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1.Introd uction 

F. Rhodes [2] introduced the fundamental group a(X, xo , G) of a trans­
formation group (X, G) as a genera3'Ïz.ation of the fundamental group of 
a topological space X and showed a su田cient condition for a(X, Xo , G) 
lo be isomorphic to π， (X ， xo) x G, that is, if (G ,G) admits a family of 
preferred paths at e, a(X, xo , G) is isomorphic to πI(X ， XO) X G. D.H. Got­
tlieb[l] introduced t he evaluation subgroup G(X, xo) of the fundamental 
group of X and showed a condition to be G(X,xo) = Z( 7r l(X,XO)). In [3 ], 
we introduced the extended Gottlieb subgroup E(X, Xo, G) of the funda­
mental group of a transformation group (X, G). 1n this paper, we show a 
condition to be E(X,xo ,G) = Z(a(X,xo,G)) 

2. Definitions and Notations 

Let (X ,G, π) he a t ransformat ion group and X be a path connected 
compaεt ANR with Xo as base point. Given an element 9 of G , a palh 0 
oJ order 9 with base point Xo is a continuous map 0 : ] -• X such that 
0(0) = Xo and 0(1) = 9xo. A path 01 of order 91 and a path 02 of order 
92 give rise to a path 01 + 9102 of order 9192 defined by the equations 

J 01(2s) , 
(01 + 9102)(S) = { 1 91 0 2(2s - 1), 
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Two paths a and a ' of the same order 9 are said to be homotopic if there 
is a continuous map F : P -• X such that 

F (s ,O) = a(8) 
F (s , 1) = a'(8) 

F(O , t) = Xo 

F(l , t) = gxo 

O~s~l ， 

o ~ s ~ 1, 
o ~ t ~ 1, 

O< t < 1. 

The homotopy class of a path a of order 9 is denoted by [a;g]. Two 
homotopy classes of paths of different orders gl and g2 are distind, even 
if gl Xo = g2XO . F . Rhodes[2] showed that the set of homotopy classes of 
paths of prescribed order with the rule of composition 0 is a group, where 
。 is defined by [al 꺼1] 0 [a2;g2] = [al +gla2;glg2]. This group was denoted 
by CT(X, xo , G) , and was called the fundamental gmup of (X , G) with base 
point x。

A homotopy 1f X x 1 - • X is said to be an cνclic homo topν 

if 1f (x ,O) = x = 1f(x , 1). In this case, t he path 1f (xo ,.) is called the 
traces of the cyclic homotopy 1f at xo. In [1 ], Gottlieb has defined 
G(X ,xo) = {[이 E π1 (X , xo) la is homotopic to the traces of a cyclic 
homotopy at xo}. An equivalent definition of G(X ,xo) is the following: 
Let p ‘ XX • X be the evaluation map given by p(g) = g(xo). Then 
p induces a homomorphism pτ • πI(XX ， lx) - • πI(X ， xo) . The G。μlieb
subgroup G(X , xo) is the image of the homomorphism p~. A homotopy 
1f :XxI - • X is said to be a cyclic homotopy of order 9 if 1f(., 이 = 1x 
and 1f(., 1) = 9 ,where 9 is an element of G. 

D efinition 1. E(X,xo,G) = {[a;g] E CT(X ,xo,G)la is homotopic to the 
t races of a cyclic homotopy of order 9 at xo }.[3] 

If we define ia : G(X , xo) • E(X, xo , G) by ia([a]) = [a : e], then the 
Gottlieb subgroup G(X ,xo) is identified with a subgroup of E(X, xo ,G). 
T hus E(X, xo , G) is called the extended Gottlieb subgroup. Define π 
XX x G - • XX by π’(I， g) = gf,t hen (Xx ,G , π') is a transformation 
group and p : (Xx ,G) - • (X , G) is a homomorphism. Thus p induces a 
homomorphism Pu : CT (XX , lx ,G) - • CT(X, xo , G) given by pu([a : g]) = 
ψa: g]. It is easy to show that Pu (CT(XX , l x ,G)) = E(X ,xo ,G) .[3] 

In [2], a transformation group (X , G) is said to admit a family of 
prefeπ-ed paths at Xo if it is possible to associate with every element 9 of G 
a path kg from gxo to Xo such that the path k. associated with the identi ty 
element e of G is homotopic to :Î:o and for every pair of elements g, h , the 
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path kgh from ghxo to Xo is homotopic to gkh + kg, where io(t) = Xo for 
each t E 1. 

