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O. lntroduction 

For a categorical setting for algebraic st ructures, algebraic functors , 
essent ially algebraic functors and monadic fun ctors have been introduced 
(see [l]) but the underlying set fun clor U on the category PAlg T of partial 
algebras of type T and homomorphisms into the category S.앞 of sets and 
maps is not essentially algebraic ([2]) , because it does not create isomor­
phisms 

In t his paper, we introduce th e category 11섹T of T-relational sets and 
relat ion-preserving maps, which is a topological construct and then for 
any topological construct X, we have t he mixed category Relr (X) of Rξ1T 

and X, wbich is also a topological construct ([5]). Furthermore, we form 
t he category P꾀gAX) of partial algebras of type T in X and show that 
t he forgetful fun ctor G : E센gr(X) - • E밀r (X) is essent ially algebraic. 
Thus instead of 효1， R희r and R밀r(X) are proper base categories for the 
categorical setting of part ial algebras and topological partial algebras, re­
spectively. 

For the categorical ter!IÙnologies, we refer to [1] and for t hose of alge­
bras, we refer to [3] and [6] 
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1. Categories Re1r(X) 

In t he following , X will always denote a topological construct like the 
category 묘p- (끄띠L .G맥.Y， Qord) of topological (uniform, convergence, 
quasi ordered, resp.) spaces and their correspond ing morphisms, and T 

will denote a type (Àμ)μEM of algebras, i.e. , a family T (Àμ)μEM of 
ordinals indexed by a set M . 

Now we define T-relational sets as follows : 

Definition 1.1. 1) A pair (X , (Xμ)μEM) is said to be a T-relational set if 
X is a set and for any μ E M , Xμ 드 XÀ

’‘ , i .e. , X~ is a Àμ-ary relation on 
the set X 

2) For T-relational sets (X , (Xμ)μEM) ， (Y ， (Yμ)μEM) ， a map J : X • 
Y is said to be a relation pπserving map if for any μ E M , JÀμ (Xμ) 드 Yμ ， 
where JÀμ XÀμ -• yÀμ denotes t he Àμ-t h power of J. 

lt is clear that the class of T-relational sets and relation preserving 
maps forms a category, whicb wi ll be denoted by R밀， and that for T = {2} , 
R펙， is precisely the category R빌 

Let R : R려，→ S학 denote the underlying set fun ctor. Then for any 
source (J; : X -• R((X‘, (Xiμ)μeμ )));E/ ， let Xμ = n{ (J; ’̂‘ )-1 (X;μ): i E 1 
}, t hen one can easily show t hat the source (ι : (X, (Xμ)μEM) • (X; , 
(X;μ)μEM ))1 is the un빼e R-ini t ial li ft of (J;)J. Thus We have: 

Theor em 1.2. The category 검다， is a topological construct. 

Remark 1.3. 1) A sin k (J; : (X;, (X;μ)μEM) • (X , (Xμ)μ01' ));EI is an 
R껴nal sink iff for any μ E M , Xμ = uu/μ(Xiμ): i E 1 }. In particular, 
a morphism J : (X , (Xμ)μ샘)-→ (Y, (Yμ)μEM) in 댈T is a quotient 
morphism iπ it is onto and for all μ E M , JÀ"(Xμ) = Yμ · 

2) An inclusion map j : (X, (Xμ)μEM) • (Y, (Yμ)~EM) is R-initial 
iff for all μ EM, Xμ = XÀμ n Yμ ‘ 

3) For any X E 얄.t， (X, (0)μEM) is a discrete object and (X, (X사)μ아1) 
is an indiscrete object in R최η which will give rise to the left adjoint and 
the right adjoint of R, respectively. 

Definition 1.4. A T-relational set (X , (Xμ)μEM) is said to be reβexive if 
each Xμ contains the Àμ- diagonal relation in X. 

