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In this paper we study the relationship between direct sum and the 
systems of simultaneous equations in the predual of a dual algebra. Let 1i 
be a separable, infinite dimensional, complex Hilbert space and let t:.(1i) 
be the algebra of all bounded linear operators on 1i. It is well-known 
that the weak* -topology coincides with the ultraweak operator topology 
on t:.(1i) (cf. [4]). A unital s뼈aJgebra A of t:.('H) that is c10sed in the 
ultraweak operator topology on ι('H) is called a dual algebra. [n the past 
fourteen years severaJ operator theorists have been studying the problem 
of solving systems of simultaneous equations in the predual of duaJ op­
erator algebras and the resuJts gained thereby have applied to invariant 
subspaces , dilation theory, and reílexivity of singJe operator in t:.('H) (cf 
[2]) 

Furthermore, the theory of dual algebras is c10sely related to properties 
(Ám.n) which will be introduced in the following definition , where m and 
n are any cardinal numbers such that 1 < m , n < No. [n particular, 
Apostol-Bercovici-Foias-Pearcy [1] studied the relationship between dual 
algebras and properties (Ám까)， which is the r뻐n tool of this work 

The notation and terrrùnology employed herein agree with those in 
[2]. The c1ass C1 ('H) is the Banach space of trace-class operators on 'H 
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equipped witb the trace norm. The dual algebra A can be identified with 
the dual space of 
(1) 
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Q.Â = C1 (H)/1. A, 

where 1. A is tbe preannihilator in C,(H ) of A , under the pairing 

< T, [L ].Â >= t7'(TL) , T E A, [L] E Q .Â' 

when there is no possibility of 
denote a rank one operator 

(2) 

For a brief notation, we write [L] for [L] .A 

confusion . If x and y are vectors in H , we 
(x 1)9 y)(u) = (u , y)x for all u in H. 

Definition 1. Suppose m and n are cardinal numbers such that 1 < 
m , n ::; ~O. A dual algebra A will be said to have property (Am끼) if every 
m X n system of simultaneous equ‘l.tions of the form 

[Xi 1)9 Yi] = [L‘i ], 0 ::; i < m , 0 ::; j < n , 

where {[Lii ]}O :'ó i< m is an arbitrary m x n array from Q .A , has a solution 
O$.j<n 

{X;}O:'ó i<m' {Yi}야i<n consist ing of a pair of sequence of vectors from H. 
For a brief notat ion, we shall denote (An.n) by (An). 

For T E C(H) , we denote hy AT the dual algebra generated by T. N 
is the set of all natural numbers. For k E N and T E .c (H) , we denote 

(3) 

쨌
 

} 

써
 

--서
 

T 
뻐
 

H $ $ H = 서
 

( H 
(4) 

Let Hi be a separable, infini te dimensional, complex Hilbert space and 
let A c .c(H‘) be a d ual algebra, i = 1,2,' .. , n . Su ppose 1{ = EÐf= ，κ 
Then we denote the d irect sum of dual algebras A i , i = 1,2," ' , n , and 
denote 

(k) 

L(H)11;‘ E Ai ,i = 1,2, .. . ,n} A = EÐ?:,A = {EÐ?: ,Ti E (5) 

And we have the following lemma. 

Lemma 2. Let 1{‘ be a sepamble, infinite dim ensional, complex Hilbert 
space. Suppose thal 건‘ c .c댄‘ ) is a dual 띠'g ebm， i = 1,2,"', η ， wilh ils 
predual Q .Ai' Th en A c .c(H ) is a dual algebm with its predual EÐ ;누I Q .Â i 

under the duality 

<EÐ仁1 1;， EÐ i=, [L;J.Â i >= ε ζ 낀 ， [L‘] > (6) 
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and the π，!!rm on EB~1 QAó is the norm that accures to it as a linear maη­

ifold in A*. [n particular, [(에누1Xi) <21 (EBi=IYi)] can be ident껴ed with 

EBi=1 [Xi <21 νiJAó' 
Proof First we shall claim that A can be considered as a subspace of f(1i) 
under the weak* -topology on f(1i). N amely, we shall claim the closedness 
of Ã. To do so, let EB휴1T，(a) be a꼬et converging to an operator R E ζ(감) 
under the 、weak'‘ζ간’i나. 

