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Let Bn(a) be the class of functions of the form 

f( z) = 쓸 + 홉akzk (a써， p E N = {펴 }) 

which are regu lar in the punctured disk E {z 0 < Izl < l} and 
satisfying 

Re{웰원-(p+l)} < -pa (n E No = {O, 펴 }, I씨， O~a <l) ， 

where 

Dn f (z) = 혈 + 홀(p + mtam_lzm- 1 

It is proved t hat Bn+l(a) c Bn(a). Since Bo(a) is the class of p-v떠ent 

meromorphically starlike functions of order 01, all functions in Bn(a) are 
p-valent starlike. Futher property preserving integrals are considered . 
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1. Introduction 

Let εp denote the class of fun ct ions of the form 

샤
 

l ( 
f (z) = 쓸 + 효ak샤-p ￥ O,pEN={1 ,2, ... }) 

which are regular in the punctured disk E = {z : 0 < Izl < l} . Define 

(1. 2) DO f(z) = 

(1.3) D1 f (z) 

f (z ), 

참 + (p + l)ao + (p + 2)alz + (p + 3)a2 z2 + 

(zP+lf(z))’ 
zP 

(1.4) D2f(‘) = D(D1f( z)) , 

and for n = 1,2, ’ 

(1. 5) Dn f(z) = D(Dn- 1 f (z) 

쓸 + 깊(p + m)"am껴 l 

(ZP+ 1 Dn- l f (z))' 
zP 

In th is paper, we shall show that a function f(z) in εp' which sat빼es 
。ne of the conditions 

( 1.6) Re{ Dn+lf (z) 1 
-n"/， \~ ' - (p+1H<-pa (z ε u = {z : Izl < 1}) Dnf(z) \ r' - ' J 

for some a(O :::: a < 1) and n E No = {O, 1, 2, ... }, is meromorphically p

valent starlike in E. More precisely, it is proved that, for the class Bn(a) 
of funclions in εP satisfying (1.6) , 

(1 ‘ 7) Bn+l (a) C Bn(a) 

holds. Since Bo( a) equals ε;(a)(the class of meromorphically p-valent 
starlike functio따 of order a [4]) , the starlikeness of members of Bn(a) is 
a consèquence of (1. 7) . Further properties preserving integrals a re ∞nsid
ered and some known results of Bajpai [l),Goel and Sohi [2) and Uralegaddi 
and Somanatha [6) are extended 
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2. Properties of the class Bn(a) 
In proving our main results(Theorem 1 and Theorem 2 below) , we shall 

need the following lemma due to I.S. Jack [3] . 

Lemma. Let ψ be πoη-coπstant reg따rinU={z: Izl <1} with ψ(이 = 
O. [f Iwl attains its maximum va/ue 0π the circ/e Izl = r < 1 at zo, ψe 
have Zoψ'(zo) = kψ(zo) where k is a rea/ number, k 즈 1 

Theorem l. Bn+l(O:) C Bn(O:) for each integer n E No. 

Proof Let f(z) E Bn+l(O:), Then 

(Dn+2f(z) 1_ , , \1 
(2.1) Re~ ~"L，'r~-~ - (p + 1)} < -pα l Dn+l f ( z ) ,,- , - 1 J 

We have to show that (2.1) implies the inequality 

(2.2) 
Re{ Dn+1 f(z) 

Dnf(z) - (p + 1)} < -po: 

Define w(z) in U = {z: Izl < 1} by 

Dn+lf(z) (", 1 +(20: -1)ω(z) 
(2 3) - - - - - - (p+ 1) = - p 

Dnf(z) 

Clearly w( z) is regular and ψ(0) = O. The equation (2.3) may be written 
as 

(2 .4) 
Dn+l f(z) 

D’‘ f(z) 

1 + (1 + 2p - 2 0:p)ψ (z) 

1+ ψ(z) 

Differentiating (2 .4) logarithmically and using the identity 

(2.5) z(Dnf(z))’ = Dn+l f(z) - (p + l)Dn f(z) , 

we obtain 

땀將-ψ +l)+po: 
1- 0: 

(2.6) 

p1- ψ(z) + 2pzψ'(z) 
1+ ψ(z) , (1+ ψ(z))(l + (1 + 2p - 20:p)ψ(z)) 

