A NOTE ON THE CLASS $\mathrm{A}_{1, \mathrm{~N}_{0}}$

Han Soo Kim and Mi Kyung Jang

1. Introduction

Let \mathcal{H} denote a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. A dual algebra is a weak* closed unital subalgebra of $\mathcal{L}(\mathcal{H})$. Recall that if \mathcal{A} is a dual algebra and m and n are cardinal numbers, where $1 \leq m, n \leq \aleph_{0}$, then \mathcal{A} is said to have property ($\mathbf{A}_{m, n}$) if each system of simultaneous equations

$$
\begin{equation*}
\left[L_{i, j}\right]=\left[x_{:} \otimes y_{j}\right], \quad 0 \leq \imath<m, \quad 0 \leq j<n \tag{1}
\end{equation*}
$$

in the predual $Q_{\mathcal{A}}$ of \mathcal{A} has a solution $\left\{x_{2}: 0 \leq i<m\right\},\left\{y_{3}: 0 \leq j<\right.$ $n\}$, where x_{i} and y_{j} are vectors from \mathcal{H}.

Here $[x \otimes y]$ denotes the class in $Q_{\mathcal{A}}$ of the rank-one operator defined by $(x \otimes y)(z)=(z, y) x, z \in \mathcal{H}$.

If $\rho>0$ then \mathcal{A} has property $\left(\mathbf{A}_{m, n}(\rho)\right)$ if for each $s>\rho$, vectors x_{2} and y_{3} can be chosen to satisfy (1), and also the inequalies

$$
\left\|x_{2}\right\|<\left(s \sum_{0 \leq \jmath<n}\left\|\left[L_{i, \jmath}\right]\right\|\right)^{1 / 2}, \quad 0 \leq \imath<m
$$

and

$$
\begin{equation*}
\left\|y_{j}\right\|<\left(s \sum_{0 \leq \imath<m}\left\|\left[L_{\imath, j}\right]\right\|\right)^{1 / 2}, \quad 0 \leq \jmath<n \tag{2}
\end{equation*}
$$

It is clear that if m and n are finite cardinals and \mathcal{A} has property ($\mathbf{A}_{m, n}(\rho)$) for some $\rho>0$, then \mathcal{A} also has property ($\mathbf{A}_{m, n}$). In this note, we are concerned with several classes of contractions appearing in the theory of dual algebras and we continue the study of a geometric

Recelved August 10, 1993
This work was partially supported by a research from TGRC-KOSEF .
criterion for membership in the class $\mathbf{A}_{1, \mathrm{~N}_{0}}$ (or more precisely, one of the classes $\mathbf{A}_{1, \mathcal{N}_{0}}(\rho)$). The results of this note and [2] are same with different methods. And the following theorem is generalization of [6].

2. Notations and preliminaries

The notation and terminology herein agree with that in [2], [4]. Let \mathbf{N} be the set of positive integers, and let \mathbf{D} be the open unit disc in \mathbf{C}. set $\Lambda \subset \mathbf{D}$ is said to be dominating for $\mathbf{T}=\partial \mathbf{D}$ if almost every point of T is a nontangential limit of a sequence of points from Λ. The spaces $L^{p}=L^{p}(\mathbf{T})$ and $H^{p}=H^{p}(\mathbf{T}), 1 \leq p \leq \infty$, are the usual Lebesque and Hardy function spaces relative to normalized Lebesque measure on \mathbf{T}.

