ON NONLINEAR CAUCHY-KOWALEWSKI THEOREM

Will Y. Lee

Dedicated to Professor Younki Chae on his sixtieth birthday

In this paper we have shown that if $u \in C^1$, then the Cauchy problem $\frac{\partial u}{\partial t} = F(t, x, u, \nabla u), u(0, x) = 0$ has a unique C^1 -solution in a certain Banach space X where F is holomorphic with respect to $x \in \mathbb{R}^n, u, \nabla_x u$ and continuous with respect to $t \in \mathbb{R}$. u can be either single valued or vector valued function.

Consider the following nonlinear Cauchy problem:

(1)
$$\frac{\partial u}{\partial t} = F(t, x, u, \nabla_x u)$$

$$(2) u(0,x) = u_0(x)$$

where $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, F is holomorphic with respect to x, $u, \nabla_x u = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$, and continuous with respect to $t \in \mathbb{R}$. uand F are either single or vector valued functions. Notice that Baouendi-Goulaouic-Treves([1]), Metivier ([4]) deal with single valued functions uand F, while Nirenberg([7]), Ovsjannikov([10], [11]) and Treves ([12]) treat u and F as vector valued functions. In [1], [4] F is extended to a vector valued function.

Treves([12]) has shown that the Cauchy problem (1)-(2) has a unique analytic solution in the scale of Banach space provided F is analytic with

Received March 23, 1992.

Will Y. Lee

respect to t, holomorphic with respect to the rest of variables and the initial data $u_0(x)$ is also analytic. The scale of Banach space was introduced by Ovsjannikov([10,11]) (see also Gelfand-Shilov ([3])). Later on Baouendi-Goulaouic-Treves ([1]) have introduced the generalized Hamilton vector field M_i and proved that any C^2 -solution of (1)-(2) is analytic and therefore unique if the system (1) is in involution, i.e., $M_i F_i = M_i F_i$, $F = (F_1, F_2, \cdots, F_m), i, j = 1, 2, \cdots, m$ and the initial data $u_0(x)$ is analytic. Furthermore if (1) is semilinear the above assertion holds for $u \in C^1$. Notice that the requirement $u \in C^2$ is necessary for the definition of the generalized Hamilton field M_i . They have also given an approximate C^2 -solution via the Gaussian kernel when the space dimension is 1 and $u_0(x) \in C^2$. Later on Metivier ([4]) has extended the approximation formula of Baouendi-Goulauic-Treves to any space dimension n > 1by introducing more generalized Hamilton fields. He then showed that if there are two C²-solutions u and u^* of (1)-(2), then $u = u^*$. Moreover he showed the unique C^2 -solution of (1)-(2) is approximated by a sequence of analytic functions via the Gaussian kernel for any space dimension n > 1.

Let u be holomorphic. Then Nirenberg ([7]) showed that the Cauchy problem (1)-(2) has a unique analytic solution (analytic in $x \in \mathbb{R}^n$, continuously differentiable in $t \in \mathbb{R}$) in the Banach space X_s under the following assumptions on F:

For some numbers R > 0, T > 0, and every pair of numbers s, s' such that $0 \le s' < s < 1$, $(u, t) \to F(u, t)$ is a continuous mapping of

(3)
$$\{u \in X_s : ||u||_s < R\} \times \{t : |t| < T\} \text{ into } X_{s'}.$$

Secondly, for any positive s < 1 and every $u \in X_s$ with $||u||_s < R$ and for any t, |t| < T, there is a linear operator $A_u(t)$ mapping X_s into X_s , with

(4)
$$||A_u(t)v||_{s'} \le C \frac{||v||_s}{s-s'}$$
 for every $0 \le s' < s$

such that for any ||v|| < R,

(5)
$$||F(v,t) - F(u,t) - A_u(t)(v-u)|| \le C \frac{||v-u||_s^{1+\delta}}{s-s'}$$

This is to hold for every s' < s and with fixed positive constants $\delta \leq 1$ and C independent of t, u, v, s or s'.

