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l.Introduction 

Algebraic systems with addition and multiplication ,but in which only 
one of the distributive laws is satisified,have been studied by Dickson([3]) 
, Zassenhaus([9]) and others ([1 ], [2],[4]) . In particular Blackett([2]) gave 
a structure theory for a special classes of near-rings and Beidleman ([1]) 
and Scott([8]) studied the properties of near-ring and near-ring modules 
In this paper we obtained some properties of a short exact sequence of 
near-ring modules. Throughout this paper N stands for a right near-ring 
For basic results and information about near-rings see Pilz [7]. 

Definition 1.1. A near-ring module NM , (briefly N -module M) is a 
pair (M , J), where M = (M, +) is a group , and f : N x M • M is a 
mapping,j(n, m) = nm such that for all nl , n2 E N, m E M , 

(nl + n2)m = nlm + n2m 

and 
(nln2)m = nl (η2m). 

Definition 1.2 . A subset A of an N -module M is an N -submodule of M 
if 

(1) (A , +) is a normal N -subgroup of (M, +), 
(2) for any n E N ,a E A, and m E M , n(m + a) - nm E A. 
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If A is an N-s배module of M , the factor group M/A can be regarded 
as an N-module is said to be a factor module by defining n(m + A) 
nm + A. The natural group epimorphism r M • M / A becomes an 
N -epimorphism. 

Definition 1.3. Let {Mk : Jd be a collection of N-modules M k with a 
corresponding collection of N-homomorphism Jk : Mk • M k+ l 

The sequence . .. M ,• l 쓰~ Mk ...!.μ M k+ l ... called an exact sequence 
if J{ er Jk = 1m!k_l. An exact sequence of the form 

(이 • M1 ~M2 -..3...→ M3 • (0) 
is called a short exact sequence. 

For all N -homomorphism J : M 1 • M2, J(Md is an N-subgroup of 
M2. 1n general, J(Ml) is not necessarily an N-submodule of M 2 

Definition 1.4. An N-homomorphism J : M 1 • M2 is normal if J(Ml) 
is an N-submodule of M 2 • 

Definition 1.5. A shOft exact sequence (0) • M 1 • M2 -.!.• M3 • 
(0) almost splits if there exists an N-homomorphism 9 : M3 • M2(not 
necessarily norm외) with J 9 = 1M" where 1M3 is the identity map of M3 

An exact sequence M 1 ~ M 2 • (0) almost splits if there exists an N 
homomorphism 9 M 2 • M 1 with Jg 1M ,. Also an exact sequence 

(0) • M 1 --"-• M2 almost splits if there is an N-homomorphism 9 : M 2 • 
M 1 with gh 1M,. Such an N-homomorphism 9 is called an almost 
splitting N -homomorphism. 

2. Semi-direct sum 

Definition 2. 1. An N-module M is said to be semi-direct sum of its N ­
subgroup A and B if A is an N-submodule, M = A + B and A n B = (0) 

Here A is called to a semi-direct summand of M. It is denoted by 
M=A+B 

Theorem 2.2. For a shorl exact sequeηce (0) • M1 」+ M2 」， M3 • 
(0) , 

the Jo l1owings are equivalent: 

(1) The short exact seqμeηce (0) • M 1 --"-• M 2 -.!...• M3 • (0) almost 
splits 
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(2) M2 = h(M,)+g(M3) ψhere 9 is the almost splittirψV -homomorphism 
for f 

(3) The exact sequeπce(이 • M，~→ M2 almost splits 

Proof. (1) • (2). If 9 : M3 • J\;!2 is the almost splitting N-homomorphism, 
then fg 1M3 and g(M3) is an N-subgroup of M2. For all b E M2' 
f(b- gf(b)) = f(b) - (fg)f(b) = f(b) - f(b) = O. 

80 b-(gf) (b) E K er f , that is , b E K er f+g(M3). If b E K er f ng(M3), 
f(b) = 0 and there exists some element c in M3 with g(c) = b. Then 0 = 
f(b) = f(g(c)) = (fg)(c) = c. 8ince 9 is an N-homomorphi5m, b = g(c) = 
g(O) = O. Thus Kerfng(M3) = (0) and so M2 = Kerf+g(M3).Since 
the sequence is exact at M2 , K er f = h(M,) and 50 M2 二 h(M,)+g(M3) 
(2) • (3). For all b E M2 , b 二 h(a) + g(c) for some a E M" c E M3 
Define f' : M 2 • M , by f' (b) = a. Then f ’ is well defined. For any b, = 
h(a ,) + g(C1) and b2 = h(a2) + g(C2) in M2' if b, = b2, h(ad = h(a2) and 
so a, = a2 since h ia an N- monomorphi5m. Then f' h = 1M,. (3) • (1 ). 
Let k: M2 • M , be such that kh = 1M,. For all b E M2, k(b - hk(b)) = 
k(b) - (kh)k(b) = 0 and so b - (hk)(b) E K erk, that i5 , b E K erk+ h(M,). 
If b E K erk n h(Md , then k(b) = 0 and there exists some element a E M, 
wit바h b = h시(a에@띠). Thus 
homo이orrπnorp야h너따Ism띠n，사， b = h(a에a띠)=h시↓씨(ω에0이) = 0ι， that i녕s ， h(νM，니)ν川nKe앙rk = (0에이). And 
s뼈i피nce h시(M，나) = Ke앙r f ,’ M2 = Ke감rk + h시(이Mι시l샤ι). Therefore M3 = f(M2) = 
f( J< erk). If f, = flKe야，it is an N -isomorphism ‘ For any c in M3, 

there exists some element b in K erk with f(b) = c, that is , f , (b) = c 
and so f , is an N-epimorphism.If b