If $T \in \mathcal{L}(\mathcal{H})$ then \mathcal{A}_{T} denotes the dual algebra generated by T in $\mathcal{L}(\mathcal{H})$ and Q_{T} denotes the predual $Q_{\mathcal{A}_{T}}$ of \mathcal{A}_{T}. If T is also absolutely continuous (i.e., if the maximal unitary direct summand of T is either absolutely continuous or acts on the space(0)), then one knows (cf. 1. Thm 4.1]) that the Sz- Nagy - Foias functional calculus Φ_{T} is a weak*- continuous, norm-decreasing, algebra homomorphism of H^{∞} onto a weak* dense subalgebra of \mathcal{A}_{T} and $\mathbf{A}=\mathbf{A}(\mathcal{H})$ denotes the class of all absolutely continuous contractions for which the Sz-Nagy-Foias functional calculus Φ_{T} is an isometry. If $T \in \mathbf{A}$, then it follows easily from general principals that there exists an isometry ϕ_{T} from Q_{T} onto L^{1} / H_{0}^{1} (the predual of H^{∞}) such that $\phi_{T}^{*}=\Phi_{T}$. If m and n are cardinal numbers, $1 \leq m, n \leq \aleph_{0}$, then we define the class $\mathbf{A}_{m, n}$ to be the set of those $T \in \mathbf{A}$ such that the dual algebra \mathcal{A}_{T} has property ($\mathbf{A}_{m, n}$) and the class $\mathbf{A}_{m, n}(\rho)$ similarly. We recall from [4] that if \mathcal{M} is a weak ${ }^{*}$-closed subspaces of $\mathcal{L}(\mathcal{H})$ and $0 \leq \theta<1$, then $\mathcal{E}_{\theta}^{r}(\mathcal{M})$ denotes the set of all $[L]$ in $Q_{\mathcal{M}}$ for which there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in the closed unit ball of \mathcal{H} satisfying
(a) $\overline{\lim }\left\|[L]-\left[x_{n} \otimes y_{n}\right]\right\| \leq \theta$
and
$\left(b^{r}\right)\left\|\left[x_{n} \otimes z\right]\right\| \rightarrow 0 \quad \forall z \in \mathcal{H}$
(c^{r}) $\left\{y_{n}\right\}$ converges weakly to zero.
The corresponding subset $\mathcal{E}_{\theta}^{l}(\mathcal{M})$ of $Q_{\mathcal{M}}$ is obtained by replacing conditions (b^{r}) and (c^{r}) by
(b) $b^{l}\left\|\left[z \otimes y_{n}\right]\right\| \rightarrow 0 \quad \forall z \in \mathcal{H}$
(c^{l}) $\left\{x_{n}\right\}$ converges weakly to zero.

We next recall from [4] that a weak*-closed subspace \mathcal{M} of $\mathcal{L}(\mathcal{H})$ is said to have property $E_{\theta, \gamma}^{r}$ (for some $0 \leq \theta<\gamma \leq 1$) if the closed absolutely convex hull of the set $\mathcal{E}_{\theta}^{r}(\mathcal{M})$ (notation: $\overline{\operatorname{aco}}\left\{\mathcal{E}_{\theta}^{r}(\mathcal{M})\right\}$) contains the closed ball in $Q_{\mathcal{M}}$ centered at 0 with radius γ; property $E_{\theta, \gamma}^{l}$ is defined similarly.

It is well-known fact that every contraction $T \in \mathbf{A}(\mathcal{H})$ has a minimal co-isometric extension $B=B_{T} \in \mathcal{L}(\mathcal{K})$ that is unique up to untary equivalence. We have under consideration an absolutely continuous contraction T in $\mathcal{L}(\mathcal{H})$ whose minimal coisometric extension B has a Wold Decomposition $B=S^{*} \oplus R$, where $S \in \mathcal{L}(\mathcal{S})$ is a unilateral shift of some multiplicity and $R \in \mathcal{L}(\mathcal{R})$ is an absolutely continuous unitary operator.

The projection of \mathcal{K} onto \mathcal{S} is denoted by Q , the projection of \mathcal{K} onto \mathcal{R} by A , and the projection of \mathcal{K} onto \mathcal{H} by P .

Thus every vector $x \in \mathcal{K}$ has a unique decomposion $x=Q x+A x=$ $Q x \oplus A x$.
proposition 1 [2. Proposition.2.1]. Suppose $T \in \mathbf{A}(\mathcal{H})$ and its minimal co-isometric extension $B=S^{*} \oplus R$ in $\mathcal{L}(\mathcal{K})$.

Then $B \in \mathbf{A}(\mathcal{K}), \Phi_{T} \circ \Phi_{B}^{-1}$ is an isometric algebra isomorphism and a weak*-homeomorphism from \mathcal{A}_{B} onto \mathcal{A}_{T}, and $J=\varphi_{B}^{-3} \circ \varphi_{T}$ is a linear isometry of Q_{T} onto Q_{B} satisfying

$$
J\left([x \otimes y]_{T}\right)=[x \otimes y]_{B}, \quad x, y \in \mathcal{H},
$$

and

$$
[x \otimes z]_{B}=\left[x \otimes P_{z}\right]_{B}, \quad z \in \mathcal{K} .
$$

PROPOSITION 2 [2. Proposition.2.2]. Suppose that T is an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$, and $B=S^{*} \oplus R$ is its minimal co-isometric extension in $\mathcal{L}(\mathcal{S} \oplus \mathcal{R})$ with $\mathcal{R} \neq(0)$.