554

On Nonlinear Cauchy-Kowalewski Theorem

Finally: F(0,t) is a continuous function of t, |t| < T with values in X_s for every s < 1 and satisfying with a fixed constant K,

(6)
$$||F(0,t)||_{s} \le \frac{K}{1-s}, \quad 0 \le s < 1.$$

Remark. Nishida ([9]) has slightly improved inequality (5) as follows:

$$\|F(u,t) - F(v,t)\|_{s'} \le C \frac{\|u - v\|_s}{s - s'}$$

where C is a constant independent of t, u, v, s, s'.

Let $u = (u_1, u_2, \dots, u_N)$ be vector-valued holomorphic. Then (1) is easily transformed to a quasilinear equation:

(7)
$$\frac{\partial u}{\partial t} = \sum_{j=1}^{N} a^{j}(t, x, u) u_{x_{j}} + b(t, x, u)$$

where a^{j} is an $N \times N$ -matrix, $u_{x_{j}}$ and b(t, x, u) are $N \times 1$ -column vectors. Define

$$||u||_s = \sup_{D_s} |u(x)|$$
, where $D_s = \prod_{0 < s < 1} \{|x_j| < sR\}$

Let X_s be the Banach space endowed with the norm defined as above. Then Nirenberg ([7]) proved that equation (7) satisfies assumptions (4)-(5) from which the existence and uniqueness of the Cauchy problem (1)-(2) follows in the Banach space X_s (see [7: Theorem 1.1]).

The natural question is: What is the minimum number of derivatives required to have existence and uniqueness of solutions of the Cauchy problem (1)-(2)? In this paper we tackle the above question. We use the following norm introduced by Ovsjannikov ([10, [11], see also [3]) for $u \in C^m (1 \le m \le \infty)$:

(8)
$$||u||_s = \sup_{|\alpha| \le m} \frac{s^{|\alpha|}}{\alpha!} ||D^{\alpha}u||_0, \quad ||D^{\alpha}u||_0 = \sup_{D_s} |D^{\alpha}u|, s < 1.$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), |\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n, \alpha! = \alpha_1!\alpha_2! \dots \alpha_n!$. Let $X_s^{(m)}$ be the Banach space of $u \in C^m$ equipped with the norm defined by (8). Then $X_s^{(m)} \subset X_{s'}^{(m)}$ for $s' \leq s$ and the natural injection $X_s^{(m)} \to X_{s'}^{(m)}$ has norm ≤ 1 . The differential operator ∂_x maps $X_s^{(m)}$ into $X_{s'}^{(m)}$ as follows:

555

Lemma 1. Let $u \in X_s^{(m)}$ for $1 \le m \le \infty$. Then

(9)
$$\|\partial_x u\|_{s'} \le C \frac{\|u\|_s}{s-s'} \text{ for each } 0 \le s' < s < 1$$

Proof.

$$\begin{aligned} \|\partial_x u\|_{s'} &= \sup_{1 \le |\alpha| \le m} \frac{s'^{|\alpha|-1}}{(\alpha-1)!} \|\partial_x^{|\alpha|-1} \partial_x u\|_0 \\ &= \sup_{0 \le |\alpha| \le m} (|\alpha|/s')(s'/s)^{|\alpha|}(s^{|\alpha|}/\alpha!) \|\partial_x^{\alpha} u\|_0 \\ &\le \sup_{0 \le |\alpha| \le m} (s^{|\alpha|}/\alpha!) \|\partial_x^{\alpha} u\|_0 \sup_{0 \le |\alpha| \le m} (|\alpha|/s')(s'/s)^{|\alpha|} \\ (10) &= \sup_{0 \le |\alpha| \le m} (|\alpha|/s')(s'/s)^{|\alpha|} \|u\|_s \text{ by } (8). \end{aligned}$$

Now

$$\sup_{0 \le |\alpha|} |\alpha| (s'/s)^{|\alpha|} \le (1/e)(1/\ln(s/s')) = (1/e)(1+\varepsilon)(s'/(s-s')), 0 \le \xi \le (s-s')/s' (11) \le C \frac{s'}{s-s'}$$

Observe that $\xi \to 0$ when $s' \to s$. When $s' \to 0$, both sides trivially go to zero.

