# ON THE EXTENDED GOTTLIEB SUBGROUP 

Moo Ha Woo ${ }^{1}$ and Ki Young Lee ${ }^{2}$

Dedicated to Professor Younki Chae on his 60th birthday

## 1.Introduction

F. Rhodes [2] introduced the fundamental group $\sigma\left(X, x_{0}, G\right)$ of a transformation group $(X, G)$ as a generatization of the fundamental group of a topological space $X$ and showed a sufficient condition for $\sigma\left(X, x_{0}, G\right)$ to be isomorphic to $\pi_{1}\left(X, x_{0}\right) \times G$, that is, if $(G, G)$ admits a family of preferred paths at $e, \sigma\left(X, x_{0}, G\right)$ is isomorphic to $\pi_{1}\left(X, x_{0}\right) \times G$. D.H. Gottlieb[1] introduced the evaluation subgroup $G\left(X, x_{0}\right)$ of the fundamental group of $X$ and showed a condition to be $G\left(X, x_{0}\right)=Z\left(\pi_{1}\left(X, x_{0}\right)\right)$. In [3], we introduced the extended Gottlieb subgroup $E\left(X, x_{0}, G\right)$ of the fundamental group of a transformation group $(X, G)$. In this paper, we show a condition to be $E\left(X, x_{0}, G\right)=Z\left(\sigma\left(X, x_{0}, G\right)\right)$

## 2. Definitions and Notations

Let $(X, G, \pi)$ be a transformation group and $X$ be a path connected compact ANR with $x_{0}$ as base point. Given an element $g$ of $G$, a path $\alpha$ of order $g$ with base point $x_{0}$ is a continuous map $\alpha: I \longrightarrow X$ such that $\alpha(0)=x_{0}$ and $\alpha(1)=g x_{0}$. A path $\alpha_{1}$ of order $g_{1}$ and a path $\alpha_{2}$ of order $g_{2}$ give rise to a path $\alpha_{1}+g_{1} \alpha_{2}$ of order $g_{1} g_{2}$ defined by the equations

$$
\left(\alpha_{1}+g_{1} \alpha_{2}\right)(s)= \begin{cases}\alpha_{1}(2 s), & 0 \leq s \leq 1 / 2 \\ g_{1} \alpha_{2}(2 s-1), & 1 / 2 \leq s \leq 1\end{cases}
$$

Received September 3, 1992.
${ }^{1}$ Supported by a TGRC-KOSEF grant.
${ }^{2}$ Supported by NON DIRECTED RESEARCH Fund, KRF, 1991.

Two paths $\alpha$ and $\alpha^{\prime}$ of the same order $g$ are said to be homotopic if there is a continuous map $F: I^{2} \longrightarrow X$ such that

$$
\begin{array}{lc}
F(s, 0)=\alpha(s) & 0 \leq s \leq 1 \\
F(s, 1)=\alpha^{\prime}(s) & 0 \leq s \leq 1, \\
F(0, t)=x_{0} & 0 \leq t \leq 1, \\
F(1, t)=g x_{0} & 0 \leq t \leq 1
\end{array}
$$

The homotopy class of a path $\alpha$ of order $g$ is denoted by $[\alpha ; g]$. Two homotopy classes of paths of different orders $g_{1}$ and $g_{2}$ are distinct, even if $g_{1} x_{0}=g_{2} x_{0}$. F. Rhodes[2] showed that the set of homotopy classes of paths of prescribed order with the rule of composition $\circ$ is a group, where $\circ$ is defined by $\left[\alpha_{1} ; g_{1}\right] \circ\left[\alpha_{2} ; g_{2}\right]=\left[\alpha_{1}+g_{1} \alpha_{2} ; g_{1} g_{2}\right]$. This group was denoted by $\sigma\left(X, x_{0}, G\right)$, and was called the fundamental group of $(X, G)$ with base point $x_{0}$.

