CONVERGENCE OF WEIGHTED AVERAGES OF MARTINGALE DIFFERENCE SEQUENCE

Dug Hun Hong

Dedicated to Professor Younki Chae on his 60th birthday

Introduction

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and $\left(\mathcal{F}_{n}\right)$ an increasing sequence of sub- σ-algebras of \mathcal{F}. For $X \in L^{1}\left(=L^{1}(P)\right)$, we use $E_{n}(X)$ to denote $E\left(X \mid \mathcal{F}_{n}\right)$, the conditional expectation of X given \mathcal{F}_{n}. A sequence $X_{n} \in L^{1}\left(\mathcal{F}_{n}\right)$ will be called a martingale difference sequence if $E_{n}\left(X_{n+1}\right)=$ $0, n \in N$ (N is the set of positive integers). Throughout this paper $\left\{X_{k}\right\}$ will be an identically distributed martingale difference sequence and $\left\{w_{k}\right\}$ a sequence of positive numbers and write $S_{n}=\sum_{k=1}^{n} w_{k} X_{k} .\left\{B_{n}\right\}$ is a monotone sequence of positive constants with $B_{n} \rightarrow \infty$ as $n \rightarrow \infty$. In this paper we shall be concerned with the questions of almost sure convergence and L^{1}-convergence of $B_{n}^{-1} S_{n}$, and integrability of maximal function of the average $M(\omega)=\sup _{n} B_{n}^{-1}\left|S_{n}(\omega)\right|$.

In the special case where $w_{k}=1$, all k, Elton [3] proved that if $E\left|X_{1}\right| \log ^{+}\left|X_{1}\right|<\infty$, then $S_{n} / n \rightarrow 0$ almost surely and $E M<\infty$. Also he showed that if $E|X|<\infty$ with $E X=0$ but $E|X| \log ^{+}|X|=\infty$, there exists an identically distributed martingale difference sequence $\left\{X_{n}\right\}$ with X_{1} having the same distribution as X such that S_{n} / n diverses almost surely. In the case where the $\left\{X_{k}\right\}$ being independent and identically distributed, many mathematicians have studied but this paper is related with Heyde [4] and Jamison, Orey, and Pruitt [5]. Our results provide a generalization of some work of Elton [3].

Received March 25, 1992.

Results

For a given sequence of positive weights $\left\{w_{k}\right\}$, define for each $x>$ $0 N(x)$ as the number of n such that $B_{n} / w_{n} \leq x$. The rate of growth of this function is the critical factor in establishing almost sure convergence. Let F be the distribution function of random variable X_{1}.
Theorem 1. If both $\int x^{2} \int_{y \geq|x|} \frac{N(y)}{y^{3}} d y d F(x)<\infty$ and $\int|x| \int_{0 \leq y \leq|x|} \frac{N(y)}{y^{2}}$ dydF $(x)<\infty$, then $B_{n}^{-1} S_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
Proof. Let Y_{k} be X_{k} truncated at B_{k} / w_{k} and $T_{n}=\sum_{1}^{n} w_{k} Y_{k}$. Put $Z_{k}=$ $X_{k}-Y_{k}$ and $d_{k}=Y_{k}-E_{k-1}\left(Y_{k}\right)$. Write

$$
\begin{aligned}
X_{n} & =Y_{n}+Z_{n}=\left(Y_{n}-E_{n-1}\left(Y_{n}\right)\right)+E_{n-1}\left(Y_{n}\right)+Z_{n} \\
& =d_{n}+\left(Z_{n}-E_{n-1}\left(Z_{n}\right)\right),
\end{aligned}
$$

observing that $E_{n-1}\left(Z_{n}\right)=-E_{n-1}\left(Y_{n}\right)$ since $E_{n-1}\left(X_{n}\right)=0$. Then

$$
\begin{aligned}
E\left(\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right) X_{k}\right|\right) & \leq E\left(\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right) d_{k}\right|\right)+2 \sum_{k=1}^{n}\left(w_{k} / B_{k}\right) E\left|Z_{k}\right| \\
& \leq\left(\sum_{k=1}^{n}\left(w_{k} / B_{k}\right)^{2} E\left(d_{k}^{2}\right)\right)^{1 / 2}+2 \sum_{k=1}^{n}\left(w_{k} / B_{k}\right) E\left|Z_{k}\right|
\end{aligned}
$$

since the d_{k} are orthogonal elements of L^{2}, and E_{k-1} is a contraction on L^{1}.

Next, Lemma 1 and 2, which follows, show that

$$
\sum_{n=1}^{\infty}\left(w_{n} / B_{n}\right)^{2} E\left(d_{n}^{2}\right)<\infty \text { and } \sum_{n=1}^{\infty}\left(w_{n} / B_{n}\right) E\left|Z_{n}\right|<\infty
$$

so $B_{n}^{-1} S_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$ by Kronecker's lemma, and the proof is complete.
Lemma 1. If $\int x^{2} \int_{y \geq|x|} \frac{N(y)}{y^{3}} d y d F(x)<\infty$, then

$$
\sum_{n=1}^{\infty}\left(w_{n}^{2} / B_{n}^{2}\right) E\left(d_{n}^{2}\right)<\infty .
$$

Proof. First note that $I-E_{n-1}$ is a contraction on L^{2}, so

$$
E\left(d_{n}^{2}\right)=E\left(\left(Y_{n}-E_{n-1}\left(Y_{n}\right)\right)^{2}\right) \leq E\left(Y_{n}^{2}\right)
$$