In order words the constant C in inequality (11) is a bounded constant for given s and s' with s' < s. Substitution of (11) into (10) completes the proof.

Theorem 1. Suppose F satisfies the Nirenberg conditions (3)-(6). Let $u(x, \cdot)$ and $u_0(x)$ belong to $X_s^{(1)}(0 \le s < 1)$ with $||u(x, \cdot)||_s$, $||u_0(x)||_s \le \frac{1}{C}$ where C is the constant given by (9). Then the Cauchy problem of the quasilinear equation (7) with the initial data $u_0(x)$ has a unique solution in $X_s^{(1)}$.

Proof. A careful analysis of Nirenberg's proof (7: pp.566-571) shows that his proof also works for $u \in X_s^{(1)}$ which asserts the existence of solutions in $X_s^{(1)}$. To claim the uniqueness of solutions we must therefore show that conditions (4) -(5) hold for $u \in X_s^{(1)}$. Since F(u,t) is given by the right

556

hand side of (7) we get

(12)
$$F(v,t) = a^{j}(t,x,u)V_{x_{j}} + \sum_{i=1}^{N} a^{j}_{u_{i}}(t,x,u)(v_{i}-u_{i})v_{x_{j}} + b(t,x,u)$$

 $+ \sum_{i=1}^{N} b_{u_{i}}(t,x,u)(v_{i}-u_{i}) + 0(|v-u|^{2}) + 0(|v-u|^{2}v_{x_{j}})$

The linear approximation of F(v,t) - F(u,t) is thus majorized from (12) by

(13)

$$|F(v,t) - F(u,t) - a^{j}(t,x,u)(v_{x_{j}} - u_{x_{j}}) - \sum_{i=1}^{N} (a^{j}_{u_{i}}(t,x,u)v_{x_{j}} + b_{u_{i}}(t,x,u))(v_{i} - u_{i})|$$

$$\leq C_{1}\{|v - u|^{2} + |v - u|^{2}|v_{x}|\}$$

$$\leq C_{1}\{|v - u|^{2}(1 + |v_{x}|)\}$$

$$\leq C_{1}\{|v - u\|^{2}_{s'}, (1 + ||v_{x}||_{s'})\}$$

$$\leq C_{1}\{||v - u\|^{2}_{s}, (1 + ||v_{x}||_{s'})\}$$

$$\leq C_{1}\{||v - u\|^{2}_{s}, (1 + C\frac{||v||_{s}}{s - s'})\}$$
by Lemma 1

$$\leq 2C_{1}\frac{||v - u||^{2}_{s}}{s - s'}$$
by the assumption $||v||_{s} \leq \frac{1}{C}$

which is the desired inequality (5) with the constant $2C_1$ and $\delta = 1$. The linear part $A_u(t)w$ according to (12) and (13) is majorized by:

$$\begin{aligned} \|A_{u}(t)w\|_{s'} &= \|a^{j}(t,x,u)w_{x_{j}} + \sum_{i=1}^{N} (a^{j}_{u_{i}}(t,s,u)u_{x_{j}} + b_{u_{i}}(t,x,u))w_{i}\|_{s'} \\ &\leq C_{2}\{\|w_{x}\|_{s'} + (\|u_{x}\|_{s'} + 1)\|w\|_{s'}\} \\ &\leq C_{2}\{C\frac{\|w\|_{s}}{s-s'} + (1+C\frac{\|u\|_{s}}{s-s'})\|w\|_{s}\} \text{ by Lemma 1} \\ &\leq C_{2}(\frac{C}{s-s'} + \frac{2}{s-s'})\|w\|_{s} \text{ by the assumption } \|u\| \leq \frac{1}{C} \\ &= C_{2}(2+C)\frac{\|w\|_{s}}{s-s'} \end{aligned}$$

which is the desired inequality (4). Consequently F(u,t) satisfies all the Nirenberg conditions (3)-(6). This complete in view of Theorem 1.1 of [7] the proof.

