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1. Introduction

In this paper we consider the system of conservation laws
(1.1) u—v, =0, vy,—o(u),=0.

Here o is a smooth function that is monotonically increasing except in an
interval [a,3]. This system consitutes a model for phase transitions in a
van der Waals gas [1,2,4,5,- --,9] and in elastic plastic rods [3].

This system (1.1) is hyperbolic in the regions

D = {(u,v)|u < aoru>f}
and elliptic in the region
E = {(u,v)la < u < B}.

Such a mixed type was studied by James [3], Hattori [1], [2], Shearer [3],
[6], [7] and Slemrod [8], [9]. The study of possible criterion for the admis-
sibility of shock waves was begun by James and Slemrod [3], [8]. In [8]
Slemord presented admissibility criteria for weak solutions of the equations
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governing isothermal motion of a van der Waals fluid. He dicussed two ad-
missibility criteria: a standard viscosity criterion and a vicosity-capillarity
criterion. The former is discarded: it rules out propagating shock waves
near the equilibrium co-existence line. The latter allows for propagating
shock waves to exists. In [7] Shearer characterizes those phase transitions
satisfying the viscosity-capillarity admissibility criteria of Slemrod and ly-
ing near the Maxwell line. He stated the important of the condition (C)
conjectured by Slemrod. We shall describe the condition (C) which is
possible to analyze the Riemann problem completely.

2. Preliminaries

We consider the system of conservation laws
(2.1) w—v,=0, v,—o(u),=0,

where o : R — R is of class C"(r > 2) and has the following property (P).
(P) There exist numbers a < < f# such that

a'(u) > foru g (a,B),0'(u) <0 for u € (e, )

sgno”(u) = sgn(u — n).

Define v < a and é > § by o(y) = o(f8) and o(a) = o(4). Let m < M be
given by o(m) = o(M) and

j:nM[a(u) — a(m)|du = 0.

If a state (uy,v,) may be joined to state (ug,v;) by a shock wave z = z(t)
with constant shock speed s = z(t), then the Rankine-Hugoniot jump
conditions [4]

(2.2) v — v = —8 = (ug — )
(2.3) o(ug) —o(uy) = —s(vy —vy)
hold. Tt follows from (2.2) and (2.3) that
(24) 2 — G'(UQ) — a(ul)

Uy — Uy

holds.
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A shock wave {(u;,v;), (u3,v;), s} is admissible according to the viscosity-
capillarity criterion [7] and [8] if there is a travelling wave solution

(2.5) (u,v) = (u(€),v(£)), €= (z—st)/e
of the system
(2.6) w—v, =0, v;—o0(u);= ey — A Uzy,

(A constant, 0 < A < 2)
with boundary conditions

(2'7) (uvv)(_oo) = (u17v1)(uav)(+oo):(u%v?)v
(ug,vg)(£o0) = (0,0).

From (2.6) it follows that (u,v) satisfies

du  dv dv d dv d*u

Integration of (2.8) from —oo to £ and use of a subsitution show that a
solution u of (2.6), (2.7) must satisfy the second order ordinary differential
equation

d*u du
2. s e g = e
(2.9) Ad§2 Sdf + o(u) — o(uy) — s*(u — wy)
with boundary conditions
du
(2.10) u(—00) = uy, u(+00) = uy, E(ioo) = .

We say that u; — u; 1s a connection with speed s if there is a solution of

(2.9) and (2.10).

A shock wave is admissible if it is the limit of travelling wave solutions
of (2.6). A piecewise smooth solution of (2.1) is admissible if all its shock
waves are admissible.

If uy — uy is a connection with speed s, then for any vy, {(w1, v1), (u2, v2), s}
represents an admissible shock, where v, is given by (2.2). Note that if
Uy — Uy 18 a connection with speed s, then uy — w, is a connection with
speed —s.

Let uy < o and u; > f. With s? given by (2.4), suppose that s* <
o'(ug)(k = 1,2), and take s > 0. Then (u,0)(k = 1,2) are saddle points.
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A solution of (2.9), (2.10) consists of the unstable manifold of (u,,0) joined
to the stable manifold of (uz,0). Let I'y(u;,u;) denote the connected
component of the unstable manifold of (u;,0) in the upper half plane u =
%f‘-‘ > 0 and containing (u;,0). Similarly, the connected component of the
stable manifold of (u2,0) in the upper half plane, and containing (u2,0),
will be denoted by I'y(u;,uz). Then a > uy — ug > 3 is saddle connection
with speed s > 0 given by (2.4) if and only if s* < ¢'(u),k = 1,2, and
I';(uy,up) = T'y(ug, up). We may assume that I'y and I'; are parametrized

by u : ‘f—;{‘ = wi(u) on T'x(u1,uz). Then (2.9) may be written

(2.11) Aw,,dw;tf“) = —swy(u) + o(u) — o(uy) — s2(u — uy).