Let dR밀， denote the full subcategory of Rel, determined by the re­
fl exive T-relational sets. By adding the corresponding diagonal relation to 
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each relation in an ob ject (X, (Xμ)μEM) in Rel" one can sh아1{ that 빡려T 
is a bireflective subcategory of RelT ; therefore dR최.， is also a topological 
construct. Furthermore, for any (X, (Xμ)μEM) and (Y, (Yμ)μEM) in d꿇1，.， 
let Yx = hom((X, (Xμ)μEM) ， (Y, (Yμ)μEM)) and for any μ E M , let Fμ 
= {(J;) E (yX )>.μ : (TI J，‘ )(Xμ) ç Yμ}. Then by a routine calculation, the 
evaluation map ev: XxyX - • Y is indeed the couniversal map for the 
functor Xx_: dR젝.，→ dRξ1，. Hence one has the following: 

Theorem 1.5. The category dR려， is a cartesian c/osed lopo!ogical coη­

struct 

For a topological construct X, let R젝AX) denote the mixed category 
ofR와， and X (see [5J for the detail) , then the f，이lowing is immediate from 
the result in [5J 

Theorem 1.6. 1) The category R와 (X) is a topological construct 

2) 11 X is carlesian closed, then the category dR하 (X) is also cartesiaη 
closed 

2. Partial AIgebras over a Topological Construct X 

ln this section , we introduce the category PAlgT(X) of partial algebras 
of type T over a topological construct X and their X-homomorphisms 
and then show that the forgetful functor G : E꾀sAX) - • 건걷lT(X) is 
essentially algebraic 

Definition 2.1. Let X be a topological construct and T = (.\μ)μEM a type 
of algebras. 

1) A pair A = (X , (1，μ)μEM) is said to be an X-partial algebm 01 type 
T or simply X-parlial algebm if X is an object of R빙T(X) and for each 
μ E M , J，μ :Xμ -• X is an X-morphism , where Xμ is the μ- th relation 
on X. In this case, f~ is called a .\~-ary partial operation on A 

2) For X-partial algebras A = (X, (1，μ)μEM) ， B = (Y, (gμ)μEM) of type 
T, a RelT(X) • morphism h : X -• Y is said to be a homomorphism on A 
to B if for any μ E M , hof，μ =gμ 。 hλ" ， where h>'μ denotes the restriction 
and corestriction of the .\μ-th power of h to Xμ and Yμ ， respectively 

We form the category of X-partial algebras of type T and their homo 
morphims, which will be denoted by E퍼g， (X). Moreover E퍼gT (Set) will 
be simply denoted by PAlgT. 

Since PAlgT is mono-topological, the underlying set functor U on E퍼& 
into .s.략 has a left adjoint and hence the forgetful functor G 1 : PAlgT -• 
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E퍼， has also a left adjoint . Here we give another proof as follows. 

Lemma 2.2 . The JorgetJul Junctor Gj : PAlqT - • E효1， has a left adjoint. 

Proof Since every mono-source in PAlg, is clearly Gj-initial, PAlg, is a 
complete category and Gj preserves limits. Tbus it is enough to show 
that every object in Rel, has a Gj -solution set. Take any object X = 
(X, (Xμ)μEM) in B젝T" We may assume that X is non-empty, for if X is 
empty, X endowed with empty operations wi l\ give rise to a Gj -solution 
set for X. Let (F(X), Uμ)μeμ ) be the absolutely free algebra of type T 

generated by X and let 9μ = J，μIXμ. Then the incl usion map j (X, 
(Xμ)μEM) -• G,((F(X) , (Xμ)μEM ， (gμ)μEM)) is a Gj -solution set for X, 
because for any J : X - • G,(A) in 꿇1" each parti a l operation on A can 
be extended to a full operation on A; hence J can be uniquely extended 
to a full bomomorphism on F(X) to tbe fu l\ algebra A. T he detai l of the 
proof is left to the readers . 

