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1.Introduction

Algebraic systems with addition and multiplication,but in which only
one of the distributive laws is satisified,have been studied by Dickson([3])
, Zassenhaus([9]) and others ([1], [2],[4]). In particular Blackett([2]) gave
a structure theory for a special classes of near-rings and Beidleman ([1])
and Scott([8]) studied the properties of near-ring and near-ring modules.
In this paper we obtained some properties of a short exact sequence of
near-ring modules. Throughout this paper /N stands for a right near-ring.
For basic results and information about near-rings see Pilz [7].

Definition 1.1. A near-ring module yM, (briefly N-module M) is a
pair (M, f), where M = (M,+) is a group, and f : N x M — M is a
mapping, f(n, m) = nm such that for all ny,n, € N,m € M,

(ny + na)m = nym + nam

and
(ning)m = ni(ngm).

Definition 1.2. A subset A of an N-module M is an N-submodule of M
if

(1) (A, +) is a normal N-subgroup of (M, +),

(2) forany n € Nja€ A,and m € M, n(m+a) —nm € A.
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If Aisan N-submodule of M, the factor group M/A can be regarded
as an N-module is said to be a factor module by defining n(m + A) =
nm + A. The natural group epimorphism f.: M — M/A becomes an
N-epimorphism.

Definition 1.3. Let {M; : fi} be a collection of N-modules M; with a

corresponding collection of N-homomorphism fi : My — M.

The sequence - -+ M _; L M, o, M4y -+ called an exact sequence

if Kerfi, = Imfr_;. An exact sequence of the form
(O) —* M1 ”-i-} LMQ —g-# M3 —F (0)

is called a short exact sequence.

For all N-homomorphism f : M; — M, f(M;) is an N-subgroup of
M,. In general, f(M,;) is not necessarily an N-submodule of M,.

Definition 1.4. An N-homomorphism f : My — M, is normal if f(M;)
is an N-submodule of M,.

Definition 1.5. A short exact sequence (0) — M; — M, Ay M; —
(0) almost splits if there exists an N-homomorphism g : M3 — M;(not
necessarily normal) with fg = Iy, where Ips, is the identity map of Ms.
An exact sequence M, 2 M, — (0) almost splits if there exists an N-
homomorphism ¢ : M, — M; with fg = I,. Also an exact sequence
(0) — M, = M, almost splits if there is an N-homomorphism g : My, —
M, with gh = Ip,. Such an N-homomorphism g is called an almost
splitting N-homomorphism.

2. Semi-direct sum

Definition 2.1. An N-module M is said to be semi-direct sum of its N-
subgroup A and B if A is an N-submodule, M = A+ B and AN B = (0).

Here A is called to a semi-direct summand of M. It is denoted by
M = A{B.

Theorem 2.2. For a short exact sequence (0) — M, 2y M, £, M5 —

(0),

the followings are equivalent:

(1) The short exact sequence (0) — M; — M, A o, (0) almost
splits.
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(2) My = h(M,)+g(Ms) where g is the almost splitting N -homomorphism
for f
(3) The ezact sequence (0) — M; — M, almost splits.

Proof. (1) — (2). If g : M3 — Mj is the almost splitting N-homomorphism,
then fg = In, and g(Ms) is an N-subgroup of M,. For all b € M,,
flo—gf(b)) = f(b) — (fg)f(b) = f(b) — f(b) =0.

So b—(gf)(b) € Kerf,thatis, be Kerf—}-g(Mg) Ifthe KerfNg(Ms),
f(b) = 0 and there exists some element cin Ms with g(c¢) = b. Then 0 =
f(b) = f(g(e)) = (fg)(e) = c. Since g is an N-homomorphism, b = g(c) =

