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In this paper, we will establish the definition of fuzzy integral with
which the main properties of Sugeno’s fuzzy integral [1] are retained.
Then, using this definition, we show that the monotone convergence the-
orem and Fatou’s lemma hold for the fuzzy integral.

Now, by using the T-fuzzy measure [2] and the fuzzy-valued T-fuzzy
measure [3], we define T-fuzzy integrals which are very similar to Lebesgue
integrals.

Definition 1. Let (X, o) be a T-fuzzy measurable space and m a T-fuzzy
measure on (X, o). Then the T-fuzzy integral of a T-fuzzy measurable set
u with respect to m is defined as follows:

]pdm = ilé? min[a, m(T' (g, «))].

Similarly, let m be a fuzzy-valued T-fuzzy measure on (X, o). Then the
T-fuzzy integral of a T-fuzzy measurable set u with respect to m is defined
as follows:

| i = sup minles, (7, )
By definition, we obtain the monotonicity of the T-fuzzy integral.

Proposition 2. Let (X, 0) be a T-fuzzy measurable space and m a T-fuzzy
measure on (X,0). If gy < py in o, then [ pydm < [ podm.
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Now, we show the monotone convergence theorem and the Fatou’s
lemma for the T-fuzzy integral.

Definition 3. A T-fuzzy measurable space (X, o) is said to be continuous
if (T(ptny@))nen T T(p, @) for all @ € I, whenever (g, )neny T pin o.

Theorem 4. Let (X, o) be a continuous T-fuzzy measurable space and m
a T-fuzzy measure on (X, 0). If (tn)nen T #t in o, then lim, . [ pndm =
[ pdm.

Proof. Let lim,_.o. [ g,dm = a. Obviously, [ u,dm < [ udm by the mono-
tonicity of the T-fuzzy integral. Hence a = lim,_ ., [ pdm < [ pdm.
Now, suppose a < [pudm. Take real r with a < r < [pudm, then
min[ag, m(T (g, ap))] > r for some ap € I. Therefore, min[ag, m(T(p, ap))] =
r > a > minf[ag, m(T(pn, a))] for all n € N, which is a contradiction by
the fact that (m(T (pn, ®0)))nen T m(T (g, a0)).

Theorem 5. Let (X, o) be a continuous T-fuzzy measurable space and m
a T'-fuzzy measure on (X,0). Suppose o is closed under the formations of
countable sup and countable inf. Then for any sequence (f,)nen in o,

/ (Jim inf a)dm < lim inf / i i,

Proof. For each n € N, let p,* = infi>, px. Then p,* < p*, ., for each
n € N. Since (f,")neny T lim, o inf g, in o, by Theorem 4,

/ lim inf g,dm = lim /pn*dm = sup/pn*dm < sup ir;f/pkdm

n—oo n—00

= ’}irrgoinf/pndm.
Now, we obtain generalized versions of the monotone convergence the-
orem and the Fatou’s lemma for the T-fuzzy integral.

Definition 6. A T-fuzzy measurable space (X, o) is said to be S-continuous
if for any increasing sequence (g, )nen in @, (T (ftn, @))nen T T(Snentin, @)
for all a € I.

If S(p1,p2) = p1 V pa, then a T-fuzzy measurable space (X, o) is S-
continuous if and only if it is continuous.

Theorem 7. Let (X,0) be a S-continuous T'-fuzzy measurable space and
m a T-fuzzy measure on (X, 0). Then for any increasing sequence (fin)nen
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im j podm = ] Sucntiadm.

n—oo

Theorem 8. Let (X,0) be a S-continuous T-fuzzy measurable space and
m a T-fuzzy measure on (X,0). Then for any sequence (fn)nen in o,

/SneNTanykdm < ﬂ'h_.nclo inf/pndm.

The proofs of Theorem 7 and Theorem 8 are obtained in similar way
as in the proofs of Theorem 4 and Theorem 5 by using of Definition 6.

If S(p1,p2) = g1 V 2, then Theorem 4 and Theorem 5 follow immedi-
ately from Theorem 7 and Theorem 8, respectively.

In the above Proposition 2, Theorem 4, Theorem 5, Theorem 7 and
Theorem 8, same results hold in case of fuzzy-valued T-fuzzy measure m.

References

[1] D. Dubois and H. Prade, Fuzzy sets and systems; Theory and applications, Aca-
demic Press, New York, 1980.

[2] E.P. Klement, Characterization of fuzzy measures consiructed by means of irian-
gular norms, J. Math. Anal. Appl. 86(1982), 345-358.

[3] , Fuzzy measures assuming their values in the se of fuzzy numbers, J.
Math. Anal. Appl. 93(1983), 312-323.

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 120-749, KOREA.