In t he fol\owing, let G : .p.센!h(X) -• ReqX), V : B퍼".(X ) -• X, 
Uj : .p.퍼g， (X) - • E퍼g" U2 Rξl". (X) • E봐， U3 : X • 힘， Gj 

E꾀!:' • Rel" R : n퍼T • Set and U : PAlg, (X) • Set denote t he 
forgetful fun ctors, then U20G = G,oU" U20 R = VOU3 and U = U3oVoG . 
Moreover, for any source (fi ’ A-• Uj (Ai))iE/ in PAlgη the object A 
endowed with the U3-initial X-st ructure with respect to (fih is again an 
object of .p.센g， (X) ， which gives 디se to the Urinitial lift of (fi)t. Using 
this and the above lemma, one has the followin g: 

Theorem 2.3 . The Junctor G: 댄Hh(X) - • R하 (X) has a leβ adjoint. 

Proof Take any X = (X , (Xμ)μeμ) in ReqX). Let 17 : U2 (X) • G,(A) 
be the G,-universal map for U2 (X) and let (h i ’ X-• G(Ai))‘EI be tbe 
source of all Rel".(X)-morpbisms, then for any i E 1, t bere is a unique 
PAlg, -morphism ki : A -• A‘ witb ki 。 η = hi . Let B be the PAlg, (X) 
object A endowed with the U3-initial X-structure with respect to (ki) l , 
tben it is straightforward to show that η X • G(B) is a G-universal 
map for X. Th is completes the proo f. 

T he fo llowing defin it ion is due to Herrlich [4]‘ 

Definition 2 .4. A functor G : A -• B is said to be esseπ tially algebraic 
if it creates isomorphisms and is (G -epi, Mono-Source)-factorizable . 

It is known that essentially algebraic functors have ri cb categorical 
properties (see Cbapter 23 in [1]). 
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Lemma 2.5. The category 잭19.T (X) is (Epi, Mono-Source)-faclorizable 
Proof Let (Ji A • A‘ hr be a source in PAlgT(X). Considering 
the intersection of the family {ker(J,‘) : i E I}, one can easily show that 
PAlgT is (Epi, Mono-Source)-factorizable. lndeed, let () = n{ker(Ji) : i E 
I}, then () is a congruence of A and let q : A • A j () be the quotient 
homomorphism, which is G1-final ‘ Thus there is a unique morphism m‘ : 
Aj(} - • A‘ in P AlgT with m‘ 。 q = fi , and (mi)I is a mono-source, which 
is also G1- initial. Let E denote the PAlgT(X)-object Aj() endowed with 
the U3-initial X-structure with respect to (mi )J. Then it is clear that q 
A-• E and each mi E-• A‘ are PAlgT (X)-morph isms and that 

fi = mi 0 q (i E 1) is an (Epi , Mono-Source)-factorization. 

Theorem 2.6 The functor G : P띠!h(X) • 건ζlT (X) is esseηtially alge 
braic 

Proof By Theorem 2.3 and Lemma 2.5 , it is enough to show that G creates 
isomorphisms (see Theorem 23.8 in [1]). Take any isomorphism h : X • 
G(A) in 빡T(X) ， i.e., h : X -• G(A) is both an X-isomorphism and a 
E악T(X)-isomorphism ， where X = (X, (Xμ)μEM) and A = (A, (Aμ)μEA1 ， 
(J，μ)μEM) ' For any μ E M , let 9μ 二 h 1 。 f” 。 hAμ Xμ -• X, where 
hÀμ denotes the restriction and corestriction of the ，\μ th power of h to 
Xμ and Aμ , respectively as before. Then it is clear that each 9μ lS an 
X• morphism; hence (X , (Xμ)μEM ， (gμ)μEM) is a PAlgT(X)-object and that 
h : (X, (Xμ )"EM ， (gμ)μEM) • (A , (Aμ)μEM ， (f，μ)μEM l is an isomorphism 
in r센ST(X) with G(hl = h. This completes the proof‘ 

The f，이lowing is now immediate from the above theorem and results 
in [1] . 

Corollary 2.7. 1 l G detec ls co이l“zmη11μIs a rη，d preserves ar뼈 crea띠tes limi 
2찌) 잭l따9T("α찌xν) is complele and cocomplete. 
3) The functor G1 : 잭19.T-→ RelT 앙 essentially algebraic 
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