T-FUZZY INTEGRAL

Jeong Dae Rim

Dedicated to Professor Younki Chae on his 60th birthday

In this paper, we will establish the definition of fuzzy integral with which the main properties of Sugeno's fuzzy integral [1] are retained. Then, using this definition, we show that the monotone convergence theorem and Fatou's lemma hold for the fuzzy integral.

Now, by using the T-fuzzy measure [2] and the fuzzy-valued T-fuzzy measure [3], we define T-fuzzy integrals which are very similar to Lebesgue integrals.

Definition 1. Let (X, σ) be a *T*-fuzzy measurable space and *m* a *T*-fuzzy measure on (X, σ) . Then the *T*-fuzzy integral of a *T*-fuzzy measurable set μ with respect to *m* is defined as follows:

$$\int \mu dm = \sup_{\alpha \in I} \min[\alpha, m(T(\mu, \alpha))].$$

Similarly, let \tilde{m} be a fuzzy-valued T-fuzzy measure on (X, σ) . Then the T-fuzzy integral of a T-fuzzy measurable set μ with respect to \tilde{m} is defined as follows:

$$\int \mu d\tilde{m} = \sup_{\alpha \in I} \min[\alpha, [\tilde{m}(T(\mu, \alpha))]^q].$$

By definition, we obtain the monotonicity of the T-fuzzy integral.

Proposition 2. Let (X, σ) be a T-fuzzy measurable space and m a T-fuzzy measure on (X, σ) . If $\mu_1 \leq \mu_2$ in σ , then $\int \mu_1 dm \leq \int \mu_2 dm$.

Received March 2, 1992.

Now, we show the monotone convergence theorem and the Fatou's lemma for the T-fuzzy integral.

Definition 3. A *T*-fuzzy measurable space (X, σ) is said to be continuous if $(T(\mu_n, \alpha))_{n \in \mathbb{N}} \uparrow T(\mu, \alpha)$ for all $\alpha \in I$, whenever $(\mu_n)_{n \in \mathbb{N}} \uparrow \mu$ in σ .

Theorem 4. Let (X, σ) be a continuous T-fuzzy measurable space and m a T-fuzzy measure on (X, σ) . If $(\mu_n)_{n \in N} \uparrow \mu$ in σ , then $\lim_{n\to\infty} \int \mu_n dm = \int \mu dm$.

Proof. Let $\lim_{n\to\infty} \int \mu_n dm = a$. Obviously, $\int \mu_n dm \leq \int \mu dm$ by the monotonicity of the *T*-fuzzy integral. Hence $a = \lim_{n\to\infty} \int \mu_n dm \leq \int \mu dm$. Now, suppose $a < \int \mu dm$. Take real r with $a < r < \int \mu dm$, then $\min[\alpha_0, m(T(\mu, \alpha_0))] \geq r$ for some $\alpha_0 \in I$. Therefore, $\min[\alpha_0, m(T(\mu, \alpha_0))] \geq r > a \geq \min[\alpha_0, m(T(\mu_n, \alpha_0))]$ for all $n \in N$, which is a contradiction by the fact that $(m(T(\mu_n, \alpha_0)))_{n \in N} \uparrow m(T(\mu, \alpha_0))$.

Theorem 5. Let (X, σ) be a continuous T-fuzzy measurable space and m a T-fuzzy measure on (X, σ) . Suppose σ is closed under the formations of countable sup and countable inf. Then for any sequence $(\mu_n)_{n \in N}$ in σ ,

$$\int (\lim_{n \to \infty} \inf \mu_n) dm \le \lim_{n \to \infty} \inf \int \mu_n dm.$$

Proof. For each $n \in N$, let $\mu_n^* = \inf_{k \ge n} \mu_k$. Then $\mu_n^* \le \mu^*_{n+1}$ for each $n \in N$. Since $(\mu_n^*)_{n \in N} \uparrow \lim_{n \to \infty} \inf \mu_n$ in σ , by Theorem 4,

$$\int \lim_{n \to \infty} \inf \mu_n dm = \lim_{n \to \infty} \int \mu_n^* dm = \sup_n \int \mu_n^* dm \le \sup_n \inf_{k \ge n} \int \mu_k dm$$
$$= \lim_{n \to \infty} \inf \int \mu_n dm.$$

Now, we obtain generalized versions of the monotone convergence theorem and the Fatou's lemma for the T-fuzzy integral.

Definition 6. A *T*-fuzzy measurable space (X, σ) is said to be *S*-continuous if for any increasing sequence $(\mu_n)_{n \in N}$ in σ , $(T(\mu_n, \alpha))_{n \in N} \uparrow T(S_{n \in N} \mu_n, \alpha)$ for all $\alpha \in I$.

If $S(\mu_1, \mu_2) = \mu_1 \vee \mu_2$, then a T-fuzzy measurable space (X, σ) is S-continuous if and only if it is continuous.

Theorem 7. Let (X, σ) be a S-continuous T-fuzzy measurable space and m a T-fuzzy measure on (X, σ) . Then for any increasing sequence $(\mu_n)_{n \in N}$

in σ .

$$\lim_{n\to\infty}\int\mu_n dm=\int S_{n\in N}\mu_n dm.$$

Theorem 8. Let (X, σ) be a S-continuous T-fuzzy measurable space and m a T-fuzzy measure on (X, σ) . Then for any sequence $(\mu_n)_{n \in N}$ in σ ,

$$\int S_{n \in N} T_{k \ge n} \mu_k dm \le \lim_{n \to \infty} \inf \int \mu_n dm.$$

The proofs of Theorem 7 and Theorem 8 are obtained in similar way as in the proofs of Theorem 4 and Theorem 5 by using of Definition 6.

If $S(\mu_1, \mu_2) = \mu_1 \lor \mu_2$, then Theorem 4 and Theorem 5 follow immediately from Theorem 7 and Theorem 8, respectively.

In the above Proposition 2, Theorem 4, Theorem 5, Theorem 7 and Theorem 8, same results hold in case of fuzzy-valued T-fuzzy measure \tilde{m} .

References

- D. Dubois and H. Prade, Fuzzy sets and systems; Theory and applications, Academic Press, New York, 1980.
- E.P. Klement, Characterization of fuzzy measures constructed by means of triangular norms, J. Math. Anal. Appl. 86(1982), 345-358.
- [3] _____, Fuzzy measures assuming their values in the se of fuzzy numbers, J. Math. Anal. Appl. 93(1983), 312-323.

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 120-749, KOREA.