WREATH PRODUCT OF REGULAR *-SEMIGROUPS

Jong Moon Shin

Dedicated to Professor Younki Chae on his 60th birthday

1. Introduction

The concept of algebraic regular * - semigroup was introduced by McAlister ([2]). In recent years, some authers established many characterizations of such object [2], [9], [10], [11], and [12]. In this paper, we first discuss a topological regular * - semigroup of continuous functions from a locally compact space into a topological regular ${ }^{*}$ - semigroup. And we establish the wreath product of topological regular * - semigroups as one of the semidirect products of topological semigroups. Many properties concerned with the wreath product of algebraic semigroups are well known in [8], [13] and related papers.

2. Preliminaries

Throughout, all topological spaces will assume Hausdorff spaces. A semigroup is a nonempty set S together with an associative multiplication. An element e of a semigroup S is called an idempotent if $e^{2}=e$.

A topological semigroup is a Hausdorff space S together with a continuous associative multiplication.
Definition([10]). A semigroup S with a unary operation * : $S \rightarrow S$ is called a $*$ - semigroup if it satisfies
(1) $\left(x^{*}\right)^{*}=x$ for all $x \in S$,
(2) $(x y)^{*}=y^{*} x^{*}$ for all $x, y \in S$.

[^0]A * - semigroup S is called a regular ${ }^{*}$ - semigroup if $x=x x^{*} x$ for all $x \in S$.

Let S be a * - semigroup. An idempotent $e \in S$ is called a projection if $e^{*}=e$. We denote the set of all projections of S by $P(S)$.

Note that if S is a regular * - semigroup then $x x^{*}$ and $x^{*} x$ are projections of S for each $x \in S$.

Definition. A topological regular ${ }^{*}$ - semigroup is a topological semigroup S which is a regular * - semigroup and the unary operation ${ }^{*}$ on S is a continuous function.

3. Regular * - semigroup of Continuous Functions

If X and Y are Hausdorff spaces, then $C(X, Y)$ denotes the set of all continuous functions from X into Y. For Hausdorff spaces X and Y, we will be assumed the remainder that $C(X, Y)$ is assigned the compact open topology.

Let S and T be topological semigroups. The pointwise multiplication on $C(S, T)$ is defined by $(f g)(x)=f(x) g(x)$ for all $x \in S$.

Theorem 3.1([6]). Let S be a locally compact space and let T be a topological semigroup. Then $C(S, T)$ with the pointwise multiplication is a topological semigroup.

Theorem 3.2. Let S be a locally compact space and let T be a topological regular * - semigroup. Then $C(S, T)$ with the pointwise multiplication is a topological regular ${ }^{*}$ - semigroup.
Proof. In view of Theorem 3.1., $C(S, T)$ is a topological semigroup. We establish that $C(S, T)$ is a regular * - semigroup and the unary operation on $C(S, T)$ is continuous; Let $\phi: T \rightarrow T$ be the unary operation. For each $f \in C(S, T)$, let $f^{*}=\phi \circ f$, that is $f^{*}(x)=(\phi \circ f)(x)=$ $\phi(f(x))=f(x)^{*}$ for all $x \in S$. Then $f^{*} \in C(S, T)$. For $x \in S$, $\left(f^{*}\right)^{*}(x)=(\phi \circ(\phi \circ f))(x)=\left(f(x)^{*}\right)^{*}=f(x)$. So $\left(f^{*}\right)^{*}=f$. Let $g \in C(S, T)$. Then $(f g)^{*}(x)=(\phi \circ(f g))(x)=((f g)(x))^{*}=(f(x) g(x))^{*}=$ $g(x)^{*} f(x)^{*}=(\phi \circ g)(\phi \circ f)(x)=\left(g^{*} f^{*}\right)(x)$ for all $x \in S$. So, $(f g)^{*}=g^{*} f^{*}$. Thus $C(S, T)$ is a ${ }^{*}$ - semigroup. Moreover, for $x \in S,\left(f f^{*} f\right)(x)=$ $f(x) f^{*}(x) f(x)=f(x) f(x)^{*} f(x)=f(x)$. So $f f^{*} f=f$ for all $f \in C(S, T)$. Hence $C(S, T)$ is a regular * - semigroup. To prove that the unary operation on $C(S, T)$ is continuous, let $\rho: C(S, T) \rightarrow C(S, T)$ be the unary operation. Then $\rho(f)=f^{*}=\phi \circ f$. Let K be a compact subset of S, W
an open subset of $T, f \in C(S, T)$, and $f^{*}=\rho(f)(K) \in N(K, W)$. Then $(\phi \circ f)(K)=f^{*}(K)=\rho(f)(K) \subset W$. Hence $f(K) \subset \phi^{-1}(W)$, and hence $f \in N\left(K, \phi^{-1}(W)\right)$, where $\phi^{-1}(W)$ is open subset of T because the unary operation ϕ is continuous. If $g \in N\left(K, \phi^{-1}(W)\right)$, then $g(K) \subset \phi^{-1}(W)$. So $\rho(g)(K)=g^{*}(K)=(\phi \circ g)(K) \subset W$, and so $\rho(g) \in N(K, W)$. Thus $\rho\left(N\left(K, \phi^{-1}(W)\right)\right) \subset N(K, W)$. Hence ρ is continuous. Therefore $C(S, T)$ is a topological regular * - semigroup.