Then there exists a Borel set $\sigma \subset \mathbf{T}$ such that $m \mid \sigma$ is a scalar spectral measure for R. Moreover, \mathcal{R} contains a reducing subspace \mathcal{R}_{0} for R such that:
(a) $R_{0}=R \mid \mathcal{R}_{0}$ is unitarily equivalent to multiplication by the position function on $L^{2}(\sigma)$
(b) if we denote by \mathcal{R}_{0}^{+}the subspace of \mathcal{R}_{0} corresponding to $H^{2}(\sigma)$ under the unitary equivalence in (a), then $\mathcal{R}_{0}^{+} \subset \overline{A \mathcal{H}}$.

In the case where \mathcal{M} is the dual algebra generated by an absolutely continuous contraction, we consider now the weak property $F_{\theta, \gamma}^{r}$ and $F_{\theta, \gamma}^{l}$.

DEFINITION 3 [2. Definition.3.2] Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$ with minimal coisometric extension $B=S^{*} \oplus R$ in $\mathcal{L}(\mathcal{K})$ and let $\sigma \subset \mathbf{T}$ be as in Proposition \% (if $\mathcal{R}=(0)$, then $\sigma=\phi$).

We say that the dual algebra \mathcal{A}_{T} has property $F_{\theta, \gamma}^{r}$ (for some $0 \leq$ $\theta<\gamma \leq 1$) if

$$
\overline{\operatorname{aco}}\left\{\mathcal{E}_{\theta}^{r}\left(\mathcal{A}_{T}\right) \cup \varphi_{T}^{-1}\left\{[f]: f \in L^{1}(\sigma),\|f\| \leq 1\right\}\right\}
$$

contains the closed ball in Q_{T} of radius γ centered at the origin. Moreover, we say that \mathcal{A}_{T} has property $F_{\theta, \gamma}^{l}$ if $\mathcal{A}_{T^{*}}$ has property $F_{\theta, \gamma}^{r}$.

Obviously, we say that if \mathcal{A}_{T} has property $E_{\theta, \gamma}^{r}$, then it has property $F_{\theta, \gamma}^{r}$.

Let A_{0} denote the orthogonal projection of \mathcal{K} onto \mathcal{R}_{0} and let $z \mapsto\{z\}$ denote the isomorphism from \mathcal{R}_{0} onto $L^{2}(\sigma(R))$.

The following Lemma is proved in [2].

LEMMA 4. [2. Proposition.3.4] If $T \in \mathbf{A}(\mathcal{H})$ with minimal coisometric extension $B \in \mathcal{L}(\mathcal{S} \oplus \mathcal{R})$ and \mathcal{A}_{T} has property $F_{\theta, \gamma}^{r}$ (for some $0<\theta<\gamma \leq 1$) .

Suppose that we are given $0<\rho<1, N \in \mathbf{N},\left\{\left[V_{j}\right]_{B}\right\}_{\rho=1}^{N} \subset Q_{B}$, $a \in \mathcal{H},\left\{w_{3}\right\}_{j=1}^{N} \subset \mathcal{S},\left\{b_{j}\right\}_{j=1}^{N} \subset \mathcal{R}_{0}$ and positive scalars $\left\{\mu_{j}\right\}_{j=1}^{N}$, $\left\{d_{s}\right\}_{j=1}^{t} \subset \mathcal{K},\left\{z_{l}\right\}_{l=1}^{r} \subset \mathcal{S}$ satisfying

$$
\left\|\left[V_{j}\right]_{B}-\left[a \otimes\left(w,+b_{j}\right)\right]_{B}\right\|<\mu_{j}, \quad 1 \leq j \leq N .
$$

