CONVEXITY OF THE PERMANENT FOR DOUBLY STOCHASTIC MATRICES II

Suk-Geun Hwang

Dedicated to Professor Younki Chae on his sixtieth birthday

Let Ω_{n} denote the polytope consisting of all $n \times n$ doubly stochastic matrices. In this paper we prove the convexity of permanent for matrices in some subclasses of Ω_{n}.

1. Introduction

Let Ω_{n} denote the set of all $n \times n$ doubly stochastic matrices and let J_{n} denote the $n \times n$ matrix all of whose entries are $1 / n$. It is very well known that Ω_{n} forms a convex polytope with all the n ! permutation matrices as its vertices.

For an $n \times n$ matrix $A=\left[a_{i j}\right]$, the permanent of A, per A, is defined by

$$
\operatorname{per} A=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where S_{n} stands for the symmetric group on the set $\{1,2, \cdots, n\}$. For a matrix $A \in \Omega_{n}$, let $f_{A}(t)$ denote the function of t defined by

$$
f_{A}(t):=\operatorname{per}\left[(1-t) J_{n}+t A\right] .
$$

In 1978, Friendland and Minc [4] proved that for any $n \times n$ permutation matrix P, the function $f_{p}(t)$ is monotone increasing over the interval $0 \leq$ $t \leq 1$ and is monotone decreasing over the interval $-1 /(n-1) \leq t \leq 0$.

Received July 23, 1992.
Research supported by Korea Science and Engineering Foundation in 1989-1990 under Grant 891-0101-014-2.

If the function $f_{A}(t)$ is monotone increasing over the closed unit interval $[0,1]$, then it is said that the monotonicity of permanent (abb. MP) holds for A. Friendland and Minc, ibid., raised the problem of finding doubly stochasitc matices for which MP holds [4,8,13 etc.]. This property of the permanent function is referred to as the monotonicity conjecture. With the monotonicity conjecture still being open, several subclasss of Ω_{n} have been proved to satisfy MP $[4,7,8,10,11,12,15,16]$.

Another particular property of the permanent function on Ω_{n} is the convexity which is as interesting as the monotonicity. In [5] we proposed the following.

Convexity Conjecture. Let $A \in \Omega_{n}, A \neq J_{n}$. Then the permanent function is strictly convex on the stright line segment joining J_{n} and $\left(J_{n}+A\right) / 2$, and proved it for $n=3$. We also conjectured [5] that the convexity conjecture and the following conjecture due to Lih and Wang are equivalent.

Lih and Wang's Conjecture [9]. Let $A \in \Omega_{n}$, then

$$
\operatorname{per}\left[(1-t) J_{n}+t A\right] \leq(1-t) \operatorname{per} J_{n}+t \operatorname{per} A
$$

for all t in the closed interval $[0,1 / 2]$.
In view of the convexity conjecture it will be of interest to find classes of doubly stochastic matrices for which the convexity of permanent over some subinterval of $[0,1]$ holds. In this paper, we prove that $f_{p}(t)$ is strictly convex on the interval $[-1 /(n-1), 1]$ for all $n \times n$ permutation matrices P.

Throughout this paper, for an $n \times n$ matrix A and for subsets α, β of $\{1, \cdots, n\}$ let $A(\alpha \mid \beta)$ denote the matrix obtained from A by deleting rows lying in α and columns lying in β.

