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0. Introduction

For a categorical setting for algebraic structures, algebraic functors,
essentially algebraic functors and monadic functors have been introduced
(see [1]) but the underlying set functor U on the category PAlg, of partial
algebras of type 7 and homomorphisms into the category Set of sets and
maps is not essentially algebraic ([2]), because it does not create isomor-
phisms.

In this paper, we introduce the category Rel, of 7-relational sets and
relation-preserving maps, which is a topological construct and then for
any topological construct X, we have the mixed category Rel,(X) of Rel,
and X, which is also a topological construct ([5]). Furthermore, we form
the category PAlg,(X) of partial algebras of type 7 in X and show that
the forgetful functor G : PAlg,(X) — Rel,(X) is essentially algebraic.
Thus instead of Set, Rel, and Rel,(X) are proper base categories for the
categorical setting of partial algebras and topological partial algebras, re-
spectively.

For the categorical terminologies, we refer to [1] and for those of alge-
bras, we refer to [3] and [6].
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1. Categories Rel, (X)

In the following, X will always denote a topological construct like the
category Top (Unif, Conv, Qord) of topological (uniform, convergence,
quasi ordered, resp.) spaces and their corresponding morphisms, and 7
will denote a type (A.).em of algebras, ie., a family 7 = (A,)uem of
ordinals indexed by a set M.

Now we define 7-relational sets as follows:

Definition 1.1. 1) A pair (X, (X,).enm) is said to be a 7-relational set if
X is a set and for any p € M, X, C X*, i.e., X, is a A,-ary relation on
the set X.

2) For 7-relational sets (X, (X,)uem), (Y, (Y, )uem), amap f: X —
Y is said to be a relation preserving map if for any p € M, f»(X,) C Y,
where f* : X* — Y* denotes the A,-th power of f.

It is clear that the class of 7-relational sets and relation preserving
maps forms a category, which will be denoted by Rel, and that for - = {2},
Rel. is precisely the category Rel.

Let R : Rel, — Set denote the underlying set functm;. Then for any
source (fi : X — R((Xi, (Xiu)uem)))ier, let X, = 0{(f7*) 7 (Xi): i €1
}, then one can easily show that the source (f; : (X, (X,).enr) — (X,
(Xix)uem))r 1s the unique R-initial lift of (f;);. Thus we have:

Theorem 1.2. The category Rel, is a topological construct.

Remark 1.3. 1) A sink (f; : (Xi, (Xip)uem) — (X, (X, ) en))ier 1s an
R-final sink iff for any p € M, X, = U{f,-A“(X,-#): t € 1 }. In particular,
a morphism f : (X, (X.)uem) — (Y, (Yu)uenm) in Rel. is a quotient
morphism iff it is onto and for all u € M, f*»(X,) =Y,.

2) An inclusion map j : (X, (X,)uem) — (Y, (Y,).em) is R-initial
iff forall pe M, X, = X*nY,.

3) For any X € Set, (X, (0).en) is a discrete object and (X, (X**),ear)
is an indiscrete object in Rel,, which will give rise to the left adjoint and
the right adjoint of R, respectively.

Definition 1.4. A 7-relational set (X, (X,).enr) is said to be reflexive if
each X, contains the ),-diagonal relation in X.

Let dRel, denote the full subcategory of Rel, determined by the re-
flexive 7-relational sets. By adding the corresponding diagonal relation to
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each relation in an object (X, (X,).em) in Rel;, one can show that dRel,
is a bireflective subcategory of Rel,; therefore dRel, is also a topological
construct. Furthermore, for any (X, (X,).em) and (Y, (Y,)uenr) in dRel.,
let YX = hom((X, (X.)uem), (Y, (Y,.)uem)) and for any p € M, let F,,
= {(f;) € (Y¥)* : (Il fi)(X,) C Y.}. Then by a routine calculation, the
evaluation map ev: XxYX — Y is indeed the couniversal map for the
functor Xx_: dRel, — dRel,. Hence one has the following:

Theorem 1.5. The category dRel, is a cartesian closed topological con-
struct.

For a topological construct X, let Rel,(X) denote the mixed category
of Rel, and X (see [5] for the detail), then the following is immediate from
the result in [5].

Theorem 1.6. 1) The category Rel, (X) is a topological construct.
2) If X is cartesian closed, then the category dRel. (X) is also cartesian
closed.

2. Partial Algebras over a Topological Construct X

In this section, we introduce the category PAlg.(X) of partial algebras
of type 7 over a topological construct X and their X-homomorphisms
and then show that the forgetful functor G : PAlg, (X) — Rel,(X) is
essentially algebraic.

Definition 2.1. Let X be a topological construct and 7 = (A, ), ear a type
of algebras.

1) A pair A = (X, (f.)uenm) is said to be an X-partial algebra of type
7 or simply X-partial algebra if X is an object of Rel,(X) and for each
p €M, f,: X, — X is an X-morphism, where X, is the p-th relation
on X. In this case, f, is called a A,-ary partial operation on A.

2) For X-partial algebras A = (X, (fu)uerm), B = (Y, (g.)uenm) of type
7, a Rel, (X)-morphism A : X — Y is said to be a homomorphism on A
to B if for any g € M, ho f, = g, 0 h*, where h** denotes the restriction
and corestriction of the A\ -th power of h to X, and Y, respectively.

