광물질(VI)
철(Fe)과 구리(Cu)

철분(Fe)은 산소(O₂)를 운반하고 각 세포에 산소를 공급하여 호흡을 가능하게 하는 매우 중요한 광물질이다.

1. 체내에 철(Fe)이 존재하는 형태

동물의 체내에 존재하는 철(Fe)은 여러 가지 형태로 존재하는데 그 중요한 것들을 열거하면 대략 다음과 같다.

1) 해모글로빈(Heamoglobin)

실제로 체내에 존재하는 철(Fe)의 가장 많은 양이 이 형태로 존재하는데 혈액의 적혈구안에 함유되어 있어서 일명 혈색소(血色素)라고도 한다. 해모글로빈의 기능은 혈액내에 산소(O₂)를 운반하는 일이다.

2) 마이오글로빈(Myoglobin)

이것은 화학구조상 해모글로빈과 비슷한 구조를 가지며 화학적 성질도 해모글로빈과 비슷하지만 해모글로빈은 혈액내에 존재하는데 반하여 마이오글로빈은 근육내에 존재한다. 따라서 마이오글로빈은 일명 근육 해모글로빈(muscle hemoglobin)이라 하기도 한다. 마이오글로빈의 주요기능은 근육내에 산소를 비축하는 역할이다.

3) 싸이토크롬(Cytochrome)

싸이토 크롬에도 몇가지의 형태가 있어서 cytochrome a, cytochrome b, cytochrome c 등으로 부른다. 이들은 세포내에서 산소를 이용하여 영양소를 산화시켜 에너지를 발생하는데 가장 중심적인 역할을 하는 물질들
4) 카탈레스(Catalase)

이것은 철(Fe)을 함유하는 효소로서 세포 내 대사 과정에서 생성되는 과산화수소(H₂O₂)를 분해하여 해독시키는 기능을 수행한다.

5) 트랜스페린(Transferrin)

헤모글로빈의 적혈구내에 존재하며 산소를 운반하는 역할을 하는데 비하여 트랜스페린(transferrin)은 혈청중에 존재하여 철분(Fe)의 수송에 관여한다.

6) 헤티린(Ferritin)

Refer to the text in the image.

7) 헤티테리안(Hemosiderian)

철(Fe)의 채내 저장 형태이다.

채내에 존재하는 철의 철분(Fe)중에서 대략 75%는 실제로 기능을 수행하는 형태로 존재하며 나머지 약 25%는 저장형태로 존재한다. 만일 철분의 공급이 충분하면 채내 저장 형태의 철분이 증가하여 전체의 약 30%까지 달할 수도 있으며 반대로 철분이 결핍하게 되면 저장형태가 먼저 감소하고 계속해서 결핍하며 기능수행하는 형태의 철분의 양도 점차 감소하게 되어 결국은 반혈을 일으키게 된다.

2. 헤티글로빈(Hemoglobin)과 빈혈

Refer to the text in the image.
산소 운반 능력이 저하되는데 이것을 빈혈증(anemia)이라 한다.

3. 천문중의 철분(Fe)

혈청증의 철분은 크게 두가지 형태로 존재한다. 그중 하나는 단백질과 결합한 형태로 이것을 트랜스페린(transferrin)이라 하는데 이 형태로 존재하는 철의 함량은 혈청 100ml당 100μg정도이다.

이것은 3가 철(Fe+++의 형태로 혈청중의 글로불린(globulin)이라는 단백질과 결합되어 있는데 트랜스 페린 1분자내에 2원자의 철(Fe)을 함유하고 있다. 혈청중에는 소량이지만 유리된 이온형태의 철분도 존재한다. 3가 이온(Fe+++)으로 존재하며 혈청 100ml당 1μg정도 함유되어 있다.

트랜스페린(transferin)의 기능은 혈액을 통해서 철분(Fe)을 체내의 필요한 부분으로 수송하는 역할을 하며 혈액내에서의 철분(Fe)의 저장 형태이기도 한다. 단일 혈액 내에 철분이 유리 이온 형태로 대부분 존재한다면 독성을 나타낸다. 그러나 철분이온 (Fe++)이 단백질과 결합함으로써 독성을 방지한다. 이밖에 철분이 이온 상태로 존재하면 오줌으로 쉽게 배설될 것이나 단백질과 결합한 형태로 존재함으로써 배설을 막아주는 효과도 있다. 실제로 동물체로부터 철분의 배설은 오줌을 통해서는 거의 일 어나지 않으며 대부분 토로 배설되는데 단백질과 결합한 형태로 배설된다.