2. Preliminary Lemmas

Let n be a positive integer. For an integer $k, 0 \leq k \leq n$, let $Q_{k, n}$ denote the set of all strictly increasing k-sequences from $\{1,2, \cdots, n\}$. For an $n \times n$ matrix $A(t)=\left[a_{i j}(t)\right]$ whose entries are differentiable functions of the real variable t, and for $\alpha \in Q_{k, n}$, let $A^{(\alpha)}(t)=\left[b_{i j}(t)\right]$ and $A_{(\alpha)}(t)=\left[c_{i j}(t)\right]$ be defined by

$$
b_{i j}(t)= \begin{cases}d a_{i j}(t) / d t, & \text { if } i \in \alpha, \\ a_{i j}(t), & \text { otherwise }\end{cases}
$$

and

$$
c_{i j}(t)= \begin{cases}d a_{i j}(t) / d t, & \text { if } j \in \alpha \\ a_{i j}(t), & \text { otherwise }\end{cases}
$$

Then we can easily prove the following lemma which gives a formula for $d \operatorname{per} A(t) / d t$ similar to a well known formula for $d \operatorname{det} A(t) / d t$.

Lemma 1. Let $A(t)=\left[a_{i j}(t)\right]$ be an $n \times n$ matrix whose entries are differentiable functions of t. Then

$$
\begin{equation*}
\frac{d}{d t} \operatorname{per} A(t)=\sum_{i=1}^{n} \operatorname{per} A^{(i)}(t) . \tag{1}
\end{equation*}
$$

$$
\frac{d}{d t} \operatorname{per} A(t)=\sum_{j=1}^{n} \operatorname{per} A_{(j)}(t)
$$

From Lemma 1 there directly follows the following
Lemma 2. Let $A(t)$ be the same as the one in Lemma 1. If all of the $a_{i j}(t)$'s are polynomials in t of degree 1 or less, then

$$
\begin{align*}
& \frac{d^{k}}{d t^{k}} \operatorname{per} A(t)=k!\sum_{\alpha \in Q_{k, n}} \operatorname{per} A^{(\alpha)}(t), \tag{1}\\
& \frac{d^{k}}{d t^{k}} \operatorname{per} A(t)=k!\sum_{\alpha \in Q_{k, n}} \operatorname{per} A_{(\alpha)}(t),
\end{align*}
$$

for all $k=1,2, \cdots, n$.

3. Convexity of the permanent for vertices of Ω_{n}

In this section we prove that the permanent function is convex on straight line segments joining J_{n} and vertices of Ω_{n} i.e. permutation matrices in Ω_{n}. It suffices to prove the above property for the identity matrix I_{n} only. For that purpose let

$$
M_{n}(t):=(1-t) J_{n}+t I_{n}=\left[a_{i j}(t)\right] .
$$

Then

$$
a_{i j}(t)= \begin{cases}\frac{1}{n}+\left(1-\frac{1}{n}\right) t, & \text { if } i=j, \\ \frac{1}{n}-\frac{1}{n} t, & \text { otherwise }\end{cases}
$$

We are about to show that

$$
\frac{d^{2}}{d t^{2}} \operatorname{per} M_{n}(t) \geq 0
$$

over the interval $0 \leq t \leq 1$. Before starting this job, observe that per $M_{n}^{(\alpha)}(t)=\operatorname{per} M_{n}^{(1,2)}(t)$ for all $\alpha \in Q_{2, n}$, because for any $\alpha \in Q_{2, n}$ there are permutation matrices P, Q such that $P M_{n}^{(\alpha)}(t) Q=M_{n}^{(1,2)}(t)$.

Now we are ready to prove one of our main theorems.
Theorem 1. The function $f_{I_{n}}(t)=\operatorname{per} M_{n}(t)$ is strictly convex over the interval $0 \leq t \leq 1$.
Proof. By the above observation and by Lemma 2, we have

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} \operatorname{per} M_{n}(t) & =2 \sum_{\alpha \in Q_{2, n}} \operatorname{per} M_{n}^{(\alpha)}(t) \\
& =n(n-1) \operatorname{per} M_{n}^{(1,2)}(t)
\end{aligned}
$$

