PARTIAL ALGEBRAS OVER TOPOLOGICAL CONSTRUCTS

Sung Sa Hong and Young Hee Hong

Dedicated to Professor Younki Chae and Professor Tae Ho Choe on their 60th birthday

0. Introduction

For a categorical setting for algebraic structures, algebraic functors, essentially algebraic functors and monadic functors have been introduced (see [1]) but the underlying set functor U on the category \underline{PAlg}_{τ} of partial algebras of type τ and homomorphisms into the category \underline{Set} of sets and maps is not essentially algebraic ([2]), because it does not create isomorphisms.

In this paper, we introduce the category $\underline{\operatorname{Rel}}_{\tau}$ of τ -relational sets and relation-preserving maps, which is a topological construct and then for any topological construct \underline{X} , we have the mixed category $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$ of $\underline{\operatorname{Rel}}_{\tau}$ and \underline{X} , which is also a topological construct ([5]). Furthermore, we form the category $\underline{\operatorname{PAlg}}_{\tau}(\underline{X})$ of partial algebras of type τ in \underline{X} and show that the forgetful functor $G : \underline{\operatorname{PAlg}}_{\tau}(\underline{X}) \longrightarrow \underline{\operatorname{Rel}}_{\tau}(\underline{X})$ is essentially algebraic. Thus instead of $\underline{\operatorname{Set}}$, $\underline{\operatorname{Rel}}_{\tau}$ and $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$ are proper base categories for the categorical setting of partial algebras and topological partial algebras, respectively.

For the categorical terminologies, we refer to [1] and for those of algebras, we refer to [3] and [6].

Received April 27, 1992.

This research was supported by a grant from KOSEF.

1. Categories $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$

In the following, \underline{X} will always denote a topological construct like the category <u>Top</u> (<u>Unif</u>, <u>Conv</u>, <u>Qord</u>) of topological (uniform, convergence, quasi ordered, resp.) spaces and their corresponding morphisms, and τ will denote a type $(\lambda_{\mu})_{\mu \in M}$ of algebras, i.e., a family $\tau = (\lambda_{\mu})_{\mu \in M}$ of ordinals indexed by a set M.

Now we define τ -relational sets as follows:

Definition 1.1. 1) A pair $(X, (X_{\mu})_{\mu \in M})$ is said to be a τ -relational set if X is a set and for any $\mu \in M$, $X_{\mu} \subseteq X^{\lambda_{\mu}}$, i.e., X_{μ} is a λ_{μ} -ary relation on the set X.

2) For τ -relational sets $(X, (X_{\mu})_{\mu \in M}), (Y, (Y_{\mu})_{\mu \in M}), a \operatorname{map} f : X \longrightarrow$ Y is said to be a *relation preserving map* if for any $\mu \in M$, $f^{\lambda_{\mu}}(X_{\mu}) \subseteq Y_{\mu}$, where $f^{\lambda_{\mu}} : X^{\lambda_{\mu}} \longrightarrow Y^{\lambda_{\mu}}$ denotes the λ_{μ} -th power of f.

It is clear that the class of τ -relational sets and relation preserving maps forms a category, which will be denoted by <u>Rel</u>_{τ} and that for $\tau = \{2\}$, <u>Rel</u>_{τ} is precisely the category <u>Rel</u>.

Let $R : \underline{\operatorname{Rel}}_{\tau} \longrightarrow \underline{\operatorname{Set}}$ denote the underlying set functor. Then for any source $(f_i : X \longrightarrow \operatorname{R}((X_i, (X_{i\mu})_{\mu \in M})))_{i \in I}$, let $X_{\mu} = \cap \{(f_i^{\lambda_{\mu}})^{-1}(X_{i\mu}): i \in I\}$, then one can easily show that the source $(f_i : (X, (X_{\mu})_{\mu \in M}) \longrightarrow (X_i, (X_{i\mu})_{\mu \in M}))_I$ is the unique R-initial lift of $(f_i)_I$. Thus we have:

Theorem 1.2. The category <u>Rel</u>_{τ} is a topological construct.

Remark 1.3. 1) A sink $(f_i : (X_i, (X_{i\mu})_{\mu \in M}) \longrightarrow (X, (X_{\mu})_{\mu \in M}))_{i \in I}$ is an R-final sink iff for any $\mu \in M$, $X_{\mu} = \bigcup \{f_i^{\lambda_{\mu}}(X_{i\mu}): i \in I\}$. In particular, a morphism $f : (X, (X_{\mu})_{\mu \in M}) \longrightarrow (Y, (Y_{\mu})_{\mu \in M})$ in $\underline{\operatorname{Rel}}_{\tau}$ is a quotient morphism iff it is onto and for all $\mu \in M$, $f^{\lambda_{\mu}}(X_{\mu}) = Y_{\mu}$.