A homotopy $H: X \times I \longrightarrow X$ is said to be an cyclic homotopy if $H(x, 0)=x=H(x, 1)$. In this case, the path $H\left(x_{0}, \cdot\right)$ is called the traces of the cyclic homotopy $H$ at $x_{0}$. In [1], Gottlieb has defined $G\left(X, x_{0}\right)=\left\{[\alpha] \in \pi_{1}\left(X, x_{0}\right) \mid \alpha\right.$ is homotopic to the traces of a cyclic homotopy at $\left.x_{0}\right\}$. An equivalent definition of $G\left(X, x_{0}\right)$ is the following: Let $p: X^{X} \longrightarrow X$ be the evaluation map given by $p(g)=g\left(x_{0}\right)$. Then $p$ induces a homomorphism $p_{\pi}: \pi_{1}\left(X^{X}, 1_{X}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)$. The Gottlieb subgroup $G\left(X, x_{0}\right)$ is the image of the homomorphism $p_{\pi}$. A homotopy $H: X \times I \longrightarrow X$ is said to be a cyclic homotopy of order $g$ if $H(\cdot, 0)=1_{X}$ and $H(\cdot, 1)=g$, where $g$ is an element of G.

Definition 1. $E\left(X, x_{0}, G\right)=\left\{[\alpha ; g] \in \sigma\left(X, x_{0}, G\right) \mid \alpha\right.$ is homotopic to the traces of a cyclic homotopy of order $g$ at $\left.x_{0}\right\}$.[3]

If we define $i_{G}: G\left(X, x_{0}\right) \longrightarrow E\left(X, x_{0}, G\right)$ by $i_{G}([\alpha])=[\alpha: e]$, then the Gottlieb subgroup $G\left(X, x_{0}\right)$ is identified with a subgroup of $E\left(X, x_{0}, G\right)$. Thus $E\left(X, x_{0}, G\right)$ is called the extended Gottlieb subgroup. Define $\pi^{\prime}$ : $X^{X} \times G \longrightarrow X^{X}$ by $\pi^{\prime}(f, g)=g f$, then $\left(X^{X}, G, \pi^{\prime}\right)$ is a transformation group and $p:\left(X^{X}, G\right) \longrightarrow(X, G)$ is a homomorphism. Thus p induces a homomorphism $p_{\sigma}: \sigma\left(X^{X}, 1_{X}, G\right) \longrightarrow \sigma\left(X, x_{0}, G\right)$ given by $p_{\sigma}([\alpha: g])=$ $[p \alpha: g]$. It is easy to show that $p_{\sigma}\left(\sigma\left(X^{X}, 1_{X}, G\right)\right)=E\left(X, x_{0}, G\right) .[3]$

In [2], a transformation group $(X, G)$ is said to admit a family of preferred paths at $x_{0}$ if it is possible to associate with every element $g$ of $G$ a path $k_{g}$ from $g x_{0}$ to $x_{0}$ such that the path $k_{e}$ associated with the identity element $e$ of $G$ is homotopic to $\hat{x}_{0}$ and for every pair of elements $g, h$, the
path $k_{g h}$ from $g h x_{0}$ to $x_{0}$ is homotopic to $g k_{h}+k_{g}$, where $\hat{x}_{0}(t)=x_{0}$ for each $t \in I$.

## 3. An extension of the Gottlieb's results

For a group $G$, the center $Z(G)$ of $G$ is defined by $\{g \in G \mid g h=h g$ for all $h \in G\}$. In [1], Gottlieb has shown that if $X$ is a connected aspherical polyhedron, then $G\left(X, x_{0}\right)=Z\left(\pi_{1}\left(X, x_{0}\right)\right)$. Now we generalize this result to $E\left(X, x_{0}, G\right)=Z\left(\sigma\left(X, x_{0}, G\right)\right)$.

A family $\mathbf{K}$ of preferred paths at $x_{0}$ is called a family of preferred traces at $x_{0}$ if for every preferred path $k_{g}$ in $\mathbf{K}, k_{g} \rho$ is the traces of a cyclic homotopy of order $g$ at $x_{0}$, where $\rho(t)=1-t$.

Let $(X, G)$ be a transformation group. If the transformation group $(G, G)$ admits a family of preferred paths at $e$, then $(X, G)$ admits a family of preferred traces at $x_{0}$ but the converse is not true.(see Example 2 in [3])

Lemma 1. If $k$ is the traces of a cyclic homotopy of order $g$ at $x_{0}$, then for every loop $\alpha$ at $x_{0}, \alpha$ is homotopic to $k+g \alpha+k \rho$.
Proof. See Lemma 2 in [3].
In [1], Gottlieb has shown that $G\left(X, x_{0}\right) \subset Z\left(\pi_{1}\left(X, x_{0}\right)\right)$ which is a special case of the following theorem.