g(0) = 0. Thus KerfNg(M3) = (0) and so My = Kerf+g(Mj;).Since
the sequence is exact at My, Kerf = h(M;) and so My = h(M;)+g(M;).
(2) — (3). Forall b € M, b = h(a) + g(c) for some a € M;, ¢ € M;.
Define f': M; — M, by f'(b) = a. Then f'is well defined. For any b, =
h(ay) + g(c1) and by = h(az) + g(ez) in My, if by = by, h(ay) = ha,) and
S0 @y = ay since h ia an N- monomorphism. Then f'h = Ing. (3) — (1).
Let k : My — M, be such that kh = I,. For all b € M,, k(b— hk(b)) =
k(b) — (kh)k(b) = 0 and so b— (hk)(b) € Kerk, that is, b € Kerk+h(M;).
If b € Kerk(h(M,), then k(b) = 0 and there exists some element a € M,
with b = h(a). Thus 0 = k(b) = k(k(a)) = (kh)(a) = a. Since h is an N-
homomorphism, & = h(a) = ~(0) = 0, that is, A(M,) " Kerk = (0). And
since h(M;) = Kerf, M, = Kerk 4+ h(M,). Therefore M5 = f(M;) =
f(Kerk). If fi = f|Kerk,it is an N-isomorphism. For any ¢ in Msj,
there exists some element b in Kerk with f(b) = ¢, that is, fi(b) = c.
and so f; is an N-epimorphism.If by, b, in Kerk with fi(b) = fi(b2),
by — b, € KerkN Kerf = (0) and then b, = b,. Let g = f{'. We have
g(M3) = Kerk and clearly fg = Ipy,.

Theorem 2.3. If a ezact sequence M; —— My — (0) almost splits with an
almost splitting N-homomorphism g : M, — My, then My = Kerh+Img.
Proof. For any a € My, h(a) € M, and consequently g(h(a)) € M;. Since
hg = Ing,, h(b— g(h(b)) = h(b) — (hg)(h(b)) = 0 and so b € Kerh + Img.
For a € Kerh () Img, there exists an element b in M, such that g(b) = a
while A(a) = 0. Hence 0 = h(a) = h(g(b)) = (hg)(b) = b which implies
b= 0. Since g is an N-homomorphism, Img is an N-subgroup of M; with
M, = Kerh+4Img.

Theorem 2.4. If f : M; — M; is an N-homomorphism and (0) —

M, L M, almost splits with an almost splitting N-homomorphism g :
M, — My, then My = Kerg+Imf.
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Proof. Since gf = Iy, for any b € M,,g(b) € M, and f(g(b)) € M,,
g(b—(fg)(b)) = g(b) — (¢f)(g(b)) = 0 and consequently b € Kerg + Img.
For b € Kerg(\ Imf, there exists an element-a € M; such that f(a) = b
while g(b) = 0. Hence 0 = ¢g(b) = g(f(a)) = (¢f)(a) = a which implies
a = 0. Since f is an N-homomorphism, b = 0. Hence M, = Kerg + Im/,
since Im f is an N-subgroup of M,.

Theorem 2.5. If a short exact sequence (0) — M, Ay My Zs (0)
almost splits at one end, it almost splits at the other hand.

Proof. Suppose (0) — M, A, M, almost spliting N-homomorphism h.
By the Theorem 2.4, M, = Kerh+Imf.

Since Imf = Kerg, g(M;) = g(Kerh) = M;. Furthermore g|Kerh
is an N-monomorphism. In fact, if g(k;) = g(k;), ki, ky € Kerh, ky —
k, € Kerh(NKerg = (0) and so k; = k;. Thus ¢' = g|Kerh is an
N-isomorphism and (¢’)~! : M5 — Kerh is the desired almost spliting N-
homomorphism. Conversely, if M; <+ M3 — (0) almost splits, there is an
N-homomorphism h : M3 — M, such that gh = I;,. By the Theorem 2.3,
M, = Kerg+Imh andsoforb € My, b= z4+y,z € Kerg = Imf,y € Imh.
If we define k : My, — M; by k(b) = [~!(y),then kf = I, and so (0) —
M, 4, M, almost splits. For any a € My, (kf)(a) = f~'(f(a)) = a.