2) An inclusion map $j : (X, (X_{\mu})_{\mu \in M}) \longrightarrow (Y, (Y_{\mu})_{\mu \in M})$ is R-initial iff for all $\mu \in M, X_{\mu} = X^{\lambda_{\mu}} \cap Y_{\mu}$.

3) For any $X \in \underline{Set}$, $(X, (\emptyset)_{\mu \in M})$ is a discrete object and $(X, (X^{\lambda_{\mu}})_{\mu \in M})$ is an indiscrete object in \underline{Rel}_{τ} , which will give rise to the left adjoint and the right adjoint of R, respectively.

Definition 1.4. A τ -relational set $(X, (X_{\mu})_{\mu \in M})$ is said to be *reflexive* if each X_{μ} contains the λ_{μ} -diagonal relation in X.

Let \underline{dRel}_{τ} denote the full subcategory of \underline{Rel}_{τ} determined by the reflexive τ -relational sets. By adding the corresponding diagonal relation to

each relation in an object $(X, (X_{\mu})_{\mu \in M})$ in $\underline{\operatorname{Rel}}_{\tau}$, one can show that $\underline{\operatorname{dRel}}_{\tau}$ is a bireflective subcategory of $\underline{\operatorname{Rel}}_{\tau}$; therefore $\underline{\operatorname{dRel}}_{\tau}$ is also a topological construct. Furthermore, for any $(X, (X_{\mu})_{\mu \in M})$ and $(Y, (Y_{\mu})_{\mu \in M})$ in $\underline{\operatorname{dRel}}_{\tau}$, let $Y^X = \operatorname{hom}((X, (X_{\mu})_{\mu \in M}), (Y, (Y_{\mu})_{\mu \in M}))$ and for any $\mu \in M$, let F_{μ} $= \{(f_i) \in (Y^X)^{\lambda_{\mu}} : (\prod f_i)(X_{\mu}) \subseteq Y_{\mu}\}$. Then by a routine calculation, the evaluation map $ev: X \times Y^X \longrightarrow Y$ is indeed the couniversal map for the functor $X \times_{-} : \underline{\operatorname{dRel}}_{\tau} \longrightarrow \underline{\operatorname{dRel}}_{\tau}$. Hence one has the following:

Theorem 1.5. The category \underline{dRel}_{τ} is a cartesian closed topological construct.

For a topological construct \underline{X} , let $\underline{\text{Rel}}_{\tau}(\underline{X})$ denote the mixed category of $\underline{\text{Rel}}_{\tau}$ and \underline{X} (see [5] for the detail), then the following is immediate from the result in [5].

Theorem 1.6. 1) The category <u>Rel</u>_r(<u>X</u>) is a topological construct.

2) If X is cartesian closed, then the category $\underline{dRel}_{\tau}(\underline{X})$ is also cartesian closed.

2. Partial Algebras over a Topological Construct \underline{X}

In this section, we introduce the category $\underline{PAlg}_{\tau}(\underline{X})$ of partial algebras of type τ over a topological construct \underline{X} and their \underline{X} -homomorphisms and then show that the forgetful functor $G : \underline{PAlg}_{\tau}(\underline{X}) \longrightarrow \underline{Rel}_{\tau}(\underline{X})$ is essentially algebraic.

Definition 2.1. Let <u>X</u> be a topological construct and $\tau = (\lambda_{\mu})_{\mu \in M}$ a type of algebras.

1) A pair A = $(X, (f_{\mu})_{\mu \in M})$ is said to be an <u>X</u>-partial algebra of type τ or simply <u>X</u>-partial algebra if X is an object of $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$ and for each $\mu \in M, f_{\mu} : X_{\mu} \longrightarrow X$ is an <u>X</u>-morphism, where X_{μ} is the μ -th relation on X. In this case, f_{μ} is called a λ_{μ} -ary partial operation on A.

2) For <u>X</u>-partial algebras $A = (X, (f_{\mu})_{\mu \in M}), B = (Y, (g_{\mu})_{\mu \in M})$ of type τ , a <u>Rel</u>_{τ}(<u>X</u>)-morphism $h : X \longrightarrow Y$ is said to be a homomorphism on A to B if for any $\mu \in M$, $h \circ f_{\mu} = g_{\mu} \circ h^{\lambda_{\mu}}$, where $h^{\lambda_{\mu}}$ denotes the restriction and corestriction of the λ_{μ} -th power of h to X_{μ} and Y_{μ} , respectively.