Then there exist a' $\mathcal{H}, u \in \mathcal{H},\left\{w_{j}^{\prime}\right\}_{j=1}^{n} \subset \mathcal{S},\left\{b_{j}^{\prime}\right\}_{j=1}^{N} \subset \mathcal{R}_{0}$ such that

$$
\left\|\left[V_{j}\right]_{B}-\left[a^{\prime} \otimes\left(w_{j}^{\prime}+b_{j}^{\prime}\right)\right]_{B}\right\|<\left(\frac{\theta}{\gamma}\right) \mu_{j}, \quad 1 \leq j \leq N
$$

$$
\begin{gathered}
\left\|a^{\prime}-a\right\|<\frac{3}{\gamma^{1 / 2}}\left(\sum_{\jmath=1}^{N} \mu_{j}\right)^{1 / 2}, \\
\left\|w_{j}^{\prime}-w_{j}\right\|<\left(\mu_{j} / \gamma\right)^{1 / 2}, \quad 1 \leq j \leq N, \\
\left\|b_{j}^{\prime}\right\|<\frac{1}{\rho}\left\{\left\|b_{3}\right\|+(\mu / \gamma)^{1 / 2}\right\}, \quad 1 \leq \jmath \leq N, \\
\left\{\{ A _ { 0 } a ^ { \prime } \} (e ^ { 2 t }) | \geq \rho | \left\{A_{0}(a+u)\left(e^{\imath t}\right) \mid, \quad e^{2 t} \in \mathrm{~T},\right.\right. \\
\left\|\left[u \otimes d_{3}\right]\right\|<\epsilon, \quad 1 \leq s \leq t \\
\left\|\left[\left(a^{\prime}-a\right) \otimes z_{l}\right]\right\|<\epsilon, \quad 1 \leq l \leq r
\end{gathered}
$$

3. Main Results

We are now prepared to prove the main result. It's proof follows the main ideas from [5. Lemma 5] and [4. Theorem 4.7].

THEOREM 5.. Suppose $T \in \mathbf{A}(\mathcal{H})$ with minimal co isometric extension $B \in \mathcal{L}(\mathcal{S} \oplus \mathcal{R})$ and suppose that \mathcal{A}_{T} has property $F_{\theta, \gamma}^{r}$ (for some $0<\theta<\gamma \leq 1$).

Then for each sequence of element $\left\{\left[L_{j}\right]_{T}: j \geq 1\right\}$ from Q_{T} such that $\sum\left\|\left[L_{j}\right\}_{T}\right\|^{1 / 2}<\infty$, there exist $\hat{a} \in \mathcal{H}$ and $\left\{w_{j}+b_{j}\right\}_{\jmath=1}^{\infty} \subset \mathcal{S} \oplus \mathcal{R}$ such that

$$
\begin{gathered}
{\left[L_{j}\right]=\left[\hat{a} \otimes P\left(w_{j}+b_{j}\right)\right] \quad, \quad j \geq 1,} \\
\|\hat{a}\| \leq \frac{3}{1-\left(\theta / \gamma^{1 / 2}\right)} \cdot \sum_{j \geq 1} \mu_{j}^{1 / 2}, \\
\left\|w_{3}\right\| \leq \frac{1}{1-\left(\theta / \gamma^{1 / 2}\right)} \cdot \mu_{j}^{1 / 2}, \quad j \geq 1, \\
\left\|b_{j}\right\| \leq \frac{2}{1-\left(\theta / \gamma^{1 / 2}\right)} \cdot \mu_{j}^{1 / 2}, \quad j \geq 1 .
\end{gathered}
$$

In particular, \mathcal{A}_{T} has property $\left(\mathbf{A}_{1, \mathrm{~N}_{0}}\right)$.
proof. Let $\left\{\left[L_{J}\right]_{T}\right\}_{\jmath=1}^{\infty} \subset Q_{T}$ and let $\left[V_{\jmath}\right]_{B}=\varphi_{B}^{-1} \circ \varphi_{T}\left(\left[L_{j}\right]_{T}\right)$ for each positive integer \mathfrak{j}. Let $\mu_{j}>0$ such that $\sum \mu_{j}^{1 / 2}<\infty$.

Assume that $\left\|\left[V_{j}\right]_{B}\right\|<\mu_{j}$, for each j.

Let us denote $\epsilon_{j, k}=\mu_{j}\left(\frac{\theta}{\gamma}\right)^{k}$, for all $j \geq 1, \quad k \geq 0$.
We select a strictly decreasing sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that $s_{1}=1$ and $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{2}$ and let $\rho_{n}=\frac{s_{n+1}}{s_{n}}, \quad n \geq 1$.