Theorem 2. Let $G$ be an abelian group. If $(X, G)$ admits a family $\left\{k_{g} \mid g \in\right.$ $G\}$ of preferred traces at $x_{0}$, then $E\left(X, x_{0}, G\right) \subset Z\left(\sigma\left(X, x_{0}, G\right)\right)$.
Proof. Let $\mathbf{K}=\left\{k_{g} \mid g \in G\right\}$ be a family of preferred traces at $x_{0}$. For any elements $\left[\alpha: g_{1}\right] \in E\left(X, x_{0}, G\right)$ and $\left[\beta: g_{2}\right] \in \sigma\left(X, x_{0}, G\right)$, we must show $\left[\alpha: g_{1}\right] \circ\left[\beta: g_{2}\right]=\left[\beta: g_{2}\right] \circ\left[\alpha: g_{1}\right]$. Since $G$ is abelian, it is sufficient to show that $\alpha+g_{1} \beta$ is homotopic to $\beta+g_{2} \alpha$. If we use Lemma 1 and $k_{g_{1}} \rho$ is the traces of a cyclic homotopy of order $g_{1}$ at $x_{0}$, we have

$$
\begin{aligned}
\alpha+g_{1} \beta & \sim \alpha+k_{g_{1}}+k_{g_{1}} \rho+g_{1} \beta+k_{g_{1} g_{2}}+k_{g_{1} g_{2}} \rho \\
& \sim \alpha+k_{g_{1}}+k_{g_{1}} \rho+g_{1}\left(\beta+k_{g_{2}}\right)+k_{g_{1}}+k_{g_{1} g_{2}} \rho \\
& \sim \alpha+k_{g_{1}}+\beta+k_{g_{2}}+k_{g_{1} g_{2}} \rho
\end{aligned}
$$

and

$$
\begin{aligned}
\beta+g_{2} \alpha & \sim \beta+k_{g_{2}}+k_{g_{2}} \rho+g_{2} \alpha+k_{g_{2} g_{1}}+k_{g_{2} g_{1}} \rho \\
& \sim \beta+k_{g_{2}}+k_{g_{2}} \rho+g_{2}\left(\alpha+k_{g_{1}}\right)+k_{g_{2}}+k_{g_{2} g_{1}} \rho \\
& \sim \beta+k_{g_{2}}+\alpha+k_{g_{1}}+k_{g_{2} g_{1}} \rho .
\end{aligned}
$$

From these results, we know that $\alpha+g_{1} \beta$ is homotopic to $\beta+g_{2} \alpha$ if and ony if $\alpha+k_{g_{1}}+\beta+k_{g_{2}}$ is homotopic to $\beta+k_{g_{2}}+\alpha+k_{g_{1}}$. Since $\left[\alpha: g_{1}\right] \in E\left(X, x_{0}, G\right)$ and $k_{g_{1}} \in \mathbf{K}$, there exists an cyclic homotopy $H_{1}$ of order $g_{1}$ at $x_{0}$ such that $H_{1}\left(x_{0}, \cdot\right)$ is homotopic to $\alpha$ and a cyclic homotopy $H_{2}$ of order $g_{1}$ at $x_{0}$ such that $H_{2}\left(x_{0}, \cdot\right)$ is homotopic to $k_{g_{1}} \rho$. Define $J: X \times I \longrightarrow X$ by

$$
J(x, t)= \begin{cases}H_{1}(x, 2 t), & 0 \leq t \leq 1 / 2 \\ H_{2}(x, 2-2 t), & 1 / 2 \leq t \leq 1\end{cases}
$$

then $J$ is a cyclic homotopy such that $J\left(x_{0}, \cdot\right)$ is homotopic to $\alpha+k_{g_{1}}$. Thus $\alpha+k_{g_{1}}$ is the traces of a cyclic homotopy of order $1_{X}$. By Lemma 1 , we obtain

$$
\begin{aligned}
\alpha+k_{g_{1}}+\beta+k_{g_{2}} & \sim\left(\alpha+k_{g_{1}}\right)+\left(\alpha+k_{g_{1}}\right) \rho+\left(\beta+k_{g_{2}}\right)+\left(\alpha+k_{g_{1}}\right) \\
& \sim \beta+k_{g_{2}}+\alpha+k_{g_{1}} .
\end{aligned}
$$

In [1],the main result concerning the Gottlieb subgroup on a connected aspherical(in the sence that $\pi_{i}\left(X, x_{0}\right)=0$ for $\left.i>1\right)$ polyhedron is
Theorem 3[1]. Let $X$ be a connected aspherical polyhedron. Then $G\left(X, x_{0}\right)=$ $Z\left(\pi_{1}\left(X, x_{0}\right)\right)$.