Lemma 2.1([9], [10]). Let uy € [M,8]. There exists one ug = tz(uy) < ug
such that uy — uq is a saddle-saddle connection with nonnegative speed.
The corresponding speed $(u,) is positive for vy > M. For each u; €

[M, 8], Gy(uy) > 7 and 1y is of class C™"' on (M, §).
Let u; € [M, 6] be fixed and let u; = uz(s) < a be given by

(2.12) ¢ = o) — ofuz)

Uy — U2
for each s, 0 < s < y/o'(u;). Then (u,0) and (uz,0) are saddle points.
The chord joining (uy,o(u1)) to (uz,o(uz)) cuts the graphs of ¢ at a third
points (up,o(up)). Moreover the trajectories I'y and I'; both cross the
line u = ug. Set wi(s) = wi(up(s)). Note that wy(u) also depends on s
implicitly.

Lemma 2.2([7]). With the above notation

d . _
E[wl(s) —ws(s)] <0

if0 < s < (fo'(u.

Theorem 2.1([7]). There exists 8 > 0 such that if M < u; < M + 0,
then the corresponding uy = ty(uy) giving the saddle-saddle connection
with speed §(uq) > 0 satisfies uy > m.
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In fact, for u; € [M, §] define #;(u;) < a by

_/l_: lo(n) —o(uy) — 52(?} —uy))ldp = 0

32(uy — ug) = o(uy) — o(uz)
and let s, = s,(u;) > 0 be given by

s5(m1 —7) = o) — o(v).

Define 1 = max{t,v}, § = min{3s,s,}. Then @, and § satisfy the result.
Moreover 5 is continuous up to M.

Corollary 2.1([7]). d2(u1) — m uy — M+.

Let u, € [M,6]. Write @t = ts(i;), so that u; — @, is a saddle-saddle
connection with speed 5 = §(#;) > 0. Then I’ = 'y (4, t2) = [a(t, 2) is
the trajectory joining (u;,0) to (&,0). Let T' = {w(u)|u; < u < @, }.

3. Main Theorem

In this section, we shall prove the monotonicity of 4;. We need some
Lemmas.

Lemma 3.1([7]). §(u;) is strictly monotonically increasing on [M, §].
Lemma 3.2. Suppose [;' w(u)du > 25 Jad (g — u)du. Then there ezists
i > 0 such that for u; < uy; <y + p, Iy(uyg,uy) tntersects T.

Proof. Set w = ‘;—E‘ and f(s,u) = o(u) —o(u;) — s*(u —u;). From (2.9) we
have

(3.1) ij—zj = —sw+ f(s,u).

Since w(a;) = 0, (3.1) implies

(3.2) s/:l w(u)du = /ﬁl[a(u) — o(ity) — s*(u — up)]du.

2 )

For uy > @y, let 'y (u, 22) = {w;(u)|u < u}.
It suffices to show that if u; > u,; is chosen enough to #u;, then there
exists u € [tg, @] such that

(3.3) wy () < B(u).



458 Jongsik Kim and Choonho Lee

Suppose that w;(u) > w(u) for all u € [uy,u;]. Then w,(u;) is defined
and

(3.4)4[“1 i,)] j w)du + ] [o(u) — o(@3) — s*(u — @))du

where s > 5 depends on u; through (2.4), with u; = u;. Substituting
(3.2) from (3.4) leads to

AM = (5—3) ] (s + 3)(@; — u) — B(u)]du
+s /:'(za(u) — wy(u))du + (8 — 5) /_“’(az — u)dn

- f [o(u) = o(tiz) = 5*(u — %) — swi(u)]du
= (s—I+ I+ +]1V.

Since w(u) < wy(u) and w(u) < wi(u) near #,, it follows that 17 < 0.
Moreover IV < 0. Therefore,
Alwn ()]
2
where G(uy) = [32[(s + 3)(@y — u) — @(u)]du + (s + 5) [3 (@ — u)du.