철분의 저장 형태는 헨리틴(ferritin)과 헤모시데린(hemosiderin)의 2가지가 중요하다.

1) 헨리틴(Ferritin)

글로빈(globin)이라고 하는 단백질이 주성분으로 수용량은 460,000 정도이다. 전분자량의 약 23%가 철분(Fe)으로 철분은 3가인 F++의 형태로 존재한다. 헨리틴(ferritin)은 대사의 직접 관여하지는 않으며 주요 기능은 철분의 체내 저장 기능과 철분의 흡수에 관여하는 것이다. 체내에서는 주로 간(liver), 지라(spleen), 장절막(intestinal mucosa) 및 신장(kidney)에 존재한다.

2) 헤모시데린(Hemosiderin)

이것은 체내 철분의 최종적인 저장 형태로 콜로이드성 물질로 되어 있으며 철분은 Fe(OH)₃의 화합물로 존재하며 중량비로 35%의 철분을 함유한다. 주로 지라, 간, 신장에 저장되나 장절막에는 존재하지 않는다.

4. 철분의 저장 형태

5. 철분의 흡수
구리(Cu)는 빼를 형성하는 세포에 필요할 것으로 알려져 있다.

3) 우모(羽毛)의 채색에 관여한다.

구리(Cu)가 결합하면 우모에 멜라닌(melanin)색소의 침착이 붙어있다. 멜라닌 색소를 형성하는데 필요한 전구물질은 아미노산의 하나인 타이로신(tyrosine)인데 타이로신으로부터 멜라닌을 합성하는데 구리(Cu)가 조효소로써 관여한다.

4) 번식에 관여한다.

포유가축에 있어서 구리(Cu)가 결합할 경우 정상적인 임신은 일어나지만 태아의 사망율이 높아진다. 담에 있어서는 부화율이 떨어진다.

2. 구리(Cu)의 흡수와 배설

구리(Cu)는 소장중에서 공장(空腸)의 상부에서 흡수되는데 철분(Fe)과 마찬가지로 흡수율은 매우 낮아서 섭취량의 5~10% 정도이다. 배설은 주로 단백질과 결합된 형태로 담즙을 통해 동으로 배설되며 오줌으로는 소량이 배설된다. 사료중의 구리(Cu)의 함량이 높으면 철분(Fe)과 아연(Zn)의 흡수가 저하되므로 이들 광물질의 함량을 높여주는 것이 바람직하다. 

구리(Cu)는 빼를 형성하는 세포에 필요할 것으로 알려져 있다. 

3) 우모(羽毛)의 채색에 관여한다. 

구리(Cu)가 결합하면 우모에 멜라닌(melanin)색소의 침착이 붙어있다. 멜라닌 색소를 형성하는데 필요한 전구물질은 아미노산의 하나인 타이로신(tyrosine)인데 타이로신으로부터 멜라닌을 합성하는데 구리(Cu)가 조효소로써 관여한다. 

4) 번식에 관여한다. 

포유가축에 있어서 구리(Cu)가 결합할 경우 정상적인 임신은 일어나지만 태아의 사망율이 높아진다. 담에 있어서는 부화율이 떨어진다. 

2. 구리(Cu)의 흡수와 배설

구리(Cu)는 소장중에서 공장(空腸)의 상부에서 흡수되는데 철분(Fe)과 마찬가지로 흡수율은 매우 낮아서 섭취량의 5~10% 정도이다. 배설은 주로 단백질과 결합된 형태로 담즙을 통해 동으로 배설되며 오줌으로는 소량이 배설된다. 사료중의 구리(Cu)의 함량이 높으면 철분(Fe)과 아연(Zn)의 흡수가 저하되므로 이들 광물질의 함량을 높여주는 것이 바람직하다. 

구리(Cu)는 빼를 형성하는 세포에 필요할 것으로 알려져 있다. 

3) 우모(羽毛)의 채색에 관여한다. 

구리(Cu)가 결합하면 우모에 멜라닌(melanin)색소의 침착이 붙어있다. 멜라닌 색소를 형성하는데 필요한 전구물질은 아미노산의 하나인 타이로신(tyrosine)인데 타이로신으로부터 멜라닌을 합성하는데 구리(Cu)가 조효소로써 관여한다. 

4) 번식에 관여한다. 

포유가축에 있어서 구리(Cu)가 결합할 경우 정상적인 임신은 일어나지만 태아의 사망율이 높아진다. 담에 있어서는 부화율이 떨어진다. 