3. An extension of the Gottlieb ’s results 

For a group G, the center Z(G) of G is defined by {g E Glgh = hg for 
all h E G}. In [1 ], Got tlieb has shown that if X is a connected aspherical 
polyhedron , then G(X, xo) = Z(1r\(X, xo)). Now ‘!/e generalize t his result 
to E(X,xo ,G) = Z( <7(X ,xo ,G)). 

A family K of preferred paths at Xo is called a fa mily of pπferred 
tmces at Xo if for every preferred path kg in K , kgp is the traces of a cyclic 
homotopy of order 9 at xo , where p(t) = 1 - t 

Let (X, G) be a transformation group . If the transformation group 
(G ,G) admits a family of preferred paths at e, then (X ,G) admits a 
family of preferred traces at Xo but the converse is not true.(see Example 
2 in [3]) 

Lemma 1. lf k is the traces of a cyclic homolopy of O1'der 9 al xo , th eπ 
for every loop a al xo , a is homolopic 10 k + ga + kp 

Proof See Lemma 2 in [3]. 

In [1] , Gottlieb has shown that G(X,xo) C Z(πI(X， xo)) which is a 
special case of the following th∞rem . 

Theorem 2. Lel G be an abelian group. If (X , G) admils a family {kglg E 

G} of p，.，~ferred tmces at xo, then E(X, xo , G) C Z( <7(X, Xo , G)). 

Proof Let K = {kglg E G} be a family of preferred traces at xo. For any 
elements [a : g\] E E(X, xo , G) and 떠 : g2] ε <7(X , xo , G) , we must show 
[a : gtl 0 [ß : g2] = 떠 : g2] 0 [a : gtl . Since G is abelian , it is sufficient to 
show that a + 91β is homotopic to ß + 92a. If we use Lemma 1 and kg,P 
is the traces of a cycl ic homotopy of order g\ at xo, we have 

a + glß ~ a + kg, + kg,P + glß + kg' !J2 + k" !J2 P 

~ a + kg, + kg ,P + g\( ß + kg,) + kg, + k91!J2 P 

~ a + k .. + ß + k잉 + kg19,P 

and 

ß+ g2a ~ β + k!J2 + k9, P + g2 a + k9'91 + k9,gl P 

~ ß + k!J2 + k.,p + g2(a + kg,) + k., + k9291 P 

~ ß + k!J2 + a + k91 + k9'91P , 



656 Moo Ha Woo and Ki Young Lee 

From these results, we know that 0 + gl ß is homotopic to ß + g20 if 
and ony if 0 + kg! + ß + kg, is homotopic to ß + k잉 + 0 + kg !. Since 
[0 g.] E E(X, xo , G) and kg! E K , there exists an cyclic homotopy 
H1 of order gl at Xo such that H1 (XO ,.) is homotopic to 0 and a cyclic 
homotopy H2 of order gl at Xo such that H2 (xo , .) is homotopic to kg! P 
Define J : X x 1 -• X by 

I H1 (x ,2t) , 0 ~ t ~ 1/2 
J(z,t)=1 H2(I， 2-찌 1/2 ~ t ~ 1 

then J is a cyclic homotopy such that J(xo , ') is homotopic to 0 + kg! . 
Thus 0 + kg! is the traces of a cyclic homotopy of order 1x . By Lemma 
1, we obtain 

o+kg! +ß+kg, ~ (o+kg!)+(o+kg!)p+(ß+kg,)+(o+kgJ 

~ ß + kg, + 0 + kg! . 

In [l] ,the main result concerning the Gottlieb subgroup on a connected 
aspherical(in the sence that π‘ (X ， xo) = 0 for i > 1) polyhedroll is 

Theorem 3[1]. Let X be a connecied aspherical polνl뼈ron. Then G(X , xo) = 
Z(πI(X， XO)) 

Since every transformaatioll group (X , G) with the trivial acting group 
G = {lx} admits a family of preferred traces at xo , the Gottlieb’s resu lt 
can be extended by the following 

Theorem 4. Let X be a connecied aspherical polνhedroπ and G be abelian 
11 (X , G) admils a j.μaml 

E(X ’, Xo ’ G대) = Z( O"(X , Xo , G)) 

