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1.Introduction

F. Rhodes [2] introduced the fundamental group o(X, zo, G) of a trans-
formation group (X, G) as a generatization of the fundamental group of
a topological space X and showed a sufficient condition for o(X, zq,G)
to be isomorphic to m(X, z¢) x G, that is, if (G,G) admits a family of
preferred paths at e,o (X, zg, G) is isomorphic to 7 (X, zo) x G. D.H. Got-
tlieb[1] introduced the evaluation subgroup G(X,z,) of the fundamental
group of X and showed a condition to be G(X, zo) = Z(m (X, z0)). In [3],
we introduced the extended Gottlieb subgroup F(X,zq,G) of the funda-
mental group of a transformation group (X, G). In this paper, we show a
condition to be E(X, zy,G) = Z(o(X, 20, G))

2. Definitions and Notations

Let (X,G,x) be a transformation group and X be a path connected
compact ANR with zp as base point. Given an element ¢ of G, a path «
of order g with base point x; is a continuous map « : I — X such that
a(0) = z¢ and a(1) = gxo. A path a, of order g; and a path a; of order
g, give rise to a path «a; + g, of order g;g, defined by the equations

| aa(2s), 0<s<1/2
(1 + graz)(s) = { graa(2s=1), 1/2<s< L.
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Two paths a and o' of the same order g are said to be homotopic if there
is a continuous map F : I? — X such that

F(s,0) = a(s) 0<s<1,
F(s,1) = a'(s) 0<s<1,
F(0,t) = zo 0<i<1,
F(1,t) = gzo 0<t<l.

The homotopy class of a path a of order ¢ is denoted by [a;g]. Two
homotopy classes of paths of different orders g; and g, are distinct, even
if 9129 = g279. F. Rhodes[2] showed that the set of homotopy classes of
paths of prescribed order with the rule of composition o is a group, where
o is defined by [a1; 1] 0 [a2; g2] = [a1 + g102; 9192)- This group was denoted
by o(X, 2, (), and was called the fundamental group of (X, G) with base
point xg.

A homotopy H : X x I — X is said to be an cyclic homotopy
if H(z,0) = = = H(z,1). In this case, the path H(zo,-) is called the
traces of the cyclic homotopy H at zo. In [1], Gottlieb has defined
G(X,z0) = {[a] € 7 (X,z0)|a is homotopic to the traces of a cyclic
homotopy at z4}. An equivalent definition of G(X,z) is the following:
Let p : X*¥ — X be the evaluation map given by p(g) = g(zo). Then
p induces a homomorphism p;, : 7 (X¥*,1x) — m(X,z0). The Gottlieb
subgroup G(X,z) is the image of the homomorphism p,. A homotopy
H : X x I — X is said to be a cyclic homotopy of order g if H(-,0) = 1x
and H(-,1) = g ,where g is an element of G.

Definition 1. E(X,z,G) = {[a;¢] € o(X, 7o, G)|a is homotopic to the
traces of a cyclic homotopy of order g at z¢}.[3]

If we define ig : G(X,z0) — E(X, 20, G) by ig([a]) = [a : €], then the
Gottlieb subgroup G(X,zo) is identified with a subgroup of E(X, z¢,G).
Thus E(X,z,G) is called the extended Gottlieb subgroup. Define 7’ :
XX x G — XX by 7'(f,9) = gf.then (X*,G,n') is a transformation
group and p : (X¥*,G) — (X, G) is a homomorphism. Thus p induces a
homomorphism p, : 6(XX,1x,G) — o(X, z0,G) given by p,([a : g]) =
[pa : g]. Tt is easy to show that p,(a(X*,1x,G)) = E(X, z0,G).[3]

In [2], a transformation group (X,G) is said to admit a family of
preferred paths at z¢ if it is possible to associate with every element g of G
a path k, from gz, to zo such that the path k. associated with the identity
element ¢ of G is homotopic to Z, and for every pair of elements g, h, the
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path kg, from ghzo to z, is homotopic to gky, + k,, where 2y(t) = z, for
each t € I.

3. An extension of the Gottlieb’s results

For a group G, the center Z(G) of G is defined by {g € G|gh = hg for
all h € G}. In [1], Gottlieb has shown that if X is a connected aspherical
polyhedron, then G(X, zp) = Z(7(X,zo)). Now we generalize this result
to E(X, z9,G) = Z(o(X, 29, G)).

A family K of preferred paths at zq is called a family of preferred
traces at g if for every preferred path kg in K, kyp is the traces of a cyclic
homotopy of order g at z, where p(t) =1 — .

Let (X,G) be a transformation group. If the transformation group
(G,G) admits a family of preferred paths at e, then (X,G) admits a
family of preferred traces at =y but the converse is not true.(see Example

2 in [3])

Lemma 1. If k is the traces of a cyclic homotopy of order g at zo, then
for every loop a at x¢,a is homotopic to k + ga + kp.

Proof. See Lemma 2 in [3].