We claim that 11ν(z) 1 < 1 in U. For otherwise (by J ack ’s lemma) there 
exists Zo in U such that 

(2.7) Zoψ'(zo) = kψ(zo) ， 
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where Iw(zo)1 = 1 and k ~ 1. From (2.6) and (2.7) , we obtain 

(2.8) 
땀밟암 (p+1)+pa 

1-a 
1 ψ(zo) , 2pkω (zo) 

r 1 + ω(zo) . (1 + ψ(zo))( l + (1 + 2p - 2ap)ψ(zo)) 

Thus 

(2 .9) Re{맑띔암 (p + 1) + pa} > -느'" > 0, 
L 1 - a J ~ 2(2 - a) 

which contradicts (2.1). Hence Iω(z)1 < 1 in U and from (2.3) it follows 
that f (z) E Bn(a) . 

Theorem 2. Let f(z) E εp salisfy the condition 

( D n
+1 f (z ) ,.. " \) _ p( 1 - a) 

(2 .10) Re ~ - " " :/~~I - (p+ l)f < - pa + nln~ . -: . \ (z E U) LD ’‘ f (z) \r'~/ J - r-'2(p-ap+c) 

for a given n E No and c > O. Then 

m n 
ι
 

( 
F(z ) = 잃 10' tc+p

-
1 j(t)dt 

belongs to Bn ( a) . 

Proof Using the identities 

(2.12) z(DnF(z))' = cDn f (z) - (c + p)Dn F(z) 

and 
(2 .13 ) z(DnF(z))' = Dn+lF(z) - (p + l)DnF(z) , 

the condition (2.10) may be written as 

r 땀댐 + (c - 1) 1_ , ,,1 _ _~ ， p(l-a) 
(2 14) Re{ U T ” D 1 l zl - (p + 1 ) } < -pa + -----

L1+(c-1)밟땀I J 2(p-ap+c)) 

We havdo prove that (2 .1 4) implies the inequality 

(2.15 ) 
Re{Dn+lF(z) 
--- - (p+ 1)} < PQ 

DnF(z) 
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Define w(z) in U by 

Dn+1F(z) , __ , ,\ 1 +(20: -1)ψ(z) 
(2.16) - ~_~， '~ ' - (p + 1) =-p 

DnF(z) 

Clearly ψ(z) is regular and ω(0) = O. The equation (2.16) may be written 
as 

(2.17) 
Dn+l F(z) 
DnF(z) 

1 + (1 + 2p - 2ap)ψ(z) 

1+ ω(z) 

Differentiating (2.17) logarithmically , after simple computation we obtain 

잃댐 + (c+ 1) 1 __ , 1 \ r_ _ __ / 1 _, 1 ψ(z) 1 
D샤 zl - (p + l) = -|pa +p(l- a)---| 

1+(c-1)많땀i l l + ω(z)J 

2p(1 - a)zψ’ (z) 
(2. 18) + 

(c+ (2p - 2ap + c)ψ(z))(1 + ψ(z)) 

The remaining part of the proof is similar to that of Theorem 1. 

Remarks. (1) A resultofBajpai [1 , Theorem 1] turnsout to beaparticular 
case of the above Theorem 2 when p = 1, a-l = 1, n = 0, a = 0 and c = 1 
(2) For p = 1, a_l = 1, n = 0 and a = 0, the above Theorem 2 extends a 
result of Goel and Sohi [2, Coroll ary 1] 

Theorem 3 . f(z) E Bn(a) ν and onlν if 

(2.19) F(z) = 순 r tP f(t)dt 
z ‘ ’ Y JO 

belongs to Bn+l(a). 

Proof. From the definition of F(z) , we have 

(2 . 2이 Dn(zF'(z)) + (p + l)DnF(z) = Dn f(z) 

That is, 
(2.21 ) z(DnF(z))’ + (p + 1)DnF( z) = Dn f( z) 

By using the identity(2.5) , equation (2.21) reduces to Dn f(z) = Dn+l F(z). 
Hence Dn+1 f(z) = Dn+2F(z). Therefore 

Dn+l f(z) Dn+2 F(z) 
(2 22) ----- = ---

Dn f(z) Dn+l F(z) 

and the resul t follows 

Remark. Taking p = 1 in above theorems, we have the results of Urale
gaddi and Somanatha[6]. 
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