Since every transformaation group $(X, G)$ with the trivial acting group $G=\left\{1_{X}\right\}$ admits a family of preferred traces at $x_{0}$, the Gottlieb's result can be extended by the following

Theorem 4. Let $X$ be a connected aspherical polyhedron and $G$ be abelian. If $(X, G)$ admits a family $\left\{k_{g} \mid g \in G\right\}$ of preferred traces at $x_{0}$, then $E\left(X, x_{0}, G\right)=Z\left(\sigma\left(X, x_{0}, G\right)\right)$.
Proof. If $(X, G)$ admits a family $\left\{k_{g} \mid g \in G\right\}$ of preferred traces at $x_{0}$, then we first show that there exists an isomorphism $\phi$ from $\sigma\left(X, x_{0}, G\right)$ onto $\pi_{1}\left(X, x_{0}\right) \times G$ which carries $E\left(X, x_{0}, G\right)$ onto $G\left(X, x_{0}\right) \times G$. Define $\phi: \sigma\left(X, x_{0}, G\right) \longrightarrow \pi_{1}\left(X, x_{0}\right) \times G$ by $\phi([\alpha: g])=\left(\left[\alpha+k_{g}\right], g\right)$, then $\phi$ is well defined. Because, if $[\alpha: g]=\left[\alpha^{\prime}: g^{\prime}\right]$, then $\alpha$ is homotopic to $\alpha^{\prime}$ and $g=g^{\prime}$. Thus $\alpha+k_{g}$ is homotopic to $\alpha^{\prime}+k_{g}$. Suppose $\phi([\alpha: g])=\phi\left(\left[\alpha^{\prime}: g\right]\right)$. Then $\alpha+k_{g}$ is homotopic to $\alpha^{\prime}+k_{g}$. This implies that $\alpha\left(=\alpha+k_{g}+k_{g} \rho\right)$ is homotopic to $\alpha^{\prime}\left(=\alpha^{\prime}+k_{g}+k_{g} \rho\right)$. Therefore $\phi$ is injective.

For any element $([\alpha], g) \in \pi_{1}\left(X, x_{0}\right) \times G$, there exists an element $[\alpha+$ $\left.k_{g} \rho: g\right]$ in $\sigma\left(X, x_{0}, G\right)$ such that $\phi\left(\left[\alpha+k_{g} \rho: g\right]\right)=([\alpha], g)$. Therefore, $\phi$ is surjective.

Next, we show that $\phi$ is a homomorphism. Let $\left[\alpha_{1}: g_{1}\right]$ and $\left[\alpha_{2}: g_{2}\right]$ be elements of $\sigma\left(X, x_{0}, G\right)$. Then

$$
\phi\left(\left[\alpha_{1}: g_{1}\right] \circ\left[\alpha_{2}: g_{2}\right]\right)=\left(\left[\alpha_{1}+g_{1} \alpha_{2}+k_{g_{1} g_{2}}\right], g_{1} g_{2}\right)
$$

and

$$
\phi\left(\left[\alpha_{1}: g_{1}\right]\right) \circ \phi\left(\left[\alpha_{2}: g_{2}\right]\right)=\left(\left[\alpha_{1}+k_{g_{1}}+\alpha_{2}+k_{g_{2}}\right], g_{1} g_{2}\right) .
$$

Since $\alpha_{2}+k_{g_{2}}$ is a loop at $x_{0}$ and $k_{g_{1}} \rho$ is the traces of a cyclic homotopy of order $g_{1}$ at $x_{0}, \alpha_{2}+k_{g_{2}}$ is homotopic to $k_{g_{1}} \rho+g_{1}\left(\alpha_{2}+k_{g_{2}}\right)+k_{g_{1}}$ by Lemma 1. Therefore, we have

$$
\begin{aligned}
\alpha_{1}+k_{g_{1}}+\alpha_{2}+k_{g_{2}} & \sim \alpha_{1}+k_{g_{1}}+k_{g_{1}} \rho+g_{1}\left(\alpha_{2}+k_{g_{2}}\right)+k_{g_{1}} \\
& \sim \alpha_{1}+g_{1}\left(\alpha_{2}+k_{g_{2}}\right)+k_{g_{1}} \\
& \sim \alpha_{1}+g_{1} \alpha_{2}+g_{1} k_{g_{2}}+k_{g_{1}} \\
& \sim \alpha_{1}+g_{1} \alpha_{2}+k_{g_{1} g_{2}} .
\end{aligned}
$$

