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1. Introduction

Throughtout the following, R will denote a commutative ring with
identity 1 and A be unitary commutative R-algebra with unit and R-
derivation of A is a mapping D : A — A satisfying (i) D(ra + sb) =
rD(a)+sD(b) (R-linearity) and (ii) D(ab) = D(a)b+aD(b) (multiplicative
law) for all r,s € R and a,b € A.

Let M be an A-module, we consider a mapping d : A— 4 M satisfying

(i) d(ra + sb) = rd(a) + sd(b) and

(ii) d(ab) = ad(b) + bd(a) for all ;s € R and a,b€ A

A-module M with such mapping d is called A-derivation module and
will be denoted by (M,d).

Let (My,d;) and (M;,d;) be two A-derivation modules and if there
exists an A-module homomorphism f : M; — M, such that f-d; = d,
we call such f as A-derivation module homomorphism and will be denoted
f (M, d)) — (M,,d3). If such homomorphism is one to one and onto
we call it A-derivation module isomorphism ([1,2]).

In the category of all collection of A-derivation modules and A-derivation
module homomorphisms, there exists a universal elements, we call it a uni-
versal A-derivation module, explicitly for any A-derivation module (M, é),
there exists unique A-derivation module (U,d) and unique A-derivation
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module homomorphism f : (U,d) — (M, ) such that fd = § we call
such (U,d) as a universal A-derivation module.
We denote A-Mod as the category of all left A-modules.

At first, we consider @,(A) ring of quotients of A w.r.to given torsion
theory 7. Then @,(A) is a left A-module, thus we can regard @Q,(A) as
left R-module.

In this paper using the method developed by Golan [5], we extend A-
derivation module (M, d) to Q,(A)-derivation module (Q,(M),d) under a
certain condition (Proposition 4). And we show that if (U, d) is universal
A-derivation module, then (Q.(U),d) is also universal Q,(A) derivation
module among a full subcategory of @,(A)-Mod. (Proposition 9). We
try to see the concrete structure of universal @,(A)-derivation module in

special case. (Proposition 10).

2. Preliminaries

Notaition and terminology concerning (hereditary) torsion theories on
A-Mod will follow [4]. In particular, if 7 is a torsion theory on A-Mod
then a left ideal H of A is said to be 7-dense in A if and only if the
cyclic left A-module R/H is 7-torsion. If M is a left A-module then we
denote by T,(M) the unique largest submodule of M which is 7-torsion.
If E(M) is the injective hull of a left A-module M then we define the
submodule E, (M) of E(M) by E.(M)/M = T,(E(M)/M). The module
of quotients of M with respect to 7, denoted by Q,(M), is then defined
to be E,(M/T,(M)). Note that, in particular, if M is 7-torsionfree then
Q-(M) = E, (M), and this is a left A-module containing M as a largest
submodule. In general, we have a canonical A-homomorphism from M
to Q,(M) obtained by composing the canonical surjection from M to
M /T.(M) with the inclusion map into Q.(M).

If A is the endomorphism ring of the left A-module @,(4A4) then
Q-(M) is canonically a left A-module for every A-module M and the
canonical map A — A, is a ring homomorphism, the ring A, is called as
the ring of quotients or localization of A at 7. A torsion theory on A-Mod
is said to be faithful if and only if A, considered as a left module over
itself, is 7-torsionfree. In this case, A is canonically subring of A,.

Lemma 1([4]). Let H be a 7-dense ideal in A, and let ay, be A-module
homomorphism defined on H into Q.(M), then R/H is t-torsion and
there ezist unique R-module homomorphism Bry : A — Q.(M) which
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makes the daigram

commultes.

Lemma 2([4]). Let H and K be 7-dense ideals of A then we have the
following results.

(1) HN K is 7-dense ideal.

(2) (H:a)={r € A|ra € H} is T-dense ideal.

(3) Homomorphic image of H is T-dense ideal.

(4) HK is T-dense ideal.

Lemma 3([4]). Let H and K be 7-dense ideals of R and let oy, : H —
Q- (M) and ak, : K — Q.(M) be defined as in the Lemma 1. Then
ap, and ak, define the same element in Q,.(M).

3. Extension theorems

In this section we consider extensions of A-derivation module M to
@+ (A)-derivation module, in the case M is absolutely pure 7 -module,
where 7 is a torsion theory on A-Mod.