We form the category of X-partial algebras of type 7 and their homo-
morphims, which will be denoted by PAlg (X). Moreover PAlg, (Set) will
be simply denoted by PAlg,.

Since PAlg, is mono-topological, the underlying set functor U on PAlg,
into Set has a left adjoint and hence the forgetful functor G; : PAlg, —=
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Rel, has also a left adjoint. Here we give another proof as follows.

Lemma 2.2. The forgetful functor G,: PAlg, — Rel, has a left adjoint.

Proof. Since every mono-source in PAlg, is clearly Gi-initial, PAlg, is a
complete category and G; preserves limits. Thus it is enough to show
that every object in Rel. has a G,-solution set. Take any object X =
(X, (X.)uem) in Rel,. We may assume that X is non-empty, for if X is
empty, X endowed with empty operations will give rise to a G;-solution
set for X. Let (F(X), (f.).em) be the absolutely free algebra of type 7
generated by X and let g, = f,|X,. Then the inclusion map j : (X,
(Xp)uem) — Gi((F(X), (X.)uem, (94)uem)) is a Gi-solution set for X,
because for any f: X — G;(A) in Rel,, each partial operation on A can
be extended to a full operation on A; hence f can be uniquely extended
to a full homomorphism on F(X) to the full algebra A. The detail of the
proof is left to the readers.

In the following, let G : PAlg.(X) — Rel,(X), V : Rel (X) — X,
Uy : PAlg,(X) — PAlg,, U, : Rel,(X) —» Rel,, Us : X —» Set, G, :
PAlg, — Rel,, R : Rel, — Set and U : PAlg, (X) — Set denote the
forgetful functors, then U,0G = GoUy, Uyo R = VoUj and U = U;30VoG.
Moreover, for any source (f; : A — U;(A;))ier in PAlg,, the object A
endowed with the Us-initial X-structure with respect to (f;); 1s again an
object of PAlg,(X), which gives rise to the Uj-initial lift of (f;);. Using

this and the above lemma, one has the following:

Theorem 2.3. The functor G: PAlg, (X) — Rel.(X) has a left adjoint.

Proof. Take any X = (X, (X,).em) in Rel, (X). Let 5 : Uz(X) — Gy(A)
be the G,-universal map for Uy(X) and let (h; : X — G(A;));es be the
source of all Rel,(X)-morphisms, then for any : € I, there is a unique
PAlg,-morphism k; : A — A; with k; op = h;. Let B be the PAlg,(X)-
object A endowed with the Us-initial X-structure with respect to (k;);,
then 1t is straightforward to show that n : X — G(B) is a G-universal
map for X. This completes the proof.

The following definition is due to Herrlich [4].

Definition 2.4. A functor G : A — B is said to be essentially algebraic
if it creates isomorphisms and is (G-epi, Mono-Source)-factorizable.

It is known that essentially algebraic functors have rich categorical
properties (see Chapter 23 in [1]).
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Lemma 2.5. The category PAlg, (X) is (Epi, Mono-Source)-factorizable.
Proof. Let (fi : A — Aj)ier be a source in PAlg,(X). Considering
the intersection of the family {ker(f;) : ¢ € I}, one can easily show that
PAlg, is (Epi, Mono-Source)-factorizable. Indeed, let § = N{ker(f;) : 7 €
I}, then 6 is a congruence of A and let ¢ : A — A/f be the quotient
homomorphism, which is Gi-final. Thus there is a unique morphism m; :
A/8 — A; in PAlg, with m; 0 ¢ = f;, and (m;); is a mono-source, which
is also Gy-initial. Let E denote the PAlg,(X)-object A/ endowed with
the Uz-initial X-structure with respect to (m;);. Then it is clear that ¢
: A — E and each m; : E — A; are PAlg, (X)-morphisms and that
fi=mioq (z €1)is an (Epi, Mono-Source)-factorization.

Theorem 2.6 The functor G : PAlg, (X) — Rel, (X) is essentially alge-
braic.

Proof. By Theorem 2.3 and Lemma 2.5, it is enough to show that G creates
isomorphisms (see Theorem 23.8 in [1]). Take any isomorphism & : X —
G(A) in Rel.(X), i.e., h : X — G(A) is both an X-isomorphism and a
Rel,(X)-isomorphism, where X = (X, (X,).em) and A = (A, (A).em,
(fu)uem). For any u € M, let g, = h™to f, 0 A : X, — X, where
h* denotes the restriction and corestriction of the A,-th power of & to
X, and A, , respectively as before. Then it is clear that each g, is an
X-morphism; hence (X, (X,)uear, (9 )uenr) is a PAlg, (X)-object and that
b (X, (X)) ey (94) uert) — (A, (AL)uem, (fu)iem) is an isomorphism
in PAlg,(X) with G(h) = h. This completes the proof.

The following is now immediate from the above theorem and results
in [1].

Corollary 2.7. 1) G detects colimits and preserves and creates limits.
2) PAlg, (X) is complete and cocomplete.
3) The functor Gy : PAlg. — Rel, is essentially algebraic.
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