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l.Introduction 

In this paper, we will state and prove the uniform strong law of large 
numbers for a sequence of set-indexed product Poisson processes and that 
of set-indexed product partial sum prosesses under the ‘smooth boundary 
condition ’ on the index families. This condition was invented and used to 
prove the same question for set-indexed partial sum processes in Bass and 
Pyke(1984). 

Let yí and yí be Poisson processes wi th integer parameters .\ 1 and .\2 

on B(Id,) and B(Id,), respectively. Note that for notational convenience 
the parameters are not included in the Y ’s. Let d = d1 + d2 and let 
{Ui : i E N} and {Vj : j E N} (indicate the location of random points ) 
denote sequences of independent uniformly distributed random variables 
on Id, and Id, respectively. The product Poisson process of yí and Y2 is 
defined as , for B E B(Id,+d,) , 

N 1 N2 

Y, x Y2(B) = εε ð(U" η)(B) ， 

where N1 = 낀 (Id ， ) and N2 = Yí (Id,) (indicate the number of random 
points) denote Poisson random variables with paramet앙s .\, and 시 re
spectively. In section 2, a uniform strong law of large nu mbers wiU be 
proved for a sequence of product Poisson processes . 
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Let X and Y be real random variables and let {Xi : i E N d,} and 
{긴 : j E N d, } be families of independent identically distributed random 
variables with 'c (X) = 'c (Xi) and 'c (Y) = ,c(Yj) respectively. Note that 
we are not assuming anything between two sequences. Let S!n and S2n 
be the partial sum processes formed from {Xi} and {긴} and indexed by 
subsets of Id, and Id" respectively. Then the product partial sum process 
corresponding to {Xd and {Yj}, indexed by subsets of Id with d = d! +d2 , 
is defined by 

Sn(A) := Sn(X, Y, A) := ε Xi댐(i/nj/n)(A) ， A C Id 

lil~ ’“ül~n 

where, j = (j1,j2" " ,Ù,) , UI = maxl~k~d，자 ， (i/n ， j/n) = (i!/n ,i2/n , .. ’ 
id,/n, jl/n ,j2/n,'" ,jd,) and ó(i/'네n)(A) = 1 or 0 depending on (i/n ,j/n) E 
A or not with i’5 and j 's integers. This product process can be viewed 
as a special case of dependent partial sum processes, which is much more 
difficult to deal with than those of independent case. AIso this process 
can be viewed as a generalization of usual partial sum process with 긴 = 1 
for all j and A = {B X Id, : B E 8 (Id,)} . For partial sum processes, laws 
of large number results have been shown to hold ; see Bass and Pyke and 
Giné and Zinn. In section 3 we prove similiar results for a sequence of 
product partial sum processes Sn under smooth boundary conditions on 
the index fami ly. 

Let A be a sub-family of 8(Id,+d,). Given A c Id, let A(ó) = {x : 
p(x ,ðA)} < ó} be the ó-annulus of ðA, where p{-, .) is the Euclidean 
distance and δ denotes the Euclidean boundary of A 

Assumption SBC{Smooth Boundary Condition) 

r(ó) := sup IA(ó)1 • o as Ó • O 
AεA 

If, for example, A were the collection of convex subsets of Id, it is known 
to satisfy SBC. For this reason this condition is very weak in the sense 
that: for any d, our theorem will be true, but only for d = 1,2 are the 
convex subsets a small enough collection for most other purpose, includ
ing existence of Brownian processes and uniform convergence results for 
partial sum processes. 

In addition to the strong law of large numbers of this paper, t he prod
uct parti.al sum processes also sat isfy a uniform central limit t heorem and 
a functionallaw of iterated logarithm, which will be studied in the forth 
coming papers. However, for these later results much st ronger conditions, 
for example moment conditions and metric entropy will be crucial. 
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2. Product Poisson Processes 

Now we state and prove the strong law of large numbers for a sequence 
of products of Poisson processes under SBC on index farrilly. 

Theorem 2.1. Let Yl and η be Poisson processes ψith integer parame
ters 시 and 사 on B(Idl) and B(Id,) respeclively. Assume that A satisfy 
Assumption SBC. Then 

IIY1 x Y2 (-) ,, 11 
(1) r':.:"\I-I.111 • 0, αs . as 시 ， 서 • ∞， 

11 ÀIÀ2 "11 ..4 

11 꺼 x Y2 (-) ,, 11 
(II) 11" , :; :;' I - 1 . 111 • 0, a.s. as À t，시 -• ∞， 

11 N1N2 "11 ..4 

ψheπ N1 = η(Idl) ， N2 = Y2(I d,) and 1. 1 denotes the Lebesgue measure. 