This implies that $\phi$ is a homomorphism. Finally, we show $\phi$ sends $E\left(X, x_{0}, G\right)$ onto $G\left(X, x_{0}\right) \times G$. Let $[\alpha: g]$ be an element of $E\left(X, x_{0}, G\right)$. Then there exists a cyclic homotopy $H: X \times I \longrightarrow X$ of order $g$ with trace $\alpha$ and a cyclic homotopy $J: X \times I \longrightarrow X$ of order $g$ with trace $k_{g} \rho$.

Define $F: X \times I \longrightarrow X$ by

$$
F(x, t)= \begin{cases}H(x, 2 t), & 0 \leq t \leq 1 / 2 \\ J(x, 2(1-t)), & 1 / 2 \leq t \leq 1\end{cases}
$$

Then $F$ is a cyclic homotopy with trace $F\left(x_{0}, \cdot\right)$ which is homotopic to $\alpha+k_{g}$, for

$$
\begin{aligned}
& F(x, 0)=H(x, 0)=x, F(x, 1)=J(x, 0)=x, \\
& F\left(x_{0}, t\right)= \begin{cases}H\left(x_{0}, t\right), & 0 \leq t \leq 1 / 2 \\
J\left(x_{0}, 2(1-t)\right), & 1 / 2 \leq t \leq 1 \\
=\left(\alpha+k_{g}\right)(t) .\end{cases}
\end{aligned}
$$

Thus $\left[\alpha+k_{g}\right]$ belongs to $G\left(X, x_{0}\right)$. For any element $([\alpha], g) \in G\left(X, x_{0}\right) \times G$, there exists a cyclic homotopy $H: X \times I \longrightarrow X$ of order $1_{X}$ with trace $\alpha$. Since $\left\{k_{g} \mid g \in G\right\}$ is a family of preferred traces at $x_{0}$, there exists a cyclic homotopy $J: X \times I \longrightarrow X$ of order $g$ with trace $k_{g} \rho$. Define

$$
F(x, t)= \begin{cases}H(x, 2 t), & 0 \leq t \leq 1 / 2 \\ J(x, 2 t-1), & 1 / 2 \leq t \leq 1\end{cases}
$$

then F is a cyclic homotopy of order $g$ with trace $\alpha+k_{g} \rho$ and hence there exists an element $\left[\alpha+k_{g} \rho: g\right]$ in $E\left(X, x_{0}, G\right)$ such that $\phi\left(\left[\alpha+k_{g} \rho: g\right]\right)=$ $\left(\left[\alpha+k_{g} \rho+k_{g}\right], g\right)=([\alpha], g)$.

Let $[\alpha: g]$ be any element of $Z\left(\sigma\left(X, x_{0}, G\right)\right)$. Then $\phi([\alpha: g])=([\alpha+$ $\left.\left.k_{g}\right], g\right)$ belongs to $Z\left(\pi_{1}\left(X, x_{0}\right) \times G\right)=Z\left(\pi_{1}\left(X, x_{0}\right)\right) \times G=G\left(X, x_{0}\right) \times G$. Thus $\left[\alpha: g\right.$ ] belongs to $E\left(X, x_{0}, G\right)$. The other implication is followed by Theorem 2. Thus this completes the proof.

Remark. We can think the Gottlieb's result(that is,Theorem 3) is a special case of Theorem 5 by taking $G=\left\{1_{X}\right\}$.

## References

[1] D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. Vol.87, pp. 840-856.
[2] F. Rhodes, On the fundamental group of a transformation group, Proc.London Math.Soc. (3) 16, 1966, 635-650.
[3] M.H. Woo, A representation of $E\left(X, x_{0}, G\right)$ in terms of $G\left(X, x_{0}\right)$, J.of Korean Math.Soc. 23, 1986, 101-108.

Department of Mathematics Education, Korea University, Seoul 136-701, Korea.

Department of Mathematics, Taejon National University of Technology, Taejon 300-170, Korea.