We form the category of <u>X</u>-partial algebras of type τ and their homomorphims, which will be denoted by $\underline{PAlg}_{\tau}(\underline{X})$. Moreover $\underline{PAlg}_{\tau}(\underline{Set})$ will be simply denoted by \underline{PAlg}_{τ} .

Since \underline{PAlg}_{τ} is mono-topological, the underlying set functor U on \underline{PAlg}_{τ} into <u>Set</u> has a left adjoint and hence the forgetful functor $G_1 : \underline{PAlg}_{\tau} \longrightarrow$ <u>Rel</u>_{τ} has also a left adjoint. Here we give another proof as follows.

Lemma 2.2. The forgetful functor $G_1: \underline{PAlg}_{\tau} \longrightarrow \underline{Rel}_{\tau}$ has a left adjoint. Proof. Since every mono-source in \underline{PAlg}_{τ} is clearly G_1 -initial, \underline{PAlg}_{τ} is a complete category and G_1 preserves limits. Thus it is enough to show that every object in \underline{Rel}_{τ} has a G_1 -solution set. Take any object $X = (X, (X_{\mu})_{\mu \in M})$ in \underline{Rel}_{τ} . We may assume that X is non-empty, for if X is empty, X endowed with empty operations will give rise to a G_1 -solution set for X. Let $(F(X), (f_{\mu})_{\mu \in M})$ be the absolutely free algebra of type τ generated by X and let $g_{\mu} = f_{\mu}|X_{\mu}$. Then the inclusion map j: $(X, (X_{\mu})_{\mu \in M}) \longrightarrow G_1((F(X), (X_{\mu})_{\mu \in M}, (g_{\mu})_{\mu \in M}))$ is a G_1 -solution set for X, because for any $f: X \longrightarrow G_1(A)$ in \underline{Rel}_{τ} , each partial operation on A can be extended to a full operation on A; hence f can be uniquely extended to a full homomorphism on F(X) to the full algebra A. The detail of the proof is left to the readers.

In the following, let $G : \underline{PAlg}_{\tau}(\underline{X}) \longrightarrow \underline{Rel}_{\tau}(\underline{X}), V : \underline{Rel}_{\tau}(\underline{X}) \longrightarrow \underline{X},$ $U_1 : \underline{PAlg}_{\tau}(\underline{X}) \longrightarrow \underline{PAlg}_{\tau}, U_2 : \underline{Rel}_{\tau}(\underline{X}) \longrightarrow \underline{Rel}_{\tau}, U_3 : \underline{X} \longrightarrow \underline{Set}, G_1 :$ $\underline{PAlg}_{\tau} \longrightarrow \underline{Rel}_{\tau}, \mathbb{R} : \underline{Rel}_{\tau} \longrightarrow \underline{Set} \text{ and } U : \underline{PAlg}_{\tau}(\underline{X}) \longrightarrow \underline{Set} \text{ denote the}$ forgetful functors, then $U_2 \circ G = G_1 \circ U_1, U_2 \circ \mathbb{R} = V \circ U_3$ and $U = U_3 \circ V \circ G.$ Moreover, for any source $(f_i : \mathbb{A} \longrightarrow U_1(\mathbb{A}_i))_{i \in I}$ in \underline{PAlg}_{τ} , the object \mathbb{A} endowed with the U_3 -initial \underline{X} -structure with respect to $(f_i)_I$ is again an object of $\underline{PAlg}_{\tau}(\underline{X})$, which gives rise to the U_1 -initial lift of $(f_i)_I$. Using this and the above lemma, one has the following:

Theorem 2.3. The functor $G: \underline{PAlg}_{\tau}(\underline{X}) \longrightarrow \underline{Rel}_{\tau}(\underline{X})$ has a left adjoint.

Proof. Take any $X = (X, (X_{\mu})_{\mu \in M})$ in $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$. Let $\eta : U_2(X) \longrightarrow G_1(A)$ be the G_1 -universal map for $U_2(X)$ and let $(h_i : X \longrightarrow G(A_i))_{i \in I}$ be the source of all $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$ -morphisms, then for any $i \in I$, there is a unique $\underline{\operatorname{PAlg}}_{\tau}$ -morphism $k_i : A \longrightarrow A_i$ with $k_i \circ \eta = h_i$. Let B be the $\underline{\operatorname{PAlg}}_{\tau}(\underline{X})$ object A endowed with the U_3 -initial \underline{X} -structure with respect to $(k_i)_I$, then it is straightforward to show that $\eta : X \longrightarrow G(B)$ is a G-universal map for X. This completes the proof.

The following definition is due to Herrlich [4].