In [1], Gottlieb has shown that G(X,z¢) C Z(m (X, zo)) which is a
special case of the following theorem.
Theorem 2. Let G be an abelian group. If (X, G) admits a family {k,|g €
G} of preferred traces at zo, then E(X,20,G) C Z(o(X, 20,G)).
Proof. Let K = {k,|g € G} be a family of preferred traces at z,. For any
clements [a : ;] € E(X,x0,G) and [B : ¢2] € o(X, zo, ), we must show
[@:gi]o[B:g2] =[B:9g2] 0la: g] Since G is abelian, it is sufficient to
show that a + ¢, 3 is homotopic to § + g;a. If we use Lemma 1 and kg, p
is the traces of a cyclic homotopy of order g; at x4, we have

atgf ~ a+ky +kyp+gB+kyg +kygp
~ 0—’+km +kgnp+gl(ﬁ+kgz)+kyn +k§l§2p
~ a+ky + B+ kg + kyygp

and

B+gia ~ B+kgy+keptgatky, +kpgp
~ Bkgy +keyptga(atky)+ kg, + kg p
~ B+kg +at kg + kg p
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From these results, we know that a + ¢;5 is homotopic to § + ga if
and ony if a + k,, + F + k,, is homotopic to g + k,, + a + k,,. Since
@ : ¢1] € E(X,20,G) and k;, € K, there exists an cyclic homotopy
H; of order g; at xp such that H(zp,-) is homotopic to @ and a cyclic
homotopy H; of order ¢; at ¢ such that Hz(zo,-) is homotopic to kg, p.
Define J: X x I — X by

| Hy(z,20), 0<t<1/2
J(“”t)_{ Hiy(z,2-2t), 1/2<t< 1.

then J is a cyclic homotopy such that J(zo,) is homotopic to a + kg, .
Thus a + k,, is the traces of a cyclic homotopy of order 1x. By Lemma
1, we obtain

a+ kg + B84k, ~ (O“I'kg1)+(a+kg1)P+(ﬁ+kgz)+(a+kyz)
~ B4k, +a+k,.

In [1],the main result concerning the Gottlieb subgroup on a connected
aspherical(in the sence that #;(X,zp) = 0 for ¢ > 1) polyhedron is

Theorem 3[1]. Let X be a connected aspherical polyhedron. Then G(X, zp) =
Z(m(X,zq)).

Since every transformaation group (X, G) with the trivial acting group
(G = {1x} admits a family of preferred traces at zo, the Gottlieb’s result
can be extended by the following

Theorem 4. Let X be a connected aspherical polyhedron and G be abelian.
If (X,G) admits a family {k;|g € G} of preferred traces at zo, then
E(X,zy,G) = Z(o( X, zo, G)).
Proof. If (X,G) admits a family {k,|lg € G} of preferred traces at g,
then we first show that there exists an isomorphism ¢ from o(X, 20, )
onto m(X, zp) X G which carries E(X,zg,G) onto G(X,zp) X G. Define
¢:0(X,20,G) — m(X,20) %G by ¢([a : g]) = ([a+k,], g), then ¢ is well
defined. Because, if [a: g] = [@’ : ¢'], then « is homotopic to o’ and ¢ = ¢'.
Thus a + k, is homotopic to o' + k,;. Suppose ¢([a : g]) = ¢([e : g¢]).
Then a + k, is homotopic to o' + k,. This implies that a(= a« + k; + kyp)
is homotopic to o'(= o' + k; + k,p). Therefore ¢ is injective.

For any element ([a],g) € m (X, zy) X G, there exists an element (o +
ko,p:glin o(X, o, G) such that ¢([a + kyp : g]) = ([e], g). Therefore, ¢ is

surjective.
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Next, we show that ¢ is a homomorphism. Let [a; : ¢1] and [, : g3)
be elements of o( X, ¢, G). Then

d[en : g1] o [az : g2]) = ([ + g1z + kg, 0, ), 9192)

and
d([e1 : 1)) 0 d([az : go]) = ([ + kg, + a2 + kg, ], 9192)-

Since az + k,, is a loop at zp and kg, p is the traces of a cyclic homotopy
of order g1 at zo, as + k,, is homotopic to kg, p + g1(az + kg,) + kg, by
Lemma 1. Therefore, we have

a1+ kg, ozt ky, ~ a4 kg 4 kg p+gi(as+ ky,) + Ky,
~ o+ gi{az + k) + kg,
~ B ‘|‘9'102+§1kg2 +k§1
~ a1+ grag+ kg,

This implies that ¢ is a homomorphism. Finally, we show ¢ sends E(X, 2o, G)
onto G(X,zo) X G. Let [a : ¢g] be an element of E(X,zg,G). Then there
exists a cyclic homotopy H : X x I — X of order g with trace o and a
cyclic homotopy J : X x I — X of order g with trace k,p.

Define F' : X x I — X by

_ | H(z,2t), 0<t<1/2
F(”)—{ J(z,2(1—t)), 1/2<t<1.

Then F is a cyclic homotopy with trace F(zp,-) which is homotopic to
a + kg, for

Filz,0) = H(z.0) = &, Flz.1) = Jz0) = &,

H(zo,1), 0<t<1/2
F(Ig,t):{ J(.’E{),Q(l—t)), I/QStSI
= (a+ k;)(1).

Thus [+ k,] belongs to G(X, 24). For any element ([a], g) € G(X, zp) X G,
there exists a cyclic homotopy H : X x I — X of order 1x with trace a.
Since {k,|g € G} is a family of preferred traces at zq, there exists a cyclic
homotopy J : X x I — X of order g with trace k;p. Define

[ H(z,2t), 0<t<1/2
F(I’t)_{ J(@2—1), 1/2<t<1,
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then F is a cyclic homotopy of order g with trace a+ k,p and hence there
exists an element [a + kyp : g] in E(X, 29, G) such that ¢([a+ k,p: g]) =
(le+ kgp + ko), 9) = ([a], 9).

Let [a : g] be any element of Z(a(X,z0,G)). Then ¢([a : g]) = ([a +
k,],g) belongs to Z(m1(X,z0) X G) = Z(m1(X,20)) X G = G(X,z0) X G.
Thus [e : g] belongs to E(X,zo,G). The other implication is followed by
Theorem 2. Thus this completes the proof.

Remark. We can think the Gottlieb’s result(that is,Theorem 3) is a special
case of Theorem 5 by taking G = {1x}.
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