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ON NONLINEAR CAUCHY-KOWALEWSKI
THEOREM

Will Y. Lee

Dedicated to Professor Younki Chae on his sixtieth birthday

In this paper we have shown that if u € C, then the Cauchy problem
% = F(t,z,u,Vu),u(0,z) = 0 has a unique C'-solution in a certain
Banach space X where F' is holomorphic with respect to z € R",u, V,u
and continuous with respect to ¢ € R. u can be either single valued or
vector valued function.

Consider the following nonlinear Cauchy problem:

du
(1) yie F(t,z,u,V,u)
(2) u(0, ) = uo()
where z = (zy,z2,---,z,) € R", F is holomorphic with respect to =z,
u, Vou = (Ug,Uszy, -~ ,Usz,), and continuous with respect to t € R. u

and F' are either single or vector valued functions. Notice that Baouendi-
Goulaouic-Treves([1]), Metivier ([4]) deal with single valued functions u
and F, while Nirenberg([7]), Ovsjannikov([10], [11]) and Treves ([12]) treat
u and F as vector valued functions. In [1], [4] F is extended to a vector
valued function.

Treves([12]) has shown that the Cauchy problem (1)-(2) has a unique
analytic solution in the scale of Banach space provided F is analytic with
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respect to t, holomorphic with respect to the rest of variables and the
initial data ug(z) is also analytic. The scale of Banach space was intro-
duced by Ovsjannikov([10,11]) (see also Gelfand-Shilov ([3])). Later on
Baouendi-Goulaouic-Treves ([1]) have introduced the generalized Hamil-
ton vector field M; and proved that any C?-solution of (1)-(2) is analytic
and therefore unique if the system (1) is in involution, i.e., M;F; = M;F;,
F = (F,F,---,Fg), 1,7 = 1,2,---,m and the initial data uy(z) is
analytic. Furthermore if (1) is semilinear the above assertion holds for
u € C'. Notice that the requirement u € C? is necessary for the definition
of the generalized Hamilton field M;. They have also given an approx-
imate C?-solution via the Gaussian kernel when the space dimension is
1 and ug(z) € C?. Later on Metivier ([4]) has extended the approxima-
tion formula of Baouendi-Goulauic-Treves to any space dimension n > 1
by introducing more generalized Hamilton fields. He then showed that if
there are two C*-solutions u and u* of (1)-(2), then u = u*. Moreover he
showed the unique C?-solution of (1)-(2) is approximated by a sequence of
analytic functions via the Gaussian kernel for any space dimension n > 1.

Let u be holomorphic. Then Nirenberg ([7]) showed that the Cauchy
problem (1)-(2) has a unique analytic solution (analytic in z € R", contin-
uously differentiable in ¢t € R) in the Banach space X, under the following
assumptions on F:

For some numbers B > 0, T > 0, and every pair of numbers s, s’ such
that 0 <s' < s <1, (u,t) » F(u,t) is a continuous mapping of

(3) {u€ X,:||lul|ls < R} x {t:|t| < T} into X,.

Secondly, for any positive s < 1 and every u € X, with ||u||, < R and for
any t, |t| < T, there is a linear operator A,(t) mapping X, into X,, with

(4) [Au(t)e]ls < C% for every 0 < s’ < s

such that for any ||v| < R,

[ — ull3*?

!

(5) [1F(v,1) — F(u,t) = Au(t)(v —u)| £ C

8 —8

This is to hold for every s’ < s and with fixed positive constants § < 1
and C independent of t,u,v,s or s'.
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Finally: F(0,t) is a continuous function of ¢, |t| < T' with values in X,
for every s < 1 and satisfying with a fixed constant K,

(6) | F(0,8)]], < 1—1—{3’ 0<s<l
Remark. Nishida ([9]) has slightly improved inequality (5) as follows:

1B (1) — Fo, ] < oLV
§—8
where C is a constant independent of t,u,v,s,s’.

Let v = (u,ug,--,un) be vector-valued holomorphic. Then (1) is
easily transformed to a quasilinear equation:

du X .
= =3 d(t, 7, u)ug, + b(t, 7, u)
at j:]

(7)

where a’ is an N x N-matrix, u,; and b(t,z,u) are N x 1-column vectors.
Define
lulls = sup |u(z)|, where D, = [] {|z;] < sR}
Ds 0<s<1

Let X, be the Banach space endowed with the norm defined as above.
Then Nirenberg ([7]) proved that equation (7) satisfies assumptions (4)-
(5) from which the existence and uniqueness of the Cauchy problem (1)-(2)
follows in the Banach space X, (see [7: Theorem 1.1]).