(7) ε(앞l낀(α )￡(k) ， i(k) • ε(Æ;(k)， îP)) 

for any square summable sequences {i:(k)}뚱1 and {ií(k)}뚱 in 1i. Let us 
write 

Rll R12 

(8) I R.21 R22 R2n 
R= 

Rnl Rn2 Rnn 

relative to 1i. Let us denote 

(9a) i(k) = 샤) $ $ zr) 
and 

(9b) i(k) = 이k) EB 탱 Ur) 

Now we take square summable sequences {뇌k)}뚱1 in 1ii and {방)}뚱1 m 
1ij , 1 :S i ,j :S n. Let us set 

(10a) 

(n) 

d k) _ n ~ ~ n ~ _(k) 
‘ =쁘」빽$Z1 $ O $ - - - θ 0 ， 

(‘ 1) 

and 

뼈
 

( 
(n) 

깜) -쁘〕쁘$yik) $ O $ $ 0, 
(;- 1) 
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Substi tute {깐)}응1 and {방) }뚱1 to (7) , and we have 

m ( 
ε((많1πn))석k) ， ijk)) 
k=1 

• ε(R1‘zik) {E R2뇌k) 
$ · $ Rn뇌k) ， jjk)), 

k=1 

for any i, j = 1, 2, " " n. It is easy to show that 

(12) Rj; = 0, i 동 J 

Hence R = Efl~1 R“ 
Furthermore, we have that 

(13) ε(T，‘
(n)만안)) 

k=1 

• ε(R싸k) 심k) )，1 :s i :S n. 

Since Å; is w쁘k* - closed ， R;; E Å; . So R E Efli=IÅ;. Therefore Å is a dual 
algebra in J:.(1i) . 

Now consider the direct sum 

(14) Efl~1 QAi = { Efl;누 I[L;]Ai 1 [L‘]Ai E QAi} 

of Banach spaces QA i' 1 :S i :S n , with the usual direct sum norm. 
The fo~owing idea comes from the proof of [1 , Lemma 1.2]. For 

Efl뜯1 T; E Å and Efl ~1 [L;]Ai E Efl i=1 Q 
Ã' 

we define 

(1 5) < 앞1T， ， 월I[L‘ ]A i >= ε < 낀， [L;] Ai > ’ 

Then it is easι to show that < " Efl ;누 1 [L;]Ai > defi nes a bounded linear 
functional on Å , which we may define by 와~1 [L ;]. We define 11 Efli=1 [L;] 11 

to be the norm of this linear functional. Since Efl i=1 [L;] is ult raweakly 
continuous on 외늑I Å;， by [3 , Problem 15.J] Efli=I [L;] corresponds to an 
element of the predual QÃ 

On the other hand, if [L] E QÃ' we write 

LI2 L1n 

(16) 
L21 L22 L2"‘ I E J:.(1i). L= 

Lnl Ln Lnn 
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Furthermore, since A c .c('H), we may define a Iinear functional on A 
such that 
(17) < EÐi=IA‘,[L] >= tr(A‘。 ， Lψ。).

Letting io range over the set {1 , ... ,n} , we obtain an element EÐi=,[L;] 
corresponding to [L] and 

(18) < 와~IAi ， EÐi=) [Li] >= ε <A‘’ [Li] > 

Finally, for any EÐ i=1 Ti E A , we have 

(19) < EÐi=ITi, [( EÐ~ ， Xi) 181 ( EÐ~， Yi)] > ( EÐi=1낀 Xù EÐi=lY‘) 
n 

ε(T;x‘ ， y;) 
n 

ε < 인 ， [x‘ 181 Yi] .A, > 

< EÐi=, Ti, EÐi=1 [Xi 181 y;J.A ó > 

Hence [(EÐ~ ， Xi) 181 ( EÐi= ， 찌)] can be identified with EÐ~ I [Xi 181 Yi] . The proof 
is complete. 

The following lemma is a generalization of [2, Proposition 2.04] 

Lemma 3 . If A is any algebm with propertν (Åm.n) for some 1 ::; m , n ::; 
~o and B is any subalgebm of A , then B has the same property. 

Proof The proof is similar to [2, Proposition 2.04] . 

The f，이lowing theorem should be compared with [1 , Proposition 1.3] 
and [2, Proposition 2.055]. 

Theorem 4. Suppose m , n E N. Let Ai be a dual algebm, 1 ::; i ::; n. 
Then A ‘ has property (Åm끼 ) for a때 i l ,"' ,n , íf and only ‘r EÐ i，느 ， A‘ has property (Åm끼) 

Proof Let EÐ~=1 [Li;)] E E않=1 Q.A,. 
i ::; m , 1 ::; j ::; n , such that 

Then there exist x~k) ， 씨k) E Hk, 1 S 

(20) [L앙)]...1， = [센) 181 y;k)].A, 

N ow let us set 

(21a) (1) ~ _(2) ~ ~ _(n ) 
i = Xi' EÐ x‘ $ ‘ .. EÐ X‘ 
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and 

(21b) (1) '" _(2) '" '" _(n) Yj = x j' EÐ xy' EÐ .. . EÐ xj 

Then X; E 1í and fj; E 1í, 1 ::; i , j ::; n. Furthermo re according to Lemma 

2 we have 

(22) 웹;1 [L암 )J .A‘ = 웹;1 [xl k
) 0 yY)J = [x‘ o f}jJ . 

The converse implication fo llows from Lemma 3 and the proof is com 

ple te. 
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