Definition 2.4. A functor $G : A \longrightarrow B$ is said to be *essentially algebraic* if it creates isomorphisms and is (G-epi, Mono-Source)-factorizable.

It is known that essentially algebraic functors have rich categorical properties (see Chapter 23 in [1]).

Lemma 2.5. The category $\underline{PAlg}_{\tau}(\underline{X})$ is (Epi, Mono-Source)-factorizable. Proof. Let $(f_i : A \longrightarrow A_i)_{i \in I}$ be a source in $\underline{PAlg}_{\tau}(\underline{X})$. Considering the intersection of the family $\{\ker(f_i) : i \in I\}$, one can easily show that \underline{PAlg}_{τ} is (Epi, Mono-Source)-factorizable. Indeed, let $\theta = \bigcap\{\ker(f_i) : i \in I\}$, then θ is a congruence of A and let $q : A \longrightarrow A/\theta$ be the quotient homomorphism, which is G_1 -final. Thus there is a unique morphism m_i : $A/\theta \longrightarrow A_i$ in \underline{PAlg}_{τ} with $m_i \circ q = f_i$, and $(m_i)_I$ is a mono-source, which is also G_1 -initial. Let E denote the $\underline{PAlg}_{\tau}(\underline{X})$ -object A/θ endowed with the U_3 -initial \underline{X} -structure with respect to $(m_i)_I$. Then it is clear that q: $A \longrightarrow E$ and each $m_i : E \longrightarrow A_i$ are $\underline{PAlg}_{\tau}(\underline{X})$ -morphisms and that $f_i = m_i \circ q$ $(i \in I)$ is an (Epi, Mono-Source)-factorization.

Theorem 2.6 The functor $G : \underline{PAlg}_{\tau}(\underline{X}) \longrightarrow \underline{Rel}_{\tau}(\underline{X})$ is essentially algebraic.

Proof. By Theorem 2.3 and Lemma 2.5, it is enough to show that G creates isomorphisms (see Theorem 23.8 in [1]). Take any isomorphism $h: X \longrightarrow$ G(A) in $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$, i.e., $h: X \longrightarrow G(A)$ is both an \underline{X} -isomorphism and a $\underline{\operatorname{Rel}}_{\tau}(\underline{X})$ -isomorphism, where $X = (X, (X_{\mu})_{\mu \in M})$ and $A = (A, (A_{\mu})_{\mu \in M}, (f_{\mu})_{\mu \in M})$. For any $\mu \in M$, let $g_{\mu} = h^{-1} \circ f_{\mu} \circ h^{\lambda_{\mu}} : X_{\mu} \longrightarrow X$, where $h^{\lambda_{\mu}}$ denotes the restriction and corestriction of the λ_{μ} -th power of h to X_{μ} and A_{μ} , respectively as before. Then it is clear that each g_{μ} is an \underline{X} -morphism; hence $(X, (X_{\mu})_{\mu \in M}, (g_{\mu})_{\mu \in M})$ is a $\underline{\operatorname{PAlg}}_{\tau}(\underline{X})$ -object and that $h: (X, (X_{\mu})_{\mu \in M}, (g_{\mu})_{\mu \in M}) \longrightarrow (A, (A_{\mu})_{\mu \in M}, (f_{\mu})_{\mu \in M})$ is an isomorphism in $\underline{\operatorname{PAlg}}_{\tau}(\underline{X})$ with G(h) = h. This completes the proof.

The following is now immediate from the above theorem and results in [1].

Corollary 2.7. 1) G detects colimits and preserves and creates limits.

2) <u>PAlg_{τ}(X) is complete and cocomplete.</u>

3) The functor $G_1 : \underline{PAlg_{\tau}} \longrightarrow \underline{Rel_{\tau}}$ is essentially algebraic.

References

- J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, Inc. NewYork, 1990.
- [2] H.L. Bentley and N. Murthy, Essentially algebraic categories, Quaest. Math. 13(1990), 361-384.
- [3] G. Grätzer, Universal Algebra, Springer-Verlag, New York, 1979.

380 Sung Sa Hong and Young Hee Hong

- [4] H. Herrlich, Essentially algebraic categories, Quaest. Math. 9(1986), 245-262.
- S.S. Hong and L.D. Nel, Spectral dualities involving mixed structures, Lecture Notes in Math. 915(1982), 198-204, Springer-Verlag.
- [6] S.S. Hong and Y.H. Hong, Abstract Algebra, Towers, Seoul, 1976.

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, KOREA.

DEPARTMENT OF MATHEMATICS, SOOKMYUNG WOMEN'S UNIVERSITY, SEOUL 140-742, KOREA.