For the given torsion theory 7 on A-Mod, if a left A-module M is 7-
torsionfree and 7-injective we say that M is absolutely T-pure. We denote
the class of all absolutely 7-pure A-modules by €., and we know that ¢, is
equivalent to the full subcategory of Q,(A)-Mod (or A,-Mod ) consisting
of modules of the form @Q,(M). Also we note that every element of ¢, has
the structure of left A,-module which narually extends its structure as a
left A-module ([4], Proposition 6.6)

Proposition 4. Let (M, d) be an A-derivation module and 7 be a torsion
theory on A-Mod and M be absolutely T-pure left A-module, then there
exists a derivation d : Q,(A) — Q,(M), the restriction of which to A is
d, ie., (Q,(M),d) is a Q,(A)-derivation module.

Proof. At first we note that @,.(M) is a @.(A)-module. If ¢ is an element
of @-(A), then there exists a 7-dense ideal H of A satisfying Hq < A.
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Define a function ap, : H — Q,(M) by setting ag,(h) = a(hq) — qd(h)
for all A in H. Since M is absolutely T-pure this mapping is well-defined.

We can see that ay , is A-homomorphism apply Lemma 1, we have that
ap , extends uniquely to A-homomorphism from A to ), (M) and so there
exists unique element ¢ of Q,(M) satisfying the condition ap (k) = hg
for all h in H. We now define a function d : Q,(A) — Q,(M) by
setting d(g) = g. This function is well-defined. Indeed, suppose that g is
an element of @, (A) and let H and K be 7-dense ideals of A satisfying
Hg< Aand Kq < A. Then (HNK)g < A and H N K is also 7-dense
ideal in A. By Lemma 3, ay, and ok, define the same element g.

We have to show that such d is an R-derivation on Q,(A), i.e., (Q,(M),d)
is a (), (A)-derivation module. Indeed, for any elements p and ¢ in @, (A)
and r in R, there exist r-dense ideals H and J of A satisfying Hp < A
and Jg < A. Take K = H N J, which is T-dense ideal of A satisfying
Kp < A and K¢ < A. For every element k of K we have

arpre(k) = d(k(p+q)) — (p+ g)d(k)
= d(kp + kq) — (p + q)d(k)
= aky(k) + akq(k)
= (akp+axg)(k)

By Lemma 1, the uniqueness of extension, we have that d(p +¢) = d(p) +
d(q).

Note that left A-module ),(A) can be regarded as left R-module via
ring homomorphism ¢ : B — A defined by ¢(r) = r - e. For any element
qof Q-(A) r-q=¢(r)q.

Similarly there exists a T-dense left ideal H of A satisfying Hp < A
and He(r)p < A. Take K = H N (H : ¢(r)) which is 7-dense ideal
of A also. Consider an A-homomorphism from K to @,(M) given by
k— CEK,,-.;,(]C)

akqp(k) = d(k(r-p))—(r-p)d(k)
(
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Again by the uniqueness of extension, we have that d(rp) = rd(p).
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Finally take K = HJ, which is 7-dense ideal of A, by Lemma 2.
Consider

ak pe(kk') — parq(kk') = (K'q)d(kp) — pk'qd(k)
q(K'd(kp) — pk'd(k))
= q((d(kk')p) — pd(kk'))
= qag,(kk')

By the uniqueness extension, we have

d(pq) = pd(q) + qd(p).

Now we prove that d restricts to d on A. For any element a of A then
we can take A as 7-dense ideal of A such that Ae < A. For any element
b in A, which is considered 7-dense ideal of A, consider the following
@4,.(b) = bd(a). Now by the uniqueness extension, bd(a) = bd(a) so
d(a) = d(a) for any element a of A.

Corollary 5. Let 7 be a torsion theory on A-Mod and (M,d) be an A-
derivation module. Let M be a T-torsionfree left A-module which is a
homomorphic image of a direct sum of copies of Q,(A), then (Q.(M),d)
is a Q,(A)-derivation module, the restriction of d on A is d.

Proof. From [5, E 26.20], M can be a left A;-module. Thus the mapping
apg: H — Q.(M) defined in the proof of Proposition 4 is well-defined.
The remaining part follows the above proof.
From the definition of R-derivation D on A, we can consider (A, D) as
an A-derivation module. The following proposition shows that (A, D) can

be extended to (Q,(A), D), relatively weaker condition than Proposition
4.

Proposition 7. Let 7 be a faithful torsion theory on A-mod and let D :
A — A be an R-derivation, then there exists unique extension D : A, —
A,, which restricts to A 1s D.

