The Journal of Natural Science, Pai Chai University, Korea Volume 5(1): 1-3, 1992

CLASSIFICATION OF THE EQUIVARIANT LINE BUNDLES OVER S^{1**}

SUNG SOOK KIM*

원 위에서의 EQUIVARIANT LINE BUNDLE 의 분류**

김 성 숙*

개요: G 가 compact Lie 군이고 $\pi: E \to S^1$ 이 S^1 상의 G-line bundle 일때, 군 작용이 없다면, 부드러운 trivial G-line bundle $E \to S^1$ 은 $S(V) \times \delta \to S(V)$ 와 동치이고 부드러운 nontrivial G-line bundle $E \to S^1$ 은 $S(V) \times_{\mathbf{Z}_2} \delta \to S(V)/\mathbf{Z}_2 = P(V)$ 와 동치 이다.

1. Introduction.

Let G be a compact Lie group and let S^1 denote the unit circle in R^2 . In this paper, we classify equivariant line bundles over S^1 . Let $\pi: E \to S^1$ be a G line bundle over S^1 . We assume the G-action on E to be effective. Since any smooth G action on S^1 is smoothly equivariant to a linear action [Sc Theorem 2.0], we may assume the G action on the base space S^1 is linear. So the G action on S^1 gives a homormorphism $\rho: G \to O(2)$.

Lemma 1. Ker ρ is trivial or of order 2. In particular ker ρ is in the center of G.

Proof: By the definition of ρ , ker ρ acts on the base space S^1 trivially. So it should act non trivially on each fiber because our action on the total space E is effective. Since the fiber is \mathbb{R} and the action of ker ρ on \mathbb{R} is linear, ker ρ must be trivial or of order 2.

^{*} 배제 대학교 이공 대학 응용 수학과 조교수.

^{**} 이 논문은 한국 꽈학 재단 연구비 913-0103-015-2 에 의해 연구 된 것 의 일부 이기에 이에 감사 드립니다.

Because $\rho(G)$ is a subgroup of O(2), it is a cycle group, a dihedral group, SO(2) or O(2). Hence G is decided when ker ρ is trivial. When ker ρ is of order 2 there are several choices of G with same $\rho(G)$. But also we get a further restriction on G which comes from the effectiveness of the action. We study two cases according to $\pi: E \to S^1$ being trivial bundle or non trivial bundle when we forget the action.

Acknowledgments. I would like to thank Professor Mikiya Masuda for his encouragement and helpful conversations.

2. Nonequivariantly trivial bundle case.

Suppose $\pi: E \to S^1$ is trivial when we forget the action. Since G is compact $\pi: E \to S^1$ with a fiber metric is isomorphic to the trivial line bundle $S^1 \times \mathbb{R} \to S^1$ with the standard fiber metric.

Hence one can express the action of $g \in G$ on $S^1 \times \mathbb{R}$ as

$$(x,v) \to (\rho(g)(x), \varphi_g(x)v)$$
 for $(x,v) \in S^1 \times \mathbb{R}$

where S^1 is viewed as the unit circle in \mathbb{R}^2 , $\rho: G \to O(2)$ is a homomorphism, $\rho(g)$ acts on S^1 in the standard way and $\varphi_g(x)$ is a scalar. Since the action of g preserves the standard metric on $S^1 \times \mathbb{R}$, $\varphi_g(x)$ must be ± 1 . The map $\varphi_g: S^1 \to \{\pm 1\} = \mathbb{Z}_2$ is continuous and S^1 is connected. So we have the following Lemma.

Lemma 2. For a fixed $g \in G$, $\varphi_g(x)$ is independent of $x \in S^1$, i.e. $\varphi_g(x) = 1$ for all x or $\varphi_g(x) = -1$ for all x.

By virtue of Lemma 2, we have a homorphism $\varphi: G \to \mathbb{Z}_2 = \pm 1$ given by $g \to \varphi_g$. Hence $\varphi_g = 1$ if g is of odd order, in particular φ is trivial when G is of odd order or SO(2).

Now we show which group G can act on line bundles E over S^1 effectively.

Lemma 3. Suppose $\pi: E \to S^1$ is nonequivariantly trivial line bundle. Then G is isomorphic to $\rho(G) \times ker \rho$.

Proof: Since G is compact, E admits a G invariant fiber metric. Hence the total space of the sphere bundle of E, denoted by S(E), is invariant under the action of G when we forget the action. The sphere bundle S(E) of E is diffeomorphic to $S^1 \times S^0$ because E is trivial. Now if Ker ρ is trivial, then the lemma is obvious so we assume ker ρ is of order 2. let G_+ be the subgroup of G which consists of elements preserving the connected components of S(E). Since the non-trivial element of ker ρ acts as multiplication by -1 on each fiber of E, it interchanges the connected components of S(E). Hence the multiplication $G_+ \times ker \rho \to G$ gives an isomorphism. Because ρ gives an isomorphism: $G_+ \to \rho(G)$ this proves the lemma.

3. Nonequivariantly nontrivial bundle case.

Lemma 4. Suppose $\pi: E \to S^1$ is non-trivial when we forget the action. Then G is a subgroup of O(2).

Proof: In this case the total space of the sphere bundle of E, denoted by S(E), is diffeomorphic to S^1 . Since the action of G on S(E) is effective and smoothly equivariant to a linear action, G is a subgroup of O(2).

The lemma above shows which group G can act on line bundles E over S^1 effectively. Next we must study how G acts on E. Suppose $\pi: E \to S^1$ is nontrivial when we forget the action. Then the projection $\pi: S(E) \to S^1$ is an equivariant double covering map where G acts on the base space S^1 through the homormorphism ρ . The induced G-line bundle by π from E is trivial, so the problem to decide action of G on the non-trivial line bundle over S^1 is reduced to the previous case. Now we obtain the following Theorem.

4. Main result.

Main Theorem. A smooth G-line bundle $E \to S^1$ is equivariantly isomorphic to $S(V) \times \delta \to S(V)$ or $S(V) \times_{\mathbf{Z_2}} \delta \to S(V)/\mathbf{Z_2} = P(V)$ according as $E \to S^1$ is trivial or not when we forget the action. Here S(V) denotes the unit circle of a real 2-dimensional orthogonal G-module V, δ a real 1-dimensional G-module and $\mathbf{Z_2}$ acts on S(V) and δ as scalar multiplication.

참 고 문 헌

- [B] G.E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Math. Vol. 46, Academic Press, 1972.
- [H] W.Y. Hsiang, Cohomology Theory of Topological Transformation Groups, Ergebnisse der Math. Band 85, Springer-Verlag, 1975.
- [Sc] R. Schultz, Nonlinear analogs of linear group actions on spheres, Bull. AMS (New series) 11 (1984), 263-285.
- [S] R.E. Stong, Unoriented Bordism and Actions of Finite Groups, Memoirs of the AMS 103, 1970.