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1.Introduction

In this paper, we will state and prove the uniform strong law of large
numbers for a sequence of set-indexed product Poisson processes and that
of set-indexed product partial sum prosesses under the ‘smooth boundary
condition’ on the index families. This condition was invented and used to
prove the same question for set-indexed partial sum processes in Bass and
Pyke(1984). '

Let ¥} and Y, be Poisson processes with integer parameters A; and A,
on B(I') and B(I%), respectively. Note that for notational convenience
the parameters are not included in the Y’s. Let d = dy + dy and let
{U; : 1 € N} and {Vj : j € N} (indicate the location of random points)
denote sequences of independent uniformly distributed random variables
on I* and I respectively. The product Poisson process of ¥; and Y is
defined as, for B € B(I%1+%),

A

Yix Ya(B) =)D bw.vy(B),

1=i1 =1

where N; = Yi(I*) and N; = Y5(I®?) (indicate the number of random
points) denote Poisson random variables with parameters A; and A; re-
spectively. In section 2, a uniform strong law of large numbers will be
proved for a sequence of product Poisson processes.
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Let X and Y be real random variables and let {X; : i € N*} and
{Yj : j € N2} be families of independent identically distributed random
variables with £(X) = £(Xj) and L(Y) = L(Yj) respectively. Note that
we are not assuming anything between two sequences. Let S, and S,
be the partial sum processes formed from {X;} and {Yj} and indexed by
subsets of I#* and I%2, respectively. Then the product partial sum process
corresponding to {X;} and {Y;}, indexed by subsets of I? with d = d, +d>,
is defined by

Sn(A) := Sp(X,Y, A) := E XiYid(i/njmy(A), AT,
lil<n,lil<n

Where)j = (jhj21 e 'ljdﬂ)" ]jl = mamlgks&:zjkv (i/naj/n) = (illn’iZ/n) T
i, /1, J1/n, 32 /0, -+, Ja,) and 85 jm)(A) = 1 or 0 depending on (i/n,j/n) €
A or not with ¢’s and j’s integers. This product process can be viewed
as a special case of dependent partial sum processes, which is much more
difficult to deal with than those of independent case. Also this process
can be viewed as a generalization of usual partial sum process with ¥j = 1
for all jand A = {B xI*2 : B € B(I;,)}. For partial sum processes, laws
of large number results have been shown to hold; see Bass and Pyke and
Giné and Zinn. In section 3 we prove similiar results for a sequence of
product partial sum processes S, under smooth boundary conditions on
the index family.

Let A be a sub-family of B(I“+%2). Given A C I, let A(8) = {z :
p(z,0A)} < &8} be the é-annulus of 9A, where p(-,-) is the Euclidean
distance and @ denotes the Euclidean boundary of A.

Assumption SBC(Smooth Boundary Condition)
r(6) := sup |A(8)] = 0 as § — 0.
AeA

If, for example, A were the collection of convex subsets of I¢, it is known
to satisfy SBC. For this reason this condition is very weak in the sense
that: for any d, our theorem will be true, but only for d = 1,2 are the
convex subsets a small enough collection for most other purpose, includ-
ing existence of Brownian processes and uniform convergence results for
partial sum processes.

In addition to the strong law of large numbers of this paper, the prod-
uct partial sum processes also satisfy a uniform central limit theorem and
a functional law of iterated logarithm, which will be studied in the forth-
coming papers. However, for these later results much stronger conditions,
for example moment conditions and metric entropy will be crucial.
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2. Product Poisson Processes

Now we state and prove the strong law of large numbers for a sequence
of products of Poisson processes under SBC on index family.

Theorem 2.1. Let Y; and Yz be Poisson processes with integer parame-
ters Ay and Ay on B(I*) and B(I%?) respectively. Assume that A satisfy
Assumption SBC. Then

Y; x Ya(-
(I) l 1;( 2()'_|'| _)Op a.s. as /\1,)‘2_"00’
1A A
Y1><Y2(‘)
I ——— || — 0, as. as A, Ay — oo,
( ) N1N2 I |A o

where Ny = Y (I91), Ny, = Y3(I%2) and | - | denotes the Lebesgue measure.