Thus it suffices to show that per $M_{n}^{(1,2)}(t)>0$ for all $t, 0<t<1$. For $t, 0<t<1$, let

$$
x=1+\frac{n t}{1-t}
$$

and let

$$
U_{n}(x)=\left[\begin{array}{cc|ccc}
1-n & 1 & 1 & \cdots & 1 \tag{3.1}\\
& 1-n & 1 & \cdots & 1 \\
\hline 1 & 1 & & \\
\vdots & \vdots & (n-2) J_{n-2}+(x-1) I_{n-2} & \\
1 & 1 & &
\end{array}\right.
$$

Then since

$$
M_{n}^{(1,2)}(t)=\frac{1}{n}\left[\begin{array}{cc|ccc}
1-n & -1 & -1 & \cdots & -1 \\
-1 & n-1 & -1 & \cdots & -1 \\
\hline 1-t & 1-t & & & \\
\vdots & \vdots & & (n-2)(1-t) J_{n-2}+n t I_{n-2} & \\
1-t & 1-t & &
\end{array}\right]
$$

and

$$
\frac{n-1}{-1}=1-n, \frac{1-t+n t}{1-t}=x
$$

we see that

$$
\operatorname{per} M_{n}^{(1,2)}(t)=\frac{(1-t)^{n-2}}{n^{n}} \operatorname{per} U_{n}(x)
$$

Hence our problem has been reduced to proving that per $U_{n}(x)>0$ for all $t, 0<t<1$, i.e., for all $x>1$. For $n \leq 3$, it can be easily seen that per $U_{n}(x)>0$ for all $x>1$. So, assume $n \geq 4$.

Let $E_{i j}$ denote the square matrix of suitable size all of whose entries are 0 except for the (i, j)-entry which is 1 . For integers k, q with $0 \leq q<k$, let

$$
\begin{equation*}
C_{k, q}:=k J_{k}+(x-1) \sum_{i=1}^{k-q} E_{i i} \tag{3.2}
\end{equation*}
$$

and $P(k, q):=\operatorname{per} C_{k, q}$.
Expanding per U_{n} along the first two rows, we get

$$
\begin{align*}
\operatorname{per} U_{n}= & \left(n^{2}-2 n+2\right) P(n-2,0)-2(n-2)^{2} P(n-2,1) \tag{3.3}\\
& +\left(n^{2}-5 n+6\right) P(n-2,2)
\end{align*}
$$

Since $C_{n-2,0}=C_{n-2,1}+(x-1) E_{n-2, n-2}$, we get

$$
\begin{align*}
P(n-2,0)= & \operatorname{per} C_{n-2,1}+(x-1) \operatorname{per} C_{n-2,1}(n-2 \mid n-2) \tag{3.4}\\
& =P(n-2,1)+(x-1) P(n-3,0)
\end{align*}
$$

since $C_{n-2,1}(n-2 \mid n-2)=C_{n-3,0}$.
Similarly we can show that

$$
\begin{equation*}
P(n-2,1)=P(n-2,2)+(x-1) P(n-3,1) . \tag{3.5}
\end{equation*}
$$

Hence

$$
\begin{align*}
P(n-2,0)= & P(n-2,2)+(x-1) P(n-3,1) \tag{3.6}\\
& +(x-1) P(n-3,0) \\
& \geq P(n-2,2)+2(x-1) P(n-3,1)
\end{align*}
$$

since $P(n-3,0) \geq P(n-3,1)$. Now (3.3), (3.5) and (3.6) yield

$$
\operatorname{per} U_{n} \geq n P(n-2,2)+4(n-1)(x-1) P(n-3,1)>0
$$

since $x \geq 1$, and the proof is complete.