Before proving the theorem we introduce some notation following Bass 
and Py.ke (1984). Let m be a fixed positive integer and partition I d 

into regular cubes of side length 11m. Let Cj ;!;(j - 1,j ], where 
j (jt,l2, ... ,ù) and 1 = (1 ,1, . .. ,1) with 1 ::; μ < m. Then for 
any. A E A , define 

R누 (A) = UCjCACj , and R~(A) = UCjnA=0다 

That is R;;;(A) and R후(A) are the inner and the outer rectilinear fits 
of A by. cubes of side length 11m. Then since the furthest any. point of 
R!(A) \ R니 (A) can be from the boundary. of A is the diameter of a cube 
of size 11m, by. the smooth boundary. condition, we have 

(2.1 ) 

Now define 

and 

sup IR!(A) \ R;;;(A)I::; r(d1
/

2 Im) 
AE ..4 

R누 ={R누(A)IA E A }, 

n~ = {R~(A) \ R듀(A)IA E A} . 

Then, since m is 퍼lite， W강) and Ü(1영) are finite respecti vely.. To prove 
theorem 2.1 we need the following straightforward consequences of known 
results 

Lemma 2.2. Let A be rectilinear as defin ed above, then 
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y,(A2 、
(i) 능τ- • JAzzJ a.s. , as À, • ∞ 

까(Azz) 
(ii) ~파τ--→ JA상 a.s. ， as À, - • ∞· 

까 x Yz(A) 
(iii) -, -".-,• JAJ a.s. , as À" Àz - • ∞. 

ÀIÀZ 
Y, x 12(A 、

(iv) 」---- -• JAJ a.s. , as À" Àz • ∞， N,N2 
ψhere A2z = {y E Id, : (x ,y) E A} is the dz-dim ensional section of A. And 
if N, = 0 or N2 = 0, then by convention we de.βne (낀 X Yz)/N,N2 = 1 

Proof The proof is straightforward. For (i) , since the set structure is 
irrelevant, it suflìces to show that X(n)/n • 1 a.S. as n • ∞ over the 
integers, where X(η) is a Poisson random variable with parameter n. And 
this is a ∞nsequence of the Hsu- R.obbins SLLN (Hsu 뻐d Robbins(1947)) 
since each X (n) can be expressed as a sum of n independent Poisson 
random variables with parameter 1, which have a finite second moment. 

For (ii) , 
Yi (A2z ) Yi (A2z ) À, 

N, 시 N, 
Since λ.jN， • 1 a.s ., as À, • ∞ (ii) follows from (i). 

For (페 and (iv) , it suflìces to prove it when A is a rectangle and this 
is done in (i) and (i i) 

Proof of Theorem 2.1. First let m > 0 be fixed. Since 

\Yl x Y2 (A) 
lim sup r": -:,. -, - JA J 

시，사→∞:AEA J ÀIÀ2 

\Yl x Yz( A ) Y1 x Y2(R김 (A)) 1 < limsuD I ~ I '_' -. ~\- -, _ - I •• -.4; \~~m\. -111 
- 시 ，Å2-∞:AEA J ÀIÀZ 시À2 

I}~ x Yz(R김 (A) ) In- { ,,\1' + limsup 1-' " ' ,.' ;-m'--" -JR;;;(A)JI 
시，샤→∞:AEA 1 시 À2 1--m\- -11 1 

+ limsup JA \ R;;;(A) I 
시 ，Å2-∞ ，AE..Ã 

(2.2) :=T,+Tz +T3, 

i t remains to show that each of T" T z and T 3 • o as m • ∞. Consider 
T, and T z 

| η x η(R;!;(A) \ R;;;(A) ) I T
1 

< limsup '-1 -I. \ --m ,--, \ --m \ --J' / 

>'1， .\2→∞:AE.A 1 À ，시 | 
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Finally notice that, by (2.1) , (I3) ~ r(d1
/

2 /m). Thus by (2.2), 

1 Y, x Y2 (A) , .,, 1 ~ " .. IJ,I |----- |Al | 5 21 (dl/2/m) a-S ’ 
"， .서→∞:.401 À ，사 | 

which goes to zero as m • ∞ by Assumption SBC. 
For the proof of (II ), use (iv) of lemma 2.2 and follow the proof of (1) 

Corollary 2.3. 1f infAE.A IAI > 0, then 
l 꺼 x Y2(A) , 1 

(i) lim sup 1' ，，"，~~~'， ' I-l l =o 
..\1 ， ..\2 →∞;.401 À,À2IA I '1 

1 yí x Y2 (A) , 1 
(ii) lim sup 1 '~ ;'，~ ~ \;: ' - 11=0 

..\ 1 • ..\'2→∞;Áo 1 N,N2 IAI ~ I 
Proof This follows from theorem 2.1 by observing 

l ‘ -~“ _ 1 yí x Y2 (A) , 1 

A l ，A2」&Ae시 À,À2IAI ~ I 

l η x Y2 (A) ,.,1 
~ lim sup IAI-1 l i r따up |----- |Al| = O 

AE.A 시 ，.\'2-∞:ÁE.A I À,À2 "' 1 

Remark 2.4. [n th~ above we have restricted the parameters to be discrete 
valued. However the result wi ll also hold for continllOllS parameters if 
we impose some further structure. [n particular let κR be two Poisson 
processes wi th parameter 1 defìned on [0, ∞)이 ， d‘ 으 1 and i = 1,2. 
Now suppose that the processes Y, and Y2 in theorem 2.1 are defì ned, for 
A E B(Id,) and B E B(Id2) , by 