Remarks. Let A be an N-submodule of M and i : A — M the embedding
N-monomorphism. If (0) =+ A — M — M’ — (0) almost splits then
by the Theorem 2.2, A is a semi-direct summand of M. Conversely, if
M = A+C, where C is an N-subgroup of M, then each b € M has a
unique representation, b = a + ¢,a € A,¢ € C and the N-homomorphism
h : M — A defined by h(b) = a is an almost spliting N-homomorphism.
For any b;,b, € M,b; and b, have a unique representation b; = a; +
€1, = ay + ¢3,a1,a2 € A cq,c; € C, respectively. Then h(b; + by) =
h((a1+a2)+ (c1 + ¢2)) = a1 + a2 = h(ai + ¢1) + h(az + e2) = h(b1) + h(b,)
and h(nby) = h(n(ay + ¢1)) = h(na; + ney) = nay = nh(by). Also hi(a) =
h(i(a)) = h(a) = h(a 4+ 0) = a. Thus we have

Theorem 2.6. A short ezact sequence (0) — A Sy M Mo (0)
almost splits if and only if A is a semi-direct summand of M.

From now in this paper, we assume that N is a zero-symmetric right
near-ring.

Definition 2.7. An N-module A is almost projective if every exact se-
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quence of the form M — A — (0) almost splits.

Since every exact sequence of the form P 4B (0) can be embed-

ded in a short exact sequence (0) — Kerf — P <. B (0), we have

Theorem 2.8. An N-module A is almost projective if and only if every
short exact sequence of the form (0) - P — B — A — (0) almost splits.

Theorem 2.9. An N-module A is almost projective if and only if A =
M/K implies K is a semi-direct summand of M.

Proof. 1f A is almost projective and A =2 M/K, then (0) — K L
M — A — (0) almost splits and by the Theorem2.6, K is a semi- direct

summand of M. Conversely, suppose we have an exact sequence M Sy
A — (0). Thus A =2 M/Kerf and consequently Kerf is a semi-direct
summand of M. Using the Theorem 2.6 again we have that (0) — Kerf —

ML 45 (0) almost splits.

Theorem 2.10. If M = A& B, M s almost projective, then A and B

are almost projective.

Proof. Suppose we have P Ay A (0) with Kerf = K. Let P x B
be the Cartesian product N-module of P and B. And we define the
map g : Px B — A& B by ¢g(p,b) = f(p) +b,p € Pand b € B .
Since the elements of A and B commute, ¢ is an N-epimorphism and
Kerg = K* = K x {0}. For any (p1,b) and (p2,b:) € P x B (p1,p2 €
P by, by € B), g((p1;b1) + (P2, 82)) = g(p1 + p2, b + b2) = f(p1 + p2) +
(b1 + b2) = {f(p1) + f(p2)} + (b1 + B2) = {f(p1) + b} + {f(p2) + b2}
= g(p1,b1) + g(p2,b2). And g(n(p1, b)) = g(npi,nbi) = f(np1) + nby =
nf(p1)+nb = n{f(p1)+b} = ng(pi, b ). Thus gis an N-homomorphism.
For any a+b € A®B(a € A,b € B), since f is surjective, then exists some
elements p in P with f(p) = a. Then g(p,b) = f(p) + b= a + b. Next if
g(p,d) = f(p) +5 =0, f(p) =0 and b = 0, that is, p € Kerf = K and
b= 0. Then (p,b) € K x {0}. Conversely if (p,b) € K x {0}, then p € K
and b = 0 and so f(p) = 0 and b = 0. Thus g(p,b) = f(p) +b=0. We
have (p,b) € Kerg. Since A@ B = (P x B)/Kerg, by the Theorem 2.9,
K* = Kerg is a semi-direct summand of P x B. Then P x B = K*4Q for
some N-subgroup @ of P x B.Now P* = P x {0} is an N-submodule of
P x B and so every p € P* has a unique representation, p = ¢ + k where
q € @,k € K*. Since K* is an N-submodule of P*,¢(= p— k) € P* and
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g € X = P"NQ, that is,P* = K* + X.Thus K is a semi-direct summand
of Pand (0) - K - P — A — (0) almost splits which shows that A is
almost projective. Similarily B is also almost-projective.

Remark. Supposing that the direct sum of N-subgroups is an N-subgroup,
we can prove the converse of the above theorem.
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