Let $B: \mathbf{N} \times \mathbf{N} \longrightarrow \mathbf{N}$ be a bijection such that $j \leq j^{\prime}$ and $k \leq k^{\prime}$ implies $B(j, k) \leq B\left(j^{\prime}, k^{\prime}\right)$.

Let $w_{j, 0}=0$ in $\mathcal{S}, b_{3,0}^{n}=0$ in $\mathcal{R}_{0} \forall j \geq 1, n \geq 1$.
We shall construct, by the induction (on the range of B) sequence $\left\{a_{n}\right\} \subset \mathcal{H},\left\{w_{J, k}\right\}_{J, k \geq 1} \subset \mathcal{S}$ for $n \geq 1$, finite sequence $\left\{b_{J, k}^{n}\right\}_{B_{(J, k) \leq n}} \subset$ \mathcal{R}_{0} such that

$$
\begin{equation*}
\left\|\left[V_{\jmath}\right]_{B}-\left[a_{n} \otimes\left(w_{j, k}+b_{j, k}^{n}\right)\right]_{B}\right\|<\epsilon_{j, k}, \quad B(j, k) \leq n \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left\|a_{n}-a_{n-1}\right\|<3 \epsilon_{j, k-1}^{1 / 2}, \quad \text { for } n=B(j, k) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left\|w_{j, k}-w_{3, k-1}\right\|<\epsilon_{j, k-1}^{1 / 2}, \quad \forall j, k \geq 1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left\|b_{j, k}^{k}\right\|<\frac{1}{\rho_{n}}\left\|b_{\jmath, k}^{n-1}\right\| \quad \text { if } n>B(\jmath, k) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left\|b_{j, k}^{n}\right\|<\frac{1}{\rho_{n}}\left\{\left\|b_{j, k-1}^{n-1}\right\|+\epsilon_{j, k-1}^{1 / 2}\right\} \quad \text { if } n=B(j, k) \tag{7}
\end{equation*}
$$

For $n=1=B(1,1)$.
Apply Lemma 4, with $N=1, a=0, w_{1,0}=0 \in \mathcal{S}, 0=b_{1,0}^{1} \in \mathcal{R}_{0}$, there exist $a_{1} \in \mathcal{H}, w_{1,1} \in \mathcal{S}, b_{1,1} \in \mathcal{R}_{0}$ such that

$$
\begin{gathered}
\left\|\left[V_{3}\right]_{B}-\left[a \otimes\left(w_{1,1}+b_{1,1}^{1}\right)\right]\right\|<\epsilon_{1,1} \\
\left\|a_{1}\right\|<3\left(\mu_{1} / \gamma\right)^{1 / 2}
\end{gathered}
$$

$$
\begin{gathered}
\left.\left\|w_{1,1}\right\|<\mu_{1} / \gamma\right)^{1 / 2} \\
\left\|b_{1,1}^{1}\right\|<\frac{1}{\rho_{1}}\left(\mu_{1} / \gamma\right)^{1 / 2}
\end{gathered}
$$

Suppose now that vectors $\left\{a_{1}, \cdots, a_{n}\right\} \subset \mathcal{H},\left\{w_{j, k}\right\}_{B(J, k) \leq n} \subset \mathcal{S}$, and $\left\{b_{3, k}^{n}\right\}_{B(3, k) \leq n} \subset \mathcal{R}_{0}$ have been chosen so that (3) - (5) are satisfied;

Let $n+1=B(p, q)$.
Apply Lemme 4, with $\left[V_{p}\right], a=a_{n}, w=w_{p, q-1}, b=b_{p, q-1}^{n}, \rho=$ $\rho_{n+1}, \mu=\epsilon_{p, q-1},\left\{d_{s}\right\}=\left\{b_{j, k}^{n}\right\}_{B(\jmath, k) \leq n}, \quad\left\{z_{k}\right\}=\left\{w_{,, k}\right\}_{B(j, k) \leq n}$ and $\epsilon>0$ sufficiently small to obtain $a_{n+1} \in \mathcal{H}, w_{p, q} \in \mathcal{S}, b_{p, q}^{n+1} \in \mathcal{R}_{0}$, $u_{n+1} \in \mathcal{H}$ such that

