$, $0 \leq \theta < 1$, and $\Lambda \subset \mathbf{D}$ is dominating for **T**. If for each $\lambda \in \Lambda$, there exists a sequence $\{x_n^{\lambda}\}$ in the closed unit ball of \mathcal{H} such that

$$\overline{lim_n} \| [C_{\lambda}]_T - [x_n^{\lambda} \otimes x_n^{\lambda}]_T \| \le \theta$$

and

$$\|[x_n^{\lambda}\otimes z]_T\|\longrightarrow 0, \qquad y\in\mathcal{H},$$

then $T \in \mathbf{A}_{1,\aleph_0}(\rho)$, where $\rho \leq \frac{3}{1-\theta^{1/2}}$.

References

- 1. H.Bercovici, C.Foias and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory. BMS Regional conference Series in Math. No. 56, A.M.S. Providence, (1985).
- B.Chevreau, G.Exner and C. Pearcy, On the structure of contraction operators, III, Michigan Math. J., 36 (1989), 29 - 62.
- Sur la réflexivité des contractions de l'espace hibertien, C. R. Acad. Sci., Paris. Secie 305 (1987), 117 - 120.
- 4. B.Chevreau, and C. Pearcy, On the structure of contraction operators, I, J. Funct Anal., 76 (1988), 1 29.
- R. Olin and J. Thomson, Algebras of subnomal operators, J. Funct. Anal. 37 (1980), 271 - 301.
- Bebe Prunaru, on the class A_{1, ℵ0}, Proceeding of the A.M S. (1991), Vol 112, 45-51.

Department of Mathematics College of Natural Sciences Kyungpook National University