The natural question is: What is the minimum number of deriva-
tives required to have existence and uniqueness of solutions of the Cauchy
problem (1)-(2)? In this paper we tackle the above question. We use
the following norm introduced by Ovsjannikov ([10, [11], see also [3]) for
u€C™(1 <m< o):

la

S o
(8) llulls = sup —[|D%lo, [[D%ullo = sup |[D%ul,s < 1.
lo|<m € D,

where a = (@, a3, -, ay), la| = ey +agz+--+a,, a! = oylay!---a,!. Let
X (™) be the Banach space of u € C™ equipped with the norm defined by
(8). Then X{™) C Xf.m) for s’ < s and the natural injection X (™) — Xﬁ.m)
has norm < 1. The differential operator 8, maps X{™ into X _E,m) as follows:
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Lemma 1. Let u € X{™ for 1 <m < co. Then
(9) |0ty < C”u—”” for each 0 < ' < s <1
s—s

Proof.

Hee|-1

101 0 ulo

dyully = su
" ”3 ]<!a-|2m (O.’ 1)'

= sup (Jal/s')(s'/s)l (s [al) |07 ullo

0<al<m
< 0<S|2|I~)<m( si*lfal)||8%ullo <SUP (laf/s')(s'/s)l!
(10) = (lerl/s")(s"/s)!N||u]ls by (8).
Now
oséllapl|f¥|(~‘?'/~‘f)'°rl < (1/e)(1/1In(s/s"))
= (1/e)(14¢e)(s'/(s —5)),0<E< (s —s)/s
(11) < 0=

Observe that £ — 0 when s’ — s. When s’ — 0, both sides trivially go to
zero.

In order words the constant C' in inequality (11) is a bounded constant
for given s and s’ with s’ < s. Substitution of (11) into (10) completes
the proof.

Theorem 1. Suppose F' satisfies the Nirenberg conditions (3)-(6). Let
u(z,-) and uo(z) belong to XV(0 < s < 1) with |lu(z,")|,, |luo(z)]ls < &
where C is the constant given by (9). Then the Cauchy problem of the
quasilinear equation (7) with the initial data uo(z) has a unigque solution

in X(1,
Proof. A careful analysis of Nirenberg’s proof (7: pp.566-571) shows that
his proof also works for u € X{!) which asserts the existence of solutions

in X 51). To claim the uniqueness of solutions we must therefore show that
conditions (4) -(5) hold for u € XV, Since F(u,t) is given by the right
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o
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hand side of (7) we get

N
(12) F(U,i) = aj(tvxau)VrJ +Zai;(tv'rau)(vi _ui)vz', + b(t,:r:,u)

=1
N
+ ) by (tz, u) (v — wi) + 0| — uf?) + 0(|v — ul?vy)
=1
The linear approximation of F(v,t) — F(u,t) is thus majorized from (12)
by
(13) |F(Uat)—F(uit)_aj(ta:rau)(vrj _u-’l‘g)—
N
Z(af‘.(t,x,u)vrj + by, (1, z,u))(vi — wi)|
=1
< Ciflo —ul* + Jo — u|v. |}
< Ciflo = ul*(1 + Jve])}
< Ci{llv = ull3, (1 + llvzlls)}
< Cifllv —u|3, (1 + ||lvg|ls#)} a fortiori

< Cufllo - w2 (14 00 )y by Lemma 1
= 5

1
<20, HU ”s by the a,ssumpthIl “U“ < E-'
8§ —

which is the desired inequality (5) with the constant 2C; and é = 1. The
linear part A,(¢)w according to (12) and (13) is majorized by:

. N .
[Au(Dwlls = |la®(t, @, u)wz; + Y (@l (L, s, u)uq, + by, (t, 7, u))wi]»
1=1

< Cofllwelly + (fuzllsr + 1)l[w]|or}
< Gy {C i ” + (1 -I-C Ju ” )|| |ls} by Lemma 1

C : 1
< Cz(s 5 )I]w]l, by the assumption ||Ju|| < °
_ s oplele

s — 8

which is the desired inequality (4). Consequently F'(u,t) satisfies all the
Nirenberg conditions (3)-(6). This compleste in view of Theorem 1.1 of
[7] the proof.
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Since we can always transform fully nonlinear equation (1) to a quasi-
linear equation (7) provided u € C? we obtain the following:

Theorem 2. Suppose u(z,- ), ug(z) € X (0 < s < 1) with all the other
assumptions the same as Theorem 1. Then the Cauchy problem (1)-(2) has
a unique solution in X{?.

Remarks. The works of Baouendi-Goulaouic-Treves ([1]) and Metivier ([4])
assert the uniqueness of solutions of the Cauchy problem (1)-(2) under the
assumption of integrability condition of generalized Hamilton field of F
provided u € C%. In particular if the quasilinear equation (7) becomes
semilinear it it enough for u € C'. However their works leave out the
question of existence of solutions to (1)-(2).

To estimate the norm of J,u for u holomorphic, Nirenberg uses the
Cauchy inequality ([7; p.575]). However we cannot use the Cauchy in-
equality in our case as we require that u has first order continuous deriva-
tives. This is the major differnence between Nirenberg’s ([7]) and ours.
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