We now prove the convexity of the permanent on the straight line segment joining J_{n} and $\left(n J_{n}-P\right) /(n-1)$ for $n \times n$ permutation matrices P. For this purpose, let

$$
T_{n}:=\frac{n J_{n}-I_{n}}{n-1}
$$

and let $S_{n}(t):=(1-t) J_{n}+t T_{n}=\left[s_{i j}(t)\right]$. Then

$$
s_{i j}(t)= \begin{cases}\frac{1-t}{n}, & \text { if } i=j, \\ \frac{1-t}{n}+\frac{t}{n-1}, & \text { otherwise }\end{cases}
$$

Whence

$$
\left.\begin{array}{rl|lll}
& S_{n}^{(1,2)}(t) \\
& \frac{1}{n(n-1)}\left[\begin{array}{ccc}
1-n & 1 & 1 \\
\cdots & 1 \\
1 & 1-n & 1
\end{array}\right. & 1 \\
\hline n-1+t & n-1+t & & \\
\vdots & \vdots & (n-2)(n-1+t) J_{n-2}-n t I_{n-2} & \\
n-1+t & n-1+t & &
\end{array}\right],
$$

so that

$$
\operatorname{per} S_{n}^{(1,2)}(t)=\frac{(n-1+t)^{n-2}}{n^{n}(n-1)^{n}} \operatorname{per} U_{n}(x)
$$

where $U_{n}(x)$ is the matrix (2.1) with

$$
x=\frac{(n-1)(1-t)}{n-1+t} .
$$

Notice in this case that $0 \leq x \leq 1$ while t ranges over the interval $0 \leq t \leq 1$.

As in the case of $M_{n}(t)$, we see that per $S_{n}^{(\alpha)}(t)=\operatorname{per} S_{n}^{(1,2)}(t)$ for any 2 -subset α of $\{1,2, \cdots, n\}$, and hence also that

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \operatorname{per} S_{n}(t)=\frac{n(n-2)(n-1+t)^{(n-2)}}{n^{n}(n-1)^{n}} \operatorname{per} U_{n}(x) . \tag{3.7}
\end{equation*}
$$

With this in mind we now prove the following
Theorem 2. The permanent function is strictly convex on the stright line segment joining J_{n} and $T_{n}=\left(n J_{n}-I_{n}\right) /(n-1)$, for all $n \geq 4$.
Proof. By the equality (3.7) we need only to show that per $U_{n}(x)>0$ for all x with $0<x<1$.

For the respective cases $n=4$ and $n=5$ we can show that

$$
\begin{aligned}
& \operatorname{per} U_{4}(x)=10 x^{2}-8 x+6>0, \text { for } \frac{-1}{3}<x<1 \\
& \operatorname{per} U_{5}(x)=17 x^{3}-18 x^{2}+27 x+4>0, \text { for } \frac{-1}{4}<x<1
\end{aligned}
$$

Suppose that $n \geq 6$. Then by (3.4), (3.5) and (3.6), we have

$$
\begin{align*}
\operatorname{per} U_{n}= & \left(n^{2}-2 n+2\right)[P(n-2,2)+(x-1)\{P(n-3,1) \tag{3.8}\\
& +P(n-3,0)\}] \\
& -2(n-2)^{2}\{P(n-2,2)+(x-1) P(n-3,1)\} \\
& +\left(n^{2}-5 n+6\right) P(n-2,2)
\end{align*}
$$

Since $P(n-3,0) \geq P(n-3,1)$ because $0 \leq x \leq 1$, we have

$$
\begin{align*}
\operatorname{per} U_{n} & \geq n P(n-2,2)-\left\{2\left(n^{2}-2 n+2\right)+2(n-2)^{2}\right\} \tag{3.9}\\
& (1-x) P(n-3,1) \tag{3.10}\\
& \geq n P(n-2,2)-4(n-1) P(n-3,1)
\end{align*}
$$

for all x such that $0 \leq x \leq 1$.
Let $C_{k, q}$ be the matrix defined by (3.2) with $0 \leq x \leq 1$. Expanding per $C_{n-2,2}$ along the last column, we have

$$
\begin{equation*}
P(n-2,2)=2 P(n-3,1)+(n-4) P(n-3,2) . \tag{3.11}
\end{equation*}
$$