" 
b, in K erk with f, (b,) f, (b2), 

b, - b2 E K er k n K er f = (0) and then b, = b, ‘ Let 9 = f ,'. We have 
g(M3) = Kerk and clearly fg = 1M3 

h Theorem 2.3. !f a exact sequence 1\1, --'.• M2 • (0) almost splits with an 
almost splitting N -homomorphism 9 : M2 • M" then M, = J( erh+lmg. 
Proof. For any a E M

" 
h(a) E M2 and consequently g(h(a)) E M,. Since 

hg = 1M" h(b - g(h(b)) = h(b) - (hg)(h(b)) = 0 and so b E K erh + lmg 
For a E J( erh n lmg , there exists an element b in M2 such that g(b) = a 
while h(a) = O. Hence 0 = h(a) = h(g(b)) = (hg)(b) = b which implies 
b = O. 8ince 9 is an N-homomorphism, lmg is an N-subgroup of M, with 
M, = Kerh+lmg. 

Theorem 2 .4. lf f : M, • M2 is an N-homomorphism and (0) • 
M, f • M2 almost splits with an almost splitting N -homomorphism 9 
M2 • M" then M2 = Kerg+lmf. 
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Proof Since gJ = 1M" for any b E Mz ,g(b) E M1 and J(g(b) ) E Mz , 
g(b - (Jg)(b) ) = g(b) - (gJ) (g(b)) = 0 and consequently b E K erg + 1mg. 
For b E Kergn 1mJ, there exists an element .. a E M1 such that J (a) = b 
while g(b) = O. Hence 0 = g(b) = g(J (a)) = (gJ) (a) = a which implies 
a = O. Since J is an N -homomorphism, b = O. Hence Mz = K erg + 1mJ, 
since 1m J is an N-subgroup of Mz 

T heorem 2. 5. lf a short exact sequeηce (0) • M1 f • Mz -..!...• (0) 
almost splits at one end, it almost splits at the other hand 

j 
Proof Suppose (이 • M1 -'-• Mz almost spliting N-homomorphism h. 
By the Theorem 2 .4, Mz = ]{ erh+lmJ. 

Since 1mJ = ]{ erg , g(Mz) = g(J( erh) = M3' Furthermore g!]{ erh 
is an N-monomorphism. In fact , if g (시) = g(kz), kh kz E ]{ erh , k1 
kz E ]{ er h n]{ erg = (0) and so k1 kz. Thus g' g!]{ erh is an 
N- isomorphism 때d (g' t 1 : M3 • ]{ erh is the desired almost spliting N 
homomorphism. Conversely, if Mz -..!...• M3 • (0) almost splits, there is a n 
N- homomorphism h : M3 • Mz such that gh = 1M3' By the Theorem 2.3, 
Mz = ]{ erg+lmh and so for b E Mz, b = x+y , x E ]{ erg = 1mJ, y ε 1mh 
If we define k : Mz • M1 by k(b) = J- l (ν) ， then kJ = 1Ml and so (이 • 

M[-...!...• Mz alrnost spli ts. For any a E Ml , (kJ) (a) = J - l (J(a)) = a 

Remarks. Let A be an N-submodule of M and i : A • M the embedding 
N-monomorphism. If (0) • A -'• M • M' • (0) almost splits tben 
by the Theorem 2.2, A is a serni-direct sumrnand of M ‘ Conversely, if 
M A+C , where C is an N-subgroup of M , then each b E M has a 
unique representation, b = a + c, a ε A ,c ε C and the N-homornorphisrn 
h ’ M • A defined by h(b) = a is an almost spliting N-hornomorphism. 
For any bh bz E !vf , b1 and bz have a unique representation b1 = a1 + 
c l> bz az + cz , a l> az E A , CJ, Cz E C , respectively. Then h(b1 + bz) 
h((a1 + az ) + (C1 + cz)) = a1 + az = h(a1 + cd + h(az + cz) = h(b1) + h(아) 
and h(πb1 ) = h(n(a l + C1)) = h(na 1 + nCl ) = na1 = nh(bd. Also hi(a) = 
h(i(a)) = h(a) = h(a + 0) = a. Thus we have 

Theorem 2.6. A shorl exact sequeπce (0) • A • M • M' • (0) 
almost spl따 iJ and only iJ A is a semi-direct summand oJ M 

From now in tbis paper, we assume that N is a zero-symrnetric right 
near-nng. 