Now (7 is continuous and

(3.5) < (s — 5)G(uy)

Gliy) = | [25(uz — w)) — w(w)]}du < 0
g
by assumption. Therefore there exists g > 0 such that if o; < u; < w3+ p,
then G(u;) < 0. From (3.5) and s = s(u;) > 3, the required contradiction
is obtained and w;(u) < w(u) for some u € [uz,u;]. This completes the
proof.

Lemma 3.3([6],[7]). If a; — u; is a saddle-saddle connection, then the
corre.spondzng trajectory T = {w(u)|i; < u < @y} joining (11,0) to (i, 0)

is concave: 4_2(“) <0 foru; < u < uy.

Lemma 3.4. 5(u;) — 0 if and only if u; — M+.

Proof. Let uy € [M,§]. Theorem 2.1 shows that there exists exactly one
uy = Uy(uy) < uy such that u; — uy is a saddle-saddle connection with
non-negative speed §(u;). The definition of @, and § satisfies the following
conditions

(3.6 [ o) = otu) = 8 - w)ldy = 0

2
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(3.7 33 (ug — 0g) = o(u;) — o(ds).

If uy — M+, then t(u;) — m (by Corollary 2.1). Then the left hand
side of (3.7) vanishes. Thus we obtain the desired result. Conversely, if
3(uy) — 0, then (3.5) and (3.6) imply that

[ otn) = o)y = 0
and
o(uy) — o{ug) =0

hold. Since uy # tg, it follows from conditions of ¢ that u; — M+ and
Uy — M.

Theorem 3.1. There exists p > 0 such that 1, is a monotonically in-
creasing function of uy € (M, M + o).

Proof. The trajectories I'= I'i(@1,G2(uy))(k = 1,2) depend continuously
upon i; so does the shock speed s = §(uy). By Lemma 3.4, for u; = M,
uy = m, s = 0, we have

/f (i) d = LMQ[E’E‘)—}’M]% > 0.

Therefore, there exists p > 0 such that
(3.8) / " [@(w) — 23(a@; — w)]du > 0
Uy

when @y € [M, M + p). But (3.8) is the hypothesis of Lemma 3.2. Conse-
quently, for each such u;, there exists p > 0 such that I'(u;,%;) intersects
[if 4y < uy < @y + p. Any intersection is locally isolated. In fact, it is
easy to show it is transversal unless w(u) = —(s + 8)(ua —u) (s > 0 is
given by (2.4) with uz = @), which occurrs at precisely one point on T,
by the concavity of I' (by Lemma 3.3). Suppose I';(u1,%3) does not cross
the u-axis to the right of (@;,0). Then (3.3) implies those exist at least
two interactions of I'y(u;, ;) and with T'. Since s > 3, it is easy to check
that dw;ffz) i dmﬁ?) if wi(@z) = 0. In any case w;(u) > w(u) for u > uy
near us. As a result, there exist u* < u** between w; and u, such that
wy(u*) = w(u*), wi(u*) = w(u**), w(u) < w(u) for v* < u < u™* and
wy(u) > w(u) for 4, < u < w*. This implies that

(3.9) 01 ) < B2
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and

dwl dw
. > >k < = e - .
(3.10) () < ()

Note that w = w, satisfies
dw = 2 =
(3.11) Awd— = —sw + o(u) — o(uz) — s*(u — uy)
u

and w = w satisfies (3.11) also, with s = 5. Therefore, when w = wy,

d(w, —w) _

(3.12) Av——r

—(s — &)w — (8% — 3%)(u — u2).

Set F(u) = —(s — 3)w — (s* — 8%)(u — 412). Then F(u;) =0 and

dF , _ _dw , _ 2 2
o (2) = —(s = §)——(uz) = (s* = 57) > 0
since
dw , & o ol spe wak
< =25 —20(11)7 < —2(3 + 3).
Thus
(3.13) F(u) < 0 for @, < u near u,.

From (3.9), (3.10) and (3.12), it follows that
(3.14) F(u*) <0 and F(u™) > 0.

(3.13) and (3.14) imply that there exist ug,uy,u* < uz < u*™ < u' < @y
such that

dw . dw

E(Ua) = —(s+3) = E(%)
which contradicts the concavity of I' guaranted by Lemma 3.3. Hence
T'1(uy,2) must cross the u-axis to the right of (@2,0) and T'y(uy,2) lies
above T'y(u;, 2). By Lemma 2.2, T'a(uy, @y)lies above T'y(uy,uq) for uy >
iy so that @y(u;) must be less than wy, = y(u;). The proof is complete.
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