From (3.9) and (3.10), it follows that

$$
\begin{aligned}
\operatorname{per} U_{n} & \geq(-2 n+4) P(n-3,1)+n(n-4) P(n-3,0) \\
& \geq\left(n^{2}-6 n+4\right) P(n-3,1)
\end{aligned}
$$

which is positive for $n \geq 6$ and the proof is complete.
For $n=3$, it is not true that the function $f_{T_{3}}(t)=\operatorname{per}\left[(1-t) J_{3}+t T_{3}\right]$ is convex on the entire unit interval $[0,1]$. In fact $f_{T_{3}}(t)$ is strictly convex on $[0,1 / 2)$ and strictly concave on $(1 / 2,1]$.

Our Theorems 1 and 2 can be combined as follows.
Theorem 3. For $n \geq 4$, the function $f_{P}(t)=\operatorname{per}\left[(1-t) J_{n}+t P\right]$ is strictly convex on the interval $-1 /(n-1) \leq t \leq 1$, for any $n \times n$ permutation matrix P.

References

[1] R.A. Brualdi and M. Newman, Inequalities for permanents and permanental minors, Proc. Combridge Philos. Soc. Vol. 61, 1965, pp. 741-746.
[2] G.P. Egoryĉev, A solution of van der Waerden's permanent problem, Kirenski Institute of Phisics, Acad. Sci. SSSR, Preprint IFSO-13M, Kransnoyarsk, 1980.
[3] D.F. Falikman, A proof of van der Waerden's conjecture on the permanent of a doubly stochastic matrix, Mat. Zam. Vol. 29, 1981, pp.931-938.
[4] S. Friendland and H. Minc, Monotonicity of permanents of doubly stochastic matrices, Lin. Multin. Alg. Vol. 6, 1978, pp.227-231.
[5] S.-G. Hwang, Convexity of the permanent for doubly stochastic matrices, Lin. Multilin. Alg. Vol. 30, 1990. pp.129-134.
\qquad , Maximum permanents on certain classes of nonnegative matrices, Lin. Alg. Appl. Vol. 132, 1990, pp.103-113.
[7] \qquad , On the monotonicity of the permanents, Proc. Amer. Math. Soc. Vol.116, 1989, pp.59-63.
[8] \qquad , The monotonicity and the Doković conjectures on permanents of doubly stochastic matrices, Lin. Alg. Appl. Vol.79, 1986, pp.127-151.
[9] K.-W. Lih and E.T.H. Wang, A convexity inequality on the permanents of doubly stochastic matrices, Congressus Numerantium Vol.36, 1982, pp.189-198.
[10] , Monotonicity conjecture on permanents of doubly stochastic matrices, Proc. Amer. Math. Soc. Vol 82, 1982, pp.173-178.
[11] D. London, Monotonicity of permanents of certain doubly stochastic circulant matrices, Lin. Alg. Appl. Vol. 37, 1981, pp.234-249.
[12] \qquad , Monotonicity of permanents of certain doubly stochastic matrices, Pacific J. Math. Vol. 95, 1981, pp.125-131.
[13] H. Minc, Theory of permanents 1978-1981, Lin. Multilin. Alg. Vol. 12, 1983, pp. 227-263.
[14] , Permanents, Encyclopedia of Math. and Its Appl vol 6. Addison-Weley, Reading, 1978
[15] V.A. Phuong, Behavior of the permanent of a special class of doubly stochastic matrices, Lin. Multilin. Alg. Vol.9, 1980, pp. 227-229.
[16] R. Sinkhorn, Concerning the question of monotonicity of the permanent on doubly stochastic matrices, Lin. Multilin. Alg. Vol. 8, 1980, pp.323-328.
[17] B.L. van der Waerdan, Aufgabe 45, Jber. Deutsch. Math. Verein Vol.35, 1926, pp. 117.

Department of Mathematics Education, Kyungpook University, Taegu 702-701, Korea.