Defi nition 2.7. An N -module A is aJmost projective if every exact se-
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quence of the form M • A • (0) almost splits 

Since every exact sequence of the form P ~ B • (0) can be embed­

ded in a short exact sequence (0) • Kerf • P~B • (0) , we have 

Theorem 2.8. Aη N -modu/e A is almost projeciive ;f aηd onlν if everν 
shori exact seqμence of the form (이 • P • B • A • (0) almost splits 

Theorem 2.9. An N -module A is almost projeciive if and only if A 응 
M / 1( implies 1( is a sem;-direcl summaηd ofM. 

Proof If A is almost projective and A 르 M /1( , then (0) • κ 」→
M • A • (0) almost splits and by the Theorem2.6, 1( is a semi- direct 

summand of M. Conversely, suppose we have an exact sequence M ~ 
A • (이 Thus A 은 M j 1( er f and consequently 1( er f is a semi-direct 
summand of M. Using the Theorem 2.6 again we have that (0) • 1( er f • 
M--.!...• A • (0) almost splits 

Theorem 2.10. If M = A EÐ B , M ;s almost projective, then A and B 
al"C a/most projeciiηe 

f Proof Suppose we have P --'• A • (0) with 1(erf = 1(. Let P x B 
be the Cartesian product N -module of P and B . And we define the 
map 9 P x B • A EÐ B by g(p,b) = f(p) + b,p E P and b E B 
Since the elements of A and B commute, 9 is an N-epimorphism and 
1(erg = 1(* = 1( x {O} . For any (p !, b1) and (p2 , b2) E P x B (P1 , P2 E 
P , b1, b2 E B) , g((Pl , btJ + (p2 , b2)) = g(P1 + p2 , b, + b2) = f(P1 + P2) + 
(b1 + b2) = {J (P1) + f(P2)} + (b, + b2) = {J (P1) + b,} + {J (P2) + b2} 
= g(P1 , b, ) + g(P2 ， 아). And g(n(p1o bd) = g(np !, nbJ) = f(npJ) + 1펴 = 
nf(ptl+nb, = n {J (pJ) +에 = ng(pl , bJ). Thus 9 is an N-homomorphism 
For any a + b E A EÐ B( a E A, b E B) , since f is surjecti ve , then exists some 
elements p in P with f(p) = α Then g(p , b) = f(p) + b = a + b. Next if 
g(p , b) = f(p) + b = 0, f(p) = 0 and b = 0, that is , p E [(erf = 1( and 
b = O. Then (p , b) E 1( x {O}. Conversely if (p , b) E 1( x {O} , then p E 1( 

and b = 0 and so f(p) = 0 and b = O. Thus g(p , b) = f(p) + b = O. We 
have (p , b) E 1( erg. Since A EÐ B = (P x B)j [( erg , by the Theorem 2.9 , 

[(* = 1( erg is a semi-direct summand of P x B. Then P x B = [(*+Q for 
some N-subgroup Q of P x B.Now P* = P x {O} is an N-submodule of 
P x B and so every p E P* has a unique representation, p = q + k where 
q E Q , k E 1(* . Since 1(* is an N-submodule of P치q(=p-k)EP*and 
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q E X = p*nQ, that is,P ‘ = J(* + X.Thus J( is a semi-direct summand 
of P and (이 • K • P • A • (0) almost splits which shows that A is 
almost projective. Similarily B is also almost ,'projedive 

Remark. Supposing that the direct sum of N-subgroups is an N-subgroup, 
we can prove the converse of the above theorem. 

References 
[1] Beidleman ,J .C. , On near-nngs and near-nng m odu/es , Doctoral disse야ation ， Pen­

syv. State University, 1964. 

[2] Blackett,D.W. , Simple and semi-simple near-nngs, Proc. Amer. Math. Soc .,4 :772-
785,1953 

[3] Dickson , L.E., Deβnitions of a group and a fìe ld by independent postulates, 자an 
Amer. Math. Soc ‘ 6 :198-204, 1905 

[4] Fröhlich , A. , Distributively generated near-rings 1, Ideal theory, Proc. London 
Math. Soc., 8: 76-94, 1958 

[5] , Distributively generated near-nngs II, Representation theory, Proc 
London Math. Soc. , 8: 95- 108 , 1958 

[6] Oswald , A. , Some topics in the structure theory of near-rings, Docloral Thesis , 
Univ. ofYork , 1973 

[7] Pilz , G. , Near-rings, N。뻐 Holland , New York , 1983 

[8] Scott, S.D., Near-rings and near-ring modules, Doctor허 d isser tation ,A ustralian 
National University, 1970 

[9] Zassenhaus , H. , Uber endliche Fastkorper, Abh . Math .sem.Univ. Hamburg 11, 
187-320, 1935/36 

DEPARTMENT OF MATHEMATICS , GYEONGSA NG NATIONAL UNIVERSITY , C HINJU 

660-701 , KOREA 