Before proving the theorem we introduce some notation following Bass
and Pyke (1984). Let m be a fixed positive integer and partition I¢
into regular cubes of side length 1/m. Let Cj = L(j — 1,j], where

i = (U1,J2,--+,Ja) and 1 = (1,1,---,1) with 1 < jx < m. Then for
any A € A, define

R;(A) = UCchst and R;(A) = UCjnA=ﬂCj-

That is R, (A) and R} (A) are the inner and the outer rectilinear fits
of A by cubes of side length 1/m. Then since the furthest any point of
R} (A)\ R;(A) can be from the boundary of A is the diameter of a cube
of size 1/m, by the smooth boundary condition, we have

(2.1) sup |BE(A)\ R (A)| < r(d/?/m)

Now define
R, ={R.(A)|A € A},

and

R = {R5.(A)\ R (A)|A € A}.

Then, since m is finite, §(R,) and §(RZ) are finite respectively. To prove
theorem 2.1 we need the following straightforward consequences of known
results.

Lemma 2.2. Let A be rectilinear as defined above, then
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(1) Yl(;:h) — |Azz| a.s., as A} — oco.
(ii) %‘?—)— — |A2z| a.s., as A\ — 0.
(iii) Yi—);l)%@ — |A|  a.s., as A, Ay — oo.
(iv) Kf):ﬁ_}fl\’jg(m — |A|  a.s., as A\, Ay — o0,

where Ay, = {y € 12 : (z,y) € A} is the dy-dimensional section of A. And
if Ny =0 or N, =0, then by convention we define (Y] x Y3)/N; N, = 1.

Proof. The proof is straightforward. For (i), since the set structure is
irrelevant, it suffices to show that X(n)/n — 1 a.s. as n — oo over the
integers, where X (n) is a Poisson random variable with parameter n. And
this 1s a consequence of the Hsu-Robbins SLLN (Hsu and Robbins(1947))
since each X(n) can be expressed as a sum of n independent Poisson
random variables with parameter 1, which have a finite second moment.
For (i1),
Yi(des) _ Yi(da) M
N N N
Since A{/N; — 1 a.s., as Ay — oo (ii) follows from (i).
For (iii) and (iv), it suffices to prove it when A is a rectangle and this
is done in (i) and (ii).

Proof of Theorem 2.1. First let m > 0 be fixed. Since

Y, x Yo(A
lim sup Y x ¥a(4) —|A]
A1,A2—00,ACA AIA‘J.’
. Y1 x Y5(A) mxnmwmw
< 1 = L
= e Ay A ds
+ limsup LR Yz(Rm(A)) = |R;.(A)I’
A1, 2—00,AEA )\IAZ

+ limsup |A\ R, (A)]
A

A, A2 —00,A€E
(22) = T] + T2 -+ Tg,

it rema.ins to show that each of Ty, T; and T3 — 0 as m — oco. Consider

Tl and Tg

Ty = lim sup

A1,A2—00,AEA

Y x Ya(RE(A) \ R;(A)).
Rk
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Yi x Ya(RE(A) \ Ry (4))
AlAz

= lim sup
M ,Az—roo,BE'Rﬁ
= max |B|
BeR:

< r(d?)m)  as.,

the second to last line following from lemma 2.2 (iii). Also by (iii) of
lemma 2.2,

Y, x Yo(B
T, < limsup max LZ() —|B||=10 As..
AlAg

M, Az—oc BER L,

Finally notice that, by (2.1), (I5) < r(d'/?/m). Thus by (2.2),

,1 X Yz(A

lim sup ) )—|A| < 2r(d"?)m) as.,
142

A| ,,\2—400,AE.4.

which goes to zero as m — oo by Assumption SBC.
For the proof of (II), use (iv) of lemma 2.2 and follow the proof of (I).

