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1. Introduction

Pime ideals play very important role in semigroups and are rooted
from prime numbers of the integers. Especially, it is cornerstone on com-
mutative rings and topological semigroups. There is a very useful theorem
known as Birkoff’s subdirectly irreducible rings. In [6], the authors have
proved that each semiprime ideal of a semigroup is an intersection of prime
ideals. From this property, we can obtain easily Birkoff’s theorem for a
semigroup. Since every ring can be considered as a semigroup under mul-
tiplication, we have more generalized Birkoff’s theorem. But in [6], the
authors used the notion of a prime ideal in the sense of a completely
prime ideal of [7]. In this paper, we want to study the relation between
semiprime ideals and prime ideals in a (non-commutative) semigroup S in
the sense of [7].

2. Preliminalies

S is a non-commutative semigroup and an ideal denotes always a two-

sided ideal of S.

Definition 2.1. A non-empty ideal ) of a semigroup S is said to be
prime if AB C @ implies that A C Q or B C @ for any ideals A, B of S.

Remark. There is an analogous definitions: An ideal @) is completely prime
if ab € @ implies that a € @ or b € @ for any elements a,b of S. We can
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prove easily that every completely prime ideal is prime but the converse
need not be true. The primeness and completely primeness coincide if S
is commutative. Someone use the notion of prime ideal in the sense of a
completely prime ideal. But in this paper, we consider prime ideals in the
sense of definition 2.1.

Lemma 2.2. The following conditions are equivalent:

1) @ is a prime ideal of S.

2) aSb C Q impliesa € QQ or b€ Q for any a,b of S.
Proof. 1) implies 2). Let aSb C Q. Then (SaS)(5bS) C @ and since
SaS and SbS are ideals of S, we have that SaS C @ or SbS C Q.
Assume that SaS C Q. The set S'aS' = SaS U {a} is the smallest
ideal containing a. We can prove easily that (§'aS')® = (SaS U {a})® =
(SaS U {a})(SaS U {a}) (SaS U {a}) C SaS C Q. So that S'aS' C Q
and so a € Q. Similary, if SbS C @, we have that b € Q.

2) implies 1). Let A, B be ideals of S and AB C Q. If A ¢ Q,
then there exists an element @ in A which is not in Q. For any b € B,
aSbC AB C Q. Since a € (), we have b € @ by 2). Thus B C Q.

The semigroup S itself is always a prime ideal of S. But S need not
have proper prime ideals.

Example 2.3. Let S = {0,a',a%---,a™}, m > 1, be a semigroup with
i ati o ifi+j<m
a'a = s )y
0 fi+7>m
Any proper ideal of S is of the form {a*, a**! ... a™ 0}(2 < k < m)
and is not a prime ideal of S.

Definition 2.4. A non-empty ideal P of S is said to be semiprime if
A? C P implies A C P for any ideal A of S.

By the same manner to the lemma 2.2, we can prove easily that an
ideal P of a semigroup S is a semiprime ideal of S if and only if aSa C P
implies @ € P for any a € S.

Definition 2.5. A subset T' of a semigroup S is said to be an m-system
if a,b € T, then azb € T for some z € S.

If T is a subsemigroup of S and ¢,b € T, then (ab)b € TT C T.
Thus T is an m-system. From this fact we can consider an m-system is a
generalization of a multiplicative system. The significance of this concept
stems from the fact that the equivalence of lemma 2.2 asserts that an ideal
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@ in a semigroup S is a prime ideal of S if and only if the compliment of
@ in S is an m-system. Since S itself is a prime ideal in S, we explicitly
agree that the empty set is to be considered as an m-system in order for
the preceeding statement to be true without exception.

The intersection of a finite number of ideals of a semigroup is not
empty. [For if A, B are ideals, we have AB is also an ideal contained in
AN B]. But there are semigroups in which the intersection of all the prime
ideal is empty.

Example 2.6. Let S be the set of all integers > 2, the multiplication being
the ordinary multiplication of numbers. The set I(p) = {p,2p,3p, - }p =
prime) are prime ideals of S and clearly the intersection N{I(p)|p runs
through all primes } is empty.