Y,(A) = Y'R (시 ' /d ， A) and Y2(B) = YZR(À2 ,/d2 B), 
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t hen 낀 and Y2 are Poisson processes with the right parameters and in t his 
case theorem 2.1 also can be shown to hold. 

3. Procuct Partial Sum Processes 

In t his section we prove a law of large numbers for a sequence of product 
partial sum processes {5n(X , Y, A) : A E A } under conditions on the index 
family A 

Theorem 3 .1. Let {Xi E N d,} and {η : j E N d2} be sequences 
oJ independent identically distributed random variables with EX μ \ ， 

EIXI < ∞， EY= μ2 and EIYI < ∞. Then, under Assumption 5BC 0η 
A , ψe have 

IIn 힘(A) - μ1μ2 1A It • 0 a.s. , as n-• 。O.

For the proof of theorem 3. 1 we prove the following preliminary lernma. 
Recall the definition of R=. R:i:... 1ξ= and R~ from section 2.1. 

m ’ 
Lemma 3 .2. Let A be a rectilinear subset oJ Id . Then, with probability 
oηe J as n -+ 00, 

n- d5n (A) - • μlμ2 1 A I 

Proof Let x (X\ ,X2" " ,Xd ) be fixed and write x (X\) X2) ' where 
X) = (x ),X'2 "" ,Xdt) , X2 (Xdt+l ,Xdl+2"" ,Xd). i.e. XJ E Idt, X2 E Id1 
Then 

(O,x) = {(y"Y2' Y3"" ,Yd) ‘ O< y‘ ::; x;i = 1,2,3, ... d}, 

and 1(0, xll = 1(0, x dl ' 1(0, X211 
Now 

5n ((0, x)) Ü(N d n n(O,x) ) 5n ((0, x)) 
nd nd Ü( N d n n(O, x)) . 

Si nce 

5n((0, x )) = 5n((0, xd X (0, X2)) = 5\n((0, x d)52n ((0, X2)) 

and 
ü( N d n n(O,x)) = "(N dl n n(O ,xl))' "( N d2 n n(0,x2]) ' 



The LLN for product processes 

we have, by t he classical strong law of large numbers, 
5n ((0.x]) 

n d 

as n-• 00. 

g(Nd n n(O , x]) 51n( n(O, xd)52n( n(O, X2]) 

nd ~(Ndl n n(O , xd) . þ(Nd2 n η(0 ， X2]) 

-• 1(0, xJIμlμ2 a.s. , 
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But , since any rectilinear set can be obtained by a finite number 0이 f 
un뼈1 

as n -+ 00. 

n-d엄SκA’n‘， (μA꺼)-→→ μ애Iμμ씨2쇠써써IA께A께1 aα.8ι8.ι ., 
’ 

Proof of Theorem 3.1. The proof is quite similiar to t he case of product 
of Poisson processes 

lim sup In-d5n (A)- μIμ2 1AII 
n→∞，AE.A I 

= lim sup n-d ISn(A) - 5n (R누 (A)) I 
n→∞，AEA 

+ lim sup In-dSn(R누 (A)) - μlμ2IR;;;(A) 1I 
n-→∞ ，AEA' 

+ lim sup μ1μ21A \ R듀(A)I 
”→。o ，AEA

=T1 +T2 +T3 . 

Clearly, T 3 :::: μIμ2r(d1 /2 fm) since p강 < ∞. Also 

T 2 :::: liηlms 
n→∞’βBe 'R.;;' ‘ ’ 

< lims때 max In- d 5(B) - μlμ21BII = 0 a.s. 
”一。o Ben;;. I ’ 

Fi뼈Iy， let a = EIXI and ß = EI YI. For C C I d, set 

Tn(C) = ε IXil 1에Ó( i/nJ/n) (C) 
lil <n ，니 I <n 

By lemma 3.2 applied to the process Tn 

T 1 5n l一
lm。。s，AuepA n dTn(R￡(A) \ R누(A )) 

:::: li~s~p ~~~ In-렐(B)I 
n-→。o BεR웅 

:::: aß ma~ IBI:::: aßr(d1/2fm ) 
BξR$ 

a.s . 
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Summing up and letting m • ∞， we have the conclusion 
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