Proof. For any element g in (), (A), there exists a 7-dense ideal H of A such
that Hqg < A. Now define ay, : H — Q,(A), ay (k) = d(hq) — d(h)q,
this function is well defined.

The existence of D on A, follows from Proposition 4 and the fact Q. (A)
and A, are isomorphic, as left A-modules. To show the uniqueness, assume
that d* and f* be derivations defined on A,, and d* = f* on A. For any
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non-zero element ¢ in A,, there is 7-dense ideal H of A satisfying Hq < A,
then for any element h in H we have (d* — f*)(hq) = 0.

From this we have that H(d" — f*)(q) = 0. Since H is 7-dense ideal of
A, this implies that d*(¢) = f*(¢) for all ¢ in A,.

Corollary 8. Let 7 be a torsion theory on A-Mod satisfying D(T.(A)) C
T,(A). Then there erists a derivation D on Q.(A) in such a manner

that the diagram

A — @Q.(A)
D | |
A — Q. (A)
commutes.
Proof. Define D’ : T,?A) - T,-?A) by setting D'(a+T,(A)) = D(a)+T,(A).
By the condition D(T,(A)) C T,(A) such a map is well-defined. And we

know that ﬁ is T-torsionfree, by proposition 6 there exists an extension

. A A

g QT(TT(A)) ¥ QT(TT(A))' )
Since QT(T’[‘A;-)-) is isomorphic to @,(A), we have a derivation D on

(-(A) which making the diagram commutes.

Remark. If we take the ring R as the integer ring Z, then the R-derivation
D defined on the R-algebra A can be the derivation defined in [5].

So we can say that Golan extended Z-derivation D on the noncommu-
tative ring A to Z-derivation D on the quotient ring Q,(A), where A is
7-torsionfree as left A-module. ([5])

From this fact we can see some what difference between Golan’s ex-
tension Theorem and ours.

4. Universal Derivation Module

Now we want to extend universal derivation module in certain subcat-
egory of A-Mod to a full subcategory of quotient module category.
Proposition 9. Let (U,d) be an universal A-derivation module on €.,
then (Q,(U),d) is an universal Q,(A)-derivation module on C,, which is
a full subcategory of Q.(A)-Mod consisting of elements of the form M, .

Proof. First we note that for any element K of C,, K is isomorphic to
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Q- (M) for some left A-module M of ¢,. For any Q,(A)-derivation module
(K, 6"), consider that K = (). (M) for some M € e, and §* |4= é. By the
fact that (U,d) is an universal A-derivation module, there exists unique
A-homorphism f : (U,d) — (M, §). Since M is an element of &,, we
can extend f to f: Q. (U) — Q,(M) uniquely such that f |y= f (We
can prove just the same method of Proposition 4). Thus (Q,(U/),d) is an
universal @,(A)-derivation module.

If U is finitely generated projective A-module, then universal A-derivation
module (U, d) is isomorphic to (D(A)*, §), where D(A)* = Hom 4 (D(A), A)
and D(A) = {D : A — A | D is all R — derivation on A} and A-
derivation § : A — D(A)* is defined by (d(a))(D) = D(a) for all D in
D(A) and a in A.

Note that if U is finitely generated projective element in &, then @, (U)
is also finitely generated projective Q. (A)-module (by [4], Proposition 6.7)

and (Q,(U),d) is also an universal derivation module among C,. By the
same reasoning we have that (Q,(U),d) is isomorphic to (D(Q,(A))*,d")
where D(Q:(A))" = Homa, (1y(D(@+(A)), Q:(A)) and D(Q,(A)) is the
set of all R-derivation on (),(A) and d* : Q.(A) — D(Q,(A))* is defined
by (d*(q))(D) = D(q) for all D in D(Q,(A)) and ¢ in Q,(A).

On the other hand D(A)* = Hom4(D(A), A) is isomorphic to U, then
D(A)” is an absolutely r-pure A-module. By proposition 4 (D(A)*, §) has
unique extension as follows; (Q,(D(A)*), é) which is also universal element
in C;. Thus by the uniqueness of universal element (up to isomorphic) we

have the following main result.

Proposition 10. IfU is finitely generated projective universal A-derivation
module among ¢, then Q.(D(A)*) is isomorphic to D(Q.(A))* as Q,(A)-

modules. i.e.,

Homg, (4)(D(Q-(A)), Q-(A))
> Q,(Homu(D(A), A)

as 0, (A)-modules.

For the example satisfying the hypothesis of Proposition 10, we can
take the class of 7-torsionfree finitely generated quasi-Frobenius algebras.
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