$$
\begin{gathered}
\left\|\left[V_{p}\right]_{B}-\left[a_{n+1} \otimes\left(w_{p, q}+b_{p, q}^{n+1}\right)\right]_{B}\right\|<\epsilon_{p, q}, \\
\left\|a_{n+1}-a_{n}\right\|<3 \epsilon_{p, q-1}^{1 / 2}, \\
\left\|w_{p, q}-w_{p, q-1}\right\|<\epsilon_{p, q-1}^{1 / 2}, \\
\left\|b_{p, q}^{n+1}\right\|<\frac{1}{\rho_{n+1}}\left\{\left\|b_{p, q-1}^{n}\right\|+\epsilon_{p, q-1}^{1 / 2}\right\}, \\
\left|\left\{A_{0} a_{n+1}\right\}\left(e^{2 t}\right)\right|>\rho_{n+1}\left|\left\{A_{0}\left(a_{n}+u_{n+1}\right)\right\}\left(e^{\imath t}\right)\right|, \quad e^{\imath t} \in \mathbf{T}, \\
\left\|\left(\left(a_{n+1}-a_{n}\right) \otimes w_{j, k}\right]\right\|<\epsilon, \quad \text { for } \quad B(j, k) \leq n, \\
\left\|\left[u_{n+1} \otimes b_{j, k}^{n}\right\}\right\|<\epsilon, \text { for } B(j, k) \leq n,
\end{gathered}
$$

Let us define for each (j, k) with $B(j, k) \leq n$,

$$
\overline{\left\{b_{j, k}^{n+1}\right\}}\left(e^{i t}\right)=\left\{\begin{array}{c}
\frac{\left\{A_{0}\left(a_{n}+u_{n+1}\right)\right\}\left(e^{2 t}\right)}{\left\{A_{0}\left(a_{n+1}\right)\right\}\left(e^{i t}\right)} \cdot b_{j, k}^{n}\left(e^{i t}\right) \\
\quad \text { if }\left\{A_{0}\left(a_{n+1}\right)\right\}\left(e^{i t}\right) \neq 0 \\
0 \\
\quad \text { if }\left\{A_{0}\left(a_{n+1}\right)\right\}\left(e^{i t}\right)=0
\end{array}\right.
$$

then $b_{j, k}^{n+1} \in \mathcal{R}_{0},\left\|b_{j, k}^{n+1}\right\|<\frac{1}{\rho_{n+1}}\left\|b_{j, k}^{n}\right\|$
and $\left[a_{n+1} \otimes b_{j, k}^{n+1}\right]_{B}=\left\{\left(a_{n}+u_{n+1}\right) \otimes b_{j, k}^{n}\right]_{B}$ for all (j, k) such that $B(j, k) \leq n$.

For $\epsilon>0$ sufficiently small,

$$
\left\|\left[V_{j}\right]_{B}-\left[a_{n+1} \otimes\left(w_{\jmath, k}+b_{3, k}^{n+1}\right)\right]_{B}\right\|<\epsilon_{j, k}, \quad \text { if } \quad B(j, k) \leq n+1 .
$$

Therefore (3) -(7) are fulfiled for $n+1$. and from (2),(3), we do obtain Cauchy sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and for each $\jmath \geq 1,\left\{w_{j, k}\right\}_{k=1}^{\infty}$, whose limits \hat{a} and w_{j} satisfy

$$
\begin{aligned}
\|\hat{a}\|=\left\|\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)\right\| & \leq \sum_{n=1}^{\infty}\left\|\left(a_{n}-a_{n+1}\right)\right\| \\
& =\sum_{j, k}^{\infty} 3 \epsilon_{j, k}^{1 / 2}=3 \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} \mu_{j}^{1 / 2}\left(\frac{\theta}{\gamma}\right)^{1 / 2 \cdot k} \\
& =\frac{3}{1-\left(\frac{\theta}{\gamma}\right)^{1 / 2}} \cdot \sum_{j=1}^{\infty} \mu_{j}^{1 / 2}
\end{aligned}
$$

Similarly,

$$
\left\|w_{j}\right\| \leq \frac{1}{1-\left(\frac{\theta}{\gamma}\right)^{1 / 2}} \cdot \mu_{j}^{1 / 2} \quad \text { for all } j \geq 1
$$

And from (6), (7), $\left\{b_{j, k}\right\}_{k=1}^{\infty}$ is bounded sequence for all $j \geq 1$, where $b_{j, k}=b_{j, k}^{B(\jmath, k)}$ for all $j, k \geq 1$.