Proof If (X , G) admits a fami ly {kglg E G} of preferred traces at xo , 
then we first show that there exists an isomorphism <þ from σ(X， xo ,G) 
onto 1rl (X , xo) x G which carries E(X , xo , G) onto G(X , xo) x G. Define 
<þ: O"(X, xo , G) -• π1 (X , xo) x G by <þ( [o : g]) = ([0+돼 ， g) ， then <þ is well 
defined. Because, if [0 : g] = [0' : g' ], then 0 is homotopic to 0' and 9 = g' 
Thus 0 + kg is homotopic to 0' + kg. Suppose <þ([o : 이) = <þ([o' : g]) 
Then 0 + kg is homotopic to 0' + kg . This implies that 0(= 0 + kg + kgp) 
is homotopic to 0' (= 0' + κ + kgp). Therefore <þ is injective 

For a따 element ([o] ,g) E πI(X， xo) x G, there exists an element [0 + 
kgp: g] in o-( X , xo , G) such that <þ ([o + kgp : g]) = ([여 ， g) . Therefore, <þ is 
surjective 
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Next, we show that rþ is a homomorphism. Let [0'1 : 9d and [0'2 : 92] 
be elements of O"(X , xo , G). Then 

rþ( [O' I : 9d 0 [0'2 : 92]) = ([0'1 + 91 0'2 + kg1 92 ], 9192) 

and 
rþ([0'1 : 9d) 0 rþ([0'2 : 92]) = ([0'1 + kg, + 0'2 + kg2 ],9192) 

Since 0'2 + kg2 is a loop at Xo and kg, P is the traces of a cj데c homotopy 
of order 91 at xo , 0'2 + kg2 is homotopic to kg, P + 91 (0'2 + kg2 ) + kg, by 
Lemma 1. Therefore, we have 

0'1 + kg, + 0'2 + kg2 ~ 0'1 + kg, + kg,P + 91(0'2 + kg,) + kg, 
~ 0'1 + 91(0'2 + kg2 ) + kg, 
~ 0'1 + 91 0'2 + 91k92 + kg, 
~ 0'1 + 9 10'2 + k9192 

This implies that rþ is a homomorphism. Finally, we show rþ sends E(X , xo , G) 
onto G(X , Xo) x G. Let [0' : 9] be an element of E(X, xo , G). Then there 
exists a cyclic homotopy H : X x 1 - • X of order 9 with trace 0' and a 
cyclic homotopy J ‘ X x 1-• X of order 9 with trace kgp. 

Define F : X x 1 - • X by 

J H(x ,2t) , 0 ~ t ~ 1/2 
F(x ， t)=~ 1 J (x ,2(1- t )), 1/2 ~ t ~ 1 

Then F is a cyclic homotopy w뼈0' + k
g

, for 

F(x ,O) = H(x ， 이 = x ,F(x ,l) = J(x ,O) = x , 

r H(xo ,t) , O~t~I/2 
F(xo , t) = { J(xo ,2(1 - t)) , 1/2 ~ t ~ 1 

l = (0' + kg)(t). 

Thus [0'+ kg] belongs to G(X , xo) . For any element ([이， 9) E G(X,xo)xG , 
there exists a cyclic homotopy H : X x 1 - • X of order 1 x wi th trace 0' 

Since {세9 E G} is a family of preferred traces at xo , there e저sts a cyclic 
homotopy J : X x 1 - • X of order 9 with trace kgp. Define 

J H(x ,2t) , 0 으 t ~ 1/2 
F(x , t) = ~ 1 J(x ,2t -1) , 1/2 ~ t ~ 1, 
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then F is a cyclic homotopy of order 9 with trace 0 + kgp and hence there 
exists an element [0 + kgp : 9J in E(X, xo , G) such that rþ([o + kgp : 이)= 
([0 + kgp + kg ], 9) = ([이， 9) 

Let [0 : 9J be any element of Z(u(X, xo, G)). Then rþ([o : 9]) = ([0 + 
kgJ ,9) belongs to Z(πl(X， XO) X G) = Z(πl(X， XO)) X G = G(X, xo) x G. 
Thus [0 : 이 belongs to E(X, xo , G). The other impljcation is followed by 
Theorem 2. Thus this completes the proof 

R emark. We can think the Gottlieb ’s result(that is ,Theorem 3) is a special 
case of Theorem 5 by taking G = {lx} ‘ 
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