Since we can always transform fully nonlinear equation (1) to a quasilinear equation (7) provided $u \in C^2$ we obtain the following:

Theorem 2. Suppose $u(x, \dots), u_0(x) \in X_s^{(2)}$ $(0 \le s < 1)$ with all the other assumptions the same as Theorem 1. Then the Cauchy problem (1)-(2) has a unique solution in $X_s^{(2)}$.

Remarks. The works of Baouendi-Goulaouic-Treves ([1]) and Metivier ([4]) assert the uniqueness of solutions of the Cauchy problem (1)-(2) under the assumption of integrability condition of generalized Hamilton field of F provided $u \in C^2$. In particular if the quasilinear equation (7) becomes semilinear it it enough for $u \in C^1$. However their works leave out the question of existence of solutions to (1)-(2).

To estimate the norm of $\partial_x u$ for u holomorphic, Nirenberg uses the Cauchy inequality ([7; p.575]). However we cannot use the Cauchy inequality in our case as we require that u has first order continuous derivatives. This is the major difference between Nirenberg's ([7]) and ours.

Acknowledgement. I would like to thank F. Treves for answering my foolish questions. I would also like to thank L. Nirenberg who brought T. Nishida's work to my attention.

References

- Baouendi, M.S., C. Goulaouic & F. Treves, Uniqueness in Certain First Order Nonlinear Complex Cauchy Problems, Comm. Pure & Appl. Math. XXXVIII, 109-123, 1985.
- [2] Caratheodory, C., Calculus of Variations & Part. Diff. Equations of First Order, Part I, Holden-Day, Inc., San Francisco, 1965.
- [3] Gelfand, I.M. & G.E. Shilov: Generalized Functions, Vol.3, Acad. Press, N.Y., 1967.
- [4] Metivier, Guy, Uniqueness & Approximation of Solutions of First Order Nonlinear Equations, Inv. Math. 82, 263-282, 1985.
- [5] Moser, J., A Rapidly Convergent Iteration Method And Nonlinear Partial Differential Equations I, Ann Norm. Sup. Pisa(3) 20, 265-315, 1966.
- [6] Moser, J., A New Technique For The Construction of Solutions of Nonlinear Differential Equations, Proc. Nat. Acad. Sci. 47, 1824-1831, 1961.

- [7] Nirenberg, L., An Abstract Form of The Nonlinear Cauchy-Kowalewski Theorem, J. Diff. Geom., Vol.6, No.4, 561-576, 1972.
- [8] Nirenberg, L., Topics in Nonlinear Functional Analysis, Lecture Notes, Courant Institute, N.Y., 1974.
- [9] Nishida, T., A Note on a Theorem of Nirenberg, J.Diff. Geom. 12, 629-633, 1977.
- [10] Ovsjannikov, L.V., Singular Operators in Banach Spaces, Soviet Math. Dokl. 6, 1025-1028, 1965.
- [11] Ovsjannikov, L.V., A Nonlinear Cauchy Problem in Scale of Banach Spaces, Soviet Math. Dokl. 12, 1497-1502, 1971.
- [12] Treves, F., An Abstract Nonlinear Cauchy-Kovalevska Theorem, Trans. Amer. Math. Soc., 77-92, 1970.

DEPARTMENT OF MATHEMATICAL SCIENCES, RUTGERS UNIVERSITY-CAMDEN, CAM-DEN, N.J. 08102, U.S.A.