Corollary 2.3. If infaeca|A| >0, then

) . Y1 x ¥5(A) |

1 lim su —— 1| =0 a.s.
0) Al,Az—»oo,»Ii)eA A Aq| Al

1 lim su —_— —1({=0 a.s.
(i) Al.r\z—’OO.EE.A NNy | Al

Proof. This follows from theorem 2.1 by observing

lim sup
A1, A2 —00,A€A

Vi x Ya(A) 1'
A1 Az|A|

< limsup |A]™" limsup
A€A A1,A2—00,AEA

Remark 2.4. In the above we have restricted the parameters to be discrete
valued. However the result will also hold for continuous parameters if
we impose some further structure. In particular let Y;r be two Poisson
processes with parameter 1 defined on [0,00)%, d; > 1 and i = 1,2.
Now suppose that the processes Y| and Y; in theorem 2.1 are defined, for
A € B(I*) and B € B(I*?), by

Yi(A) = ViM% 4) and Ya(B) = Yar(A:'/“B),
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then Y; and Y, are Poisson processes with the right parameters and in this
case theorem 2.1 also can be shown to hold.

3. Procuct Partial Sum Processes

In this section we prove a law of large numbers for a sequence of product

partial sum processes {S,(X,Y, A) : A € A} under conditions on the index
family A.

Theorem 3.1. Let {X; : i € N*} and {Y; : j € N%} be sequences
of independent identically distributed random variables with EX = p,,
E|X| < 00, EY = py and E|Y| < co. Then, under Assumption SBC on
A, we have

"n_dSn(A) - p1p2|A|“A —0 a.s., as n — oo.

For the proof of theorem 3.1 we prove the following preliminary lemma.
Recall the definition of R, R}, R and R2 from section 2.1.

Lemma 3.2. Let A be a rectilinear subset of 1. Then, with probability
one, as n — 0o, '

n"95,(A) — ppalAl.

Proof. Let x = (z1,22,...,24) be fixed and write x = (x;,X;), where

: d d
Xy = (Biy B3, o5 ) Ko = (5004084805 - 1) e x5 € T, % € IO,
Then

(0,x] = {(y1,y2, Y3 - -»%a) : 0 <y < 22 = 1,2,3,...d},

and |(0,x]| = [(0,x1]] - [(0,x2]].
Now

Sa((0,x]) _ B(N?Nn(0,x])  Sa((0,x])

n# nd B(N? N n(0,x])

Since

Sﬂ((O,xD = Sn((oaxl] X (0,)(2]) = Sln((oaxl])S%((Oﬂ x2])

and

BN N 2(0,x]) = §(N* Nn(0,x1]) - (N N (0, x2]),
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we have, by the classical strong law of large numbers,

Sﬂ((ox]) aa ﬁ(Nd n R(O, X}) . Sln(n(ovxl])s2n(n(oa x?])
nd nd §(IN4 N n(0,%4]) - (N4 N n(0,x,])
— (0, x]|p1 22 a.s.,

But, since any rectilinear set can be obtained by a finite number of
unions and differences of rectangles of the form (0, x|, by linearity we have

n~US,(A) — pimalA| as.,
as n — oC.

Proof of Theorem 3.1. The proof is quite similiar to the case of product
of Poisson processes.

limsup |n~*S,(A) = juasual Al
n—oo,AEA

= limsup n™¢ IS“(A) — Sn(R;(A))\

n—o0,AEA

+ limsup ln_dSn(R;(A)) = ﬂlﬂzlﬁ;l(A)”
n—oo,AEA

+ limsup pips|A\ R (A)|
n—oo,A€A

=T, + T+ Ts.
Clearly, T3 < pypar(d'/?/m) since R, < co. Also

T, < limsup |n_dSn(B)—,u1png||
n—oo,BER,

< limsup max In_dS(B) - #1#2!3” =0a.s.
n—oo  BeRp,

Finally, let « = E|X| and 8 = E|Y|. For C C I, set
T(C)= Y |Xill¥léG/nim)(C).
lil<n,ljl<n

By lemma 3.2 applied to the process T,.

Ty < limsup n""T,(R}(A)\ R, (A))
n—o0,AEA

N

limsup max In"dTn(B) ‘
n—+00 BER.-A"

< aff max |B| < afr(d"/?|m) a.s..
BeRA
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Summing up and letting m — oo, we have the conclusion.
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