4. Wreath Product of Regular * - semigroups

If S is a [topological] semigroup, then we use End (S) to denote the set of [continuous] endomorphisms of S. Note that if S is a [locally compact] semigroup then End (S) [with the relative topology of $C(S, T)$] is a [topological] semigroup under the composition of [continuous] homomorphisms ([4]).

Definition. Let S be a [locally compact] semigroup, T a [topological] semigroup. If there exist a [continuous] homomorphism $\phi: T \rightarrow \operatorname{End}(S)$, then we define the semidirect product $S \times_{\phi} T$ of S and T to be $S \times T$ [with the product topology] together with multiplication $\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right) \rightarrow$ $\left(s_{1} \phi\left(t_{1}\right)\left(s_{2}\right), t_{1} t_{2}\right)$.
Lemma 4.1. Let S be a [locally compact] simigroup, T a [topological] semigroup, and $\phi: T \rightarrow \operatorname{End}(S)$ a [continuous] homomorphism. Then $S \times_{\phi} T$ is a [topological] semigroup. (See [4]).

Definition. Let S and T be semigroups and let S^{T} be the set of all functions from T into S. The wreath product $S \odot T$ of S and T is the set $S^{T} \times T$ with multiplication defined by $((f, a),(g, b)) \rightarrow\left(f g_{a}, a b\right)$ for all $f, g \in S^{T}$ and $a, b \in T$, where $\left(f g_{a}\right)(x)=f(x) g(x a)$ for all $x \in T$.

Remark. Suppose S and T are semigroups. Then the set S^{T} of all functions from T into S is a semigroup under the pointwise multiplication. Define $\phi: T \rightarrow \operatorname{End}\left(S^{T}\right)$ by $\phi(t)=\phi \circ \rho_{t}$, where ρ_{t} is a right translation by t in T. Then ϕ is a homomorphism. Hence the wreath product $S \odot T$ of S and T is $S^{T} \times_{\phi} T$, and hence $S \odot T=S^{T} \times T$ with multiplication given by $((f, a),(g, b)) \rightarrow\left(f g \circ \rho_{a}, a b\right)$.

In view of Lemma 4.1 and Remark, the following theorems are easily obtained.

Theorem 4.2([6]). Let S and T be semigroups. Then the wreath product
$S \odot T$ of S and T is a semigroup.
Theorem 4.3([6]). Let S be a topological semigroup and let T be a locally compact topological semigroup. Suppose that the semigroup S^{T} of all continuous functions from T into S is locally compact and suppose $\phi: T \rightarrow \operatorname{End}\left(S^{T}\right)$ given by $\phi(a)(f)=f \circ \rho_{a}$ is continuous. Then the wreath product $S \odot T$ of S and T is a topological semigroup.

Theorem 4.4. Let S and T be regular ${ }^{*}$ - semigroups. If $f(x e)=f(x)$ for all $e \in P(T), x \in T$ and $f \in S^{T}$, then the wteath product $S \odot T$ of S and T is a regular ${ }^{*}$ - semigroup.
Proof. In view of Lemma 4.1., $S \odot T$ is a semigroup. Let $(f, a) \in$ $S \odot T=S^{T} \times T$. Define $(f, a)^{*}=\left(g, a^{*}\right)$ such that $g(x)=\left(f\left(x a^{*}\right)\right)^{*}$ for all $x \in T$. Then $(f, a)^{*}=\left(g, a^{*}\right)^{*}=\left(h,\left(a^{*}\right)^{*}\right)$ such that $g(x)=$ $f\left(x a^{*}\right)^{*}$ and $h(x)=g\left(x\left(a^{*}\right)^{*}\right)^{*}$ for all $x \in T$. So, $h(x)=g(x a)^{*}=$ $\left(f\left(x a a^{*}\right)^{*}\right)^{*}=\left(f(x)^{*}\right)^{*}=f(x)$ for all $x \in T$, and so $h=f$. Hence $\left((f, a)^{*}\right)^{*}=(f, a)$. And let $(g, b) \in S \odot T=S^{T} \times T$. Then $((f, a)(g, b))^{*}=$ $\left(f g_{a}, a b\right)^{*}=\left(h,(a b)^{*}\right)=\left(h, b^{*} a^{*}\right)$ such that $h(x)=f g_{a}\left(x(a b)^{*}\right)^{*}$ for all $x \in T$. So $h(x)=\left(f\left(x(a b)^{*}\right) g\left(x(a b)^{*} a\right)\right)^{*}=\left(f\left(x b^{*} a^{*}\right) g\left(x b^{*} a^{*} a\right)\right)^{*}=$ $g\left(x b^{*}\right)^{*} f\left(x b^{*} a^{*}\right)^{*}$. On the other hand, $(g, b)^{*}(f, a)^{*}=\left(k, b^{*}\right)\left(l, a^{*}\right)=$ $\left(k l_{b^{*}}, b^{*} a^{*}\right)$ such that $k(x)=g\left(x b^{*}\right)^{*}$ and $l(x)=f\left(x a^{*}\right)^{*}$ for all $x \in T$. So, $\left(k l_{b^{*}}\right)(x)=k(x) l\left(x b^{*}\right)=g\left(x b^{*}\right)^{*} f\left(x b^{*} a^{*}\right)^{*}$ for all $x \in T$. Hence $h=k l_{b^{*}}$, and hence $((f, a)(g, b))^{*}=(g, b)^{*}(f, a)^{*}$ for all $(f, a),(g, b) \in S \odot T$. Thus $S \odot T$ is a * - semigroup. Next, let $(f, a) \in S \odot T=S^{T} \times T$ and let $(f, a)^{*}=$ $\left(g, a^{*}\right)$ such that $g(x)=f\left(x a^{*}\right)^{*}$ for all $x \in T$. Then $(f, a)(f, a)^{*}(f, a)=$ $(f, a)\left(g, a^{*}\right)(f, a)=\left(f g_{a}, a a^{*}\right)(f, a)=\left(f g_{a} f_{a a^{*}}, a a^{*} a\right)=\left(f g_{a} f_{a a^{*}}, a\right)$, where $\left(f g_{a} f_{a a^{*}}\right)(x)=f(x) g(x a) f\left(x a a^{*}\right)=f(x) f\left(x a a^{*}\right)^{*} f\left(x a a^{*}\right)=f(x) f(x)^{*} f(x)=$ $f(x)$ for all $x \in T$. Hence $(f, a)(f, a)^{*}(f, a)=(f, a)$ for all $(f, a) \in S \odot T$. Therefore $S \odot T=S^{T} \times T$ is a regular ${ }^{*}$ - semigroup.