2. 구리(Cu)의 흡수와 배설

구리(Cu)는 소장중에서 공장(空腸)의 상부에서 흡수되는데 철분(Fe)과 마찬가지로 흡수율은 매우 낮아서 섭취량의 5~10% 정도이다. 배설은 주로 단백질과 결합된 형태로 담즙을 통해 동으로 배설되며 오줌으로는 소량이 배설된다. 사료중의 구리(Cu)의 함량이 높으면 철분(Fe)과 아연(Zn)의 흡수가 저하되므로 이들 광물질의 함량을 높여주는 것이 바람직하다. 

구리(Cu)는 빼를 형성하는 세포에 필요할 것으로 알려져 있다. 

3) 우모(羽毛)의 채색에 관여한다. 

구리(Cu)가 결합하면 우모에 멜라닌(melanin)색소의 침착이 붙어있다. 멜라닌 색소를 형성하는데 필요한 전구물질은 아미노산의 하나인 타이로신(tyrosine)인데 타이로신으로부터 멜라닌을 합성하는데 구리(Cu)가 조효소로써 관여한다. 

4) 번식에 관여한다. 

포유가축에 있어서 구리(Cu)가 결합할 경우 정상적인 임신은 일어나지만 태아의 사망율이 높아진다. 담에 있어서는 부화율이 떨어진다. 

2. 구리(Cu)의 흡수와 배설

구리(Cu)는 소장중에서 공장(空腸)의 상부에서 흡수되는데 철분(Fe)과 마찬가지로 흡수율은 매우 낮아서 섭취량의 5~10% 정도이다. 배설은 주로 단백질과 결합된 형태로 담즙을 통해 동으로 배설되며 오줌으로는 소량이 배설된다. 사료중의 구리(Cu)의 함량이 높으면 철분(Fe)과 아연(Zn)의 흡수가 저하되므로 이들 광물질의 함량을 높여주는 것이 바람직하다. 

구리(Cu)는 빼를 형성하는 세포에 필요할 것으로 알려져 있다. 

3) 우모(羽毛)의 채색에 관여한다. 

구리(Cu)가 결합하면 우모에 멜라닌(melanin)색소의 침착이 붙어있다. 멜라닌 색소를 형성하는데 필요한 전구물질은 아미노산의 하나인 타이로신(tyrosine)인데 타이로신으로부터 멜라닌을 합성하는데 구리(Cu)가 조효소로써 관여한다. 

4) 번식에 관여한다. 

포유가축에 있어서 구리(Cu)가 결합할 경우 정상적인 임신은 일어나지만 태아의 사망율이 높아진다. 담에 있어서는 부화율이 떨어진다. 

2. 구리(Cu)의 흡수와 배설

구리(Cu)는 소장중에서 공장(空腸)의 상부에서 흡수되는데 철분(Fe)과 마찬가지로 흡수율은 매우 낮아서 섭취량의 5~10% 정도이다. 배설은 주로 단백질과 결합된 형태로 담즙을 통해 동으로 배설되며 오줌으로는 소량이 배설된다. 사료중의 구리(Cu)의 함량이 높으면 철분(Fe)과 아연(Zn)의 흡수가 저하되므로 이들 광물질의 함량을 높여주는 것이 바람직하다. 

구리(Cu)는 빼를 형성하는 세포에 필요할 것으로 알려져 있다. 

3) 우모(羽毛)의 채색에 관여한다. 

구리(Cu)가 결합하면 우모에 멜라닌(melanin)색소의 침착이 붙어있다. 멜라닌 색소를 형성하는데 필요한 전구물질은 아미노산의 하나인 타이로신(tyrosine)인데 타이로신으로부터 멜라닌을 합성하는데 구리(Cu)가 조효소로써 관여한다. 

4) 번식에 관여한다. 

포유가축에 있어서 구리(Cu)가 결합할 경우 정상적인 임신은 일어나지만 태아의 사망율이 높아진다. 담에 있어서는 부화율이 떨어진다. 

2. 구리(Cu)의 흡수와 배설

구리(Cu)는 소장중에서 공장(空腸)의 상부에서 흡수되는데 철분(Fe)과 마찬가지로 흡수율은 매우 낮아서 섭취량의 5~10% 정도이다. 배설은 주로 단백질과 결합된 형태로 담즙을 통해 동으로 배설되며 오줌으로는 소량이 배설된다. 사료중의 구리(Cu)의 함량이 높으면 철분(Fe)과 아연(Zn)의 흡수가 저하되므로 이들 광물질의 함량을 높여주는 것이 바람직하다.