We can suppose that the intersection of prime ideals is also prime if
it is not empty. But it is not true. The following lemma show that it
becomes a semiprime ideal of S.

Lemma 2.7. Let Q; be any sets of prime ideals of a semigroup S(i € I).
If P =n{Q;|i € I} is not empty, then P is a semiprime ideal of S.

Proof. Let A be an ideal of S and A* C P. Then for any ¢ € I, A? C Q;.
Since every prime ideal is semiprime [Lemma 2.2], A C @; for any 7 € 1.
Hence A C P. So P is a semiprime ideal of §S.

3. Main theorems

Theorem 3.1. Every semiprime ideal of a semigroup S is an intersection
of some prime ideals.

Proof. Let P be a semiprime ideal of S and {Q;|7 € I} be the set of
all prime ideals of S containing P. Then this set is not empty because
S itself is a prime ideal of S. Let a ¢ P, choose elements a;,ay,---
inductively as follows: a; = a. Since aSa = a;Sa¢; ¢ P, take a; in §
such that a; € a;5a;, a; & P. From a3Sa; ¢ P, we have a3 such that
az € a;Saz,az € P,---, aiy1 € a;5a;,0i41 € P,---. Let A = {a),az,---}.
Suppose that a;,a; € A and for convenience, let us assume that ¢ < j.
Then aj4; € a;Saj, and aj4; € A. A similar argument takes care of
the case in which 2 > 7, so we have that A is indeed an m-system and
AN P = 0. Now consider the set of all m-systems M of S such that
a € Mand MNP =0. Let T = {M|M is an m-system of S and
a € M, MNP = 0}. Then this set T is non-empty. By Zorn’s Lemma
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there exists a maximal element, say M’ in T. Again let X = {J|J is an
ideal of S and JN M’ =0, J C P}. Then X is non-empty since P is
in X. If we use Zorn’s lemma once more on the set X, there exists an
maximal element, say @ in X. If z,y € S\Q then (S'zSTUQ)NM' # 0,
(S'ySTU Q)N M’ # 0 since S'zST' U Q and S'yS! U Q are ideals of S
properly containning ). Hence there are some elements s, ¢, u,v in S’ such
that sxt,uyv € M’. Since M’ is an m-system, there is an element m in
S such that szimuyv € M'. From the fact sztmuyv € Q, ztmuy ¢ Q.
Hence ztmuy € (S\@Q) and so we have that S\ is an m-system. From the
maximality of M’, S\Q = M’ and so @ is a prime ideal of S containing P.
Since a € @, this means P D N{Q;|: € I}. Since the converse inclusion is
trivial, we have that P = N;¢;{Q;|Q; is a prime ideal of S containing P}.
In other word, a semiprime ideal P of S is the intersection of all prime
ideals of S containing P.

Definition 3.2. A non-empty ideal I of S is said to be completely
semiprime if a® € I implies a € I for any a € S.

Corollary 3.3. Any completely semiprime ideal of S is an intersection
of prime ideals of S.

The following result is fairly similar to the proof of Theorem 3.1. But
for the sake of complete, we write out a proof.

Theorem 3.4. Any completely semiprime ideal of S is an intersection of
completely prime ideals of S.

Proof. Let I be an any completely semiprime ideal of S, a ¢ I and
A = {a,a*,---}. Then A is an m-system and AN I = @. Using Zorn’s
lemma for the set of all m-system which contains @ and has no intersection
with J. We have a maximal m-system M’. By the same method given in
Theorem 1, if we put @ as a maximal ideal of S containing I which has no
intersection with M’, we have that the compliment of Q) is M'. Let < M’ >
be a subsemigroup of S generated by M’. If < M’ > N1 # @, then there
are ay,dasg, -+ ,a, € M’ such that aya;---a, € I. Since M’ is an m-system,
there are x;,29, - +,2,_1 € S such that a;zya25--a,_ 12,10, € M".
Since [ is a completely semiprime ideal, ab € I implies ba € I. So that we
have ayziay22 -+ ap_1T,-1a, € I. But this is contradiction. Hence M’ is
a subsemigroup of S. So that @ is a completely prime ideal of S and this
complete the proof.
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