Theorem 4.5. Let S be a topological regular * - semigroup and let T be a locally compact topological regular * - semigroup. Suppose that the semigroup S^{T} of all continuous fucntions from T into S is locally compact and suppose $\phi: T \rightarrow \operatorname{End}\left(S^{T}\right)$ given by $\phi(a)(f)=f \circ \rho_{a}$ is continuous. If $f(x e)=f(x)$ for all $x \in T$ and $f \in S^{T}$, then the wreath product $S \odot T$ of S and T is a topological regular ${ }^{*}$ - semigroup.
Proof. In view of Theorem 4.3.,S $\odot T$ is a topological semigroup. In view of Theorem 4.4., $S \odot T$ is a regular * - semigroup. We need to show that the unary operation on $S \odot T=S^{T} \times T$ is continuous. To prove this, we adopt the following notations;
(1) $U n i_{S^{T}}$ and $U n i_{T}$ are unary operations on S^{T} and T respectively, (2) $\pi_{1}: S^{T} \times T \rightarrow S^{T}$ is the first projection, and
(3) $\pi_{2}: S^{T} \times T \rightarrow T$ is the second projection. Then the unary operation on $S \odot T$ is $\left(U n i_{S^{T}} \circ \phi\left(a^{*}\right) \circ \pi_{1}\right) \times\left(U n i_{T} \circ \pi_{2}\right)$. Hence it is continuous. Therefore $S \odot T$ is a topological regular * - semigroup.

References

[1] C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc., 144(1969), 115-126.
[2] D. B. McAlister, Regular semigroups, fundermental semigroups and groups, J.Austral Math. Soc. (Series A) 29(1980), 475-503.
[3] J. Dugundji, Topology, Allyn and Bacon Inc. Boston (1968).
[4] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The theory of topological semigroups, Marcel Dekker Inc. New York and Basel (1983).
[5] J. M. Howie, An introduction to semigroup theory, Academic Press Inc. (1976).
[6] J. M. Shin, Wreath product of topological inverse semigroups, Comm. of Korean Math. Soc. 2(1987), No.1.
[7] J. M. Shin, Some results on topological regular * - semigroup, Dongnuk J. at Kyongju, 9(1990).
[8] L. A. Skornjakov, Regularity of the wreath product of monoids, Semigroup Forum 18 (1978), 83-86.
[9] T. Imaoka, On fundamental regular *- semigroups, Mem. Fac. Sci., Shimane Univ. 14 (1980), $19-23$.
[10] T. Imaoka, Some remarks on fundamental regular *- semigroups, Rectnt development in the algebraic, analytical and topological theory of semigroups, Springer Verlag (1981), 270-280.
[11] T. E. Hall, On regular semigroups, J. algebra 24(1973), 1-24.
[12] T. E. Nordahl and H. E. Scheiblich, Regular * - semigroups, Semigroup Forum 16(1978), 369-377.
[13] U. Knauer and A. Mikhalev, Wreath product of ordered semigroups, Semigroup Forum 27(1983), 331-350.

Department of Mathematics, Dongguk University, Gyeongju 780-714, KoREA.

[^0]: Received March 21, 1992.