Hence we may suppose that $\left\{b_{j, k}\right\}_{k=1}^{\infty}$ converges weakly to some $b_{j} \in \mathcal{R}_{0}$. By Proposition 1,

$$
\left[L_{j}\right]_{T}=\left[\hat{a} \otimes P\left(w_{3}+b_{\jmath}\right)\right]_{T} \quad \text { for all } j \geq 1 .
$$

From (6), (7),

$$
\begin{aligned}
s_{n+1}\left\|b_{j, k}\right\| & \leq s_{B(J, k-1)+1}\left\|b_{J, k-1}\right\|+\epsilon_{\jmath, k}{ }^{1 / 2} \\
& \leq s_{B_{(J, 1)+1}}\left\|b_{j, 1}\right\|+\sum_{l=1}^{k-1} \epsilon_{j, l}{ }^{1 / 2} \leq \sum_{l=0}^{k-1} \epsilon_{j, l}^{1 / 2} \\
& =\sum_{l=0}^{k-1} \mu_{j}{ }^{1 / 2}\left(\frac{\theta}{\gamma}\right)^{l / 2} \leq \mu_{\jmath}^{1 / 2} \frac{1}{1-\left(\frac{\theta}{\gamma}\right)}
\end{aligned}
$$

Letting $n \rightarrow \infty, s_{n+1} \rightarrow \frac{1}{2}$,

$$
\left\|b_{j, k}\right\|<\frac{2}{1-\left(\frac{\theta}{\gamma}\right)^{1 / 2}} \mu_{3}^{1 / 2}, \quad \text { for all } j \geq 1 \text { and } k \geq 0
$$

Hence

$$
\left\|b_{j}\right\| \leq \frac{2 \mu_{j}^{1 / 2}}{1-\left(\frac{\theta}{\gamma}\right)^{1 / 2}}, \quad \text { for all } \quad \jmath \geq 1
$$

From the above relations,
$T \in \mathbf{A}_{1, \mathrm{~N}_{0}}(\rho), \quad$ where $\rho \leq \frac{3}{1-\left(\frac{e}{\gamma}\right)^{1 / 2}}$
The following corollary is immediate from [4. Proposition.4.3] and Theorem 5 .

COROLLARY. Suppose $T \in \mathbf{A}(\mathcal{H}), 0 \leq \theta<1$, and $\Lambda \subset \mathbf{D}$ is dominating for \mathbf{T}. If for each $\lambda \in \Lambda$, there exists a sequence $\left\{x_{n}^{\lambda}\right\}$ in the closed unit ball of \mathcal{H} such that

$$
\overline{l_{2} m_{n}}\left\|\left[C_{\lambda}\right]_{T}-\left[x_{n}^{\lambda} \otimes x_{n}^{\lambda}\right]_{T}\right\| \leq \theta
$$

and

$$
\left\|\left[x_{n}^{\lambda} \otimes z\right]_{T}\right\| \longrightarrow 0, \quad y \in \mathcal{H}
$$

then $T \in \mathbf{A}_{1, \aleph_{0}}(\rho)$, where $\rho \leq \frac{3}{1-\theta^{1 / 2}}$.

References

1. H.Bercovici, C.Foias and C. Pearcy, Dual algebras wnth applicatzons to anvariant subspaces and dilatson theory. BMS Regional conference Series in Math. No. 56, A.M.S. Providence, (1985).
2. B.Chevreau, G.Exner and C. Pearcy, On the structure of contraction operators, III, Michigan Math. J., 36 (1989), 29 - 62.
3. \qquad , Sur la réflexıvaté des contractıons de l'espace hıbertien, C. R. Acad. Sci., Paris. Secie 305 (1987), 117-120.
4. B.Chevreau, and C. Pearcy, On the structure of contraction operators, I, J. Funct Anal., 76 (1988), 1-29.
5. R. Olin and J. Thomson, Algebras of subnomal operators, J. Funct. Anail. 37 (1980), 271-301.
6. Bebe Prunaru, on the class $\mathbf{A}_{1, \mathbb{N}_{0}}$, Proceeding of the A.M S. (1991), Vol 112, 45-51.

Department of Mathematics
College of Natural Sciences
Kyungpook National University