Now

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{w_{k}^{2} E Y_{k}^{2}}{B_{k}^{2}} & =\sum_{k=1}^{\infty} \frac{w_{k}^{2}}{B_{k}^{2}} \int_{|x|<\left(B_{k} / w_{k}\right)} x^{2} d F(x) \\
& =\int x^{2} \sum_{\left\{k:|x|<\left(B_{k} / w_{k}\right)\right\}} \frac{w_{k}^{2}}{B_{k}^{2}} d F(x),
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\left\{k:|x|<\left(B_{k} / w_{k}\right) \leq z\right\}} \frac{w_{k}^{2}}{B_{k}^{2}}=\int_{|x|<y \leq z} \frac{d N(y)}{y^{2}} & =\frac{N(z)}{z^{2}}-\frac{N(|x|)}{x^{2}} \\
& +2 \int_{|x|<y \leq z} \frac{N(y)}{y^{3}} d y
\end{aligned}
$$

while

$$
\frac{N(z)}{z^{2}} \leq 2 \int_{z \leq y} N(y) / y^{3} d y \rightarrow 0 \text { as } z \rightarrow \infty,
$$

the integral converging since $\int x^{2} \int_{y \geq|x|} \frac{N(y)}{y^{3}} d y d F(x)<\infty$, so that

$$
\sum_{\left\{k:|x|<\left(B_{k} / w_{k}\right)\right\}} \frac{w_{k}^{2}}{B_{k}^{2}} \leq 2 \int_{y \geq|x|} \frac{N(y)}{y^{3}} d y,
$$

and hence

$$
\sum_{k=1}^{\infty} \frac{w_{k}^{2} E\left(d_{k}^{2}\right)}{B_{k}^{2}} \leq 2 \int x^{2} \int_{y \geq|x|} \frac{N(y)}{y^{3}} d y d F(x)<\infty .
$$

Lemma 2. If both $\int|x| \int_{y \leq|x|} \frac{N(y)}{y^{2}} d y d F(x)<\infty$ and $\int x^{2} \int_{y \geq|x|} \frac{N(y)}{y^{3}}$ $d y d F(x)<\infty$, then

$$
\left.\sum_{n=1}^{\infty}\left(w_{n} / B_{n}\right) E\left|Z_{n}\right|\right)<\infty
$$

Proof.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{w_{n} E\left|Z_{n}\right|}{B_{n}} & =\sum_{n=1}^{\infty} \frac{w_{n}}{B_{n}} \int_{|x| \geq\left(B_{n} / w_{n}\right)}|x| d F(x) \\
& =\int\left[|x| \sum_{\left\{n:|x| \geq\left(B_{n}>w_{n}\right)\right\}} \frac{w_{n}}{B_{n}}\right] d F(x)
\end{aligned}
$$

and

$$
\sum_{\left\{n:|x| \geq\left(B_{n} / w_{n}\right)>z\right\}} \frac{w_{n}}{B_{n}}=\frac{N(|x|)}{x}-\frac{N(z)}{z}+\int_{|x| \geq y>z} \frac{N(y)}{y^{2}} d y,
$$

so that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{w_{n} E\left|Z_{n}\right|}{B_{n}} & \leq \int N(|x|) d F(x)+\int|x| \int_{y \leq|x|} \frac{N(y)}{y^{2}} d y d F(x) \\
& =E N\left(\left|X_{1}\right|\right)+\int|x| \int_{y \leq|x|} \frac{N(y)}{y^{2}} d y d F(x)<\infty
\end{aligned}
$$

observing that if $\int x^{2} \int_{y \geq|x|} \frac{N(y)}{y^{3}} d y d F(x)<\infty$, then $E N\left(\left|X_{1}\right|\right)<\infty$.
The following theorem is a generalization of Theorem $2[3]$ with $w_{k}=1$, for all k and $B_{n}=n$ for all n.
Theorem 2. If $E\left|X_{1}\right| \log ^{+}\left|X_{1}\right|<\infty$ and $\lim \sup N(x) / x<\infty$ as $n \rightarrow$ ∞, then $S_{n} / B_{n} \rightarrow 0$ almost surely.
Proof. Suppose that lim sup $N(x) / x<\infty$ so that $N(x)<K x$ for all $x>0$. Then

$$
\int x^{2} \int_{y \geq|x|} \frac{N(y)}{y^{3}} d y d F(x) \leq \int x^{2} \frac{K}{|x|} d F(x)=K E\left|X_{1}\right|<\infty
$$

and

$$
\begin{aligned}
\operatorname{int} x \int_{0 \leq y \leq|x|} \frac{N(y)}{y^{2}} d y d F(x) & \leq K \int|x| \log ^{+}|x| d F(x) \\
& =K E\left|X_{1}\right| \log ^{+}\left|X_{1}\right|<\infty
\end{aligned}
$$

so the strong law applies by Theorem 1 .
Theorem 3. Under the conditions of Theorem 1 we have $M \in L^{1}$. Proof. Write

$$
X_{n}=d_{n}+\left(Z_{n}-E_{n-1}\left(Z_{n}\right)\right) .
$$

Since for any sequence of real numbers $\left\{a_{n}\right\}$

$$
\begin{aligned}
& \left|\left(1 / B_{n}\right) \sum_{k=1}^{n} w_{k} a_{k}\right|=\left|\sum_{k=1}^{n}\left(1 / B_{k}\right) w_{k} a_{k}\left(1-\frac{B_{n}-B_{k}}{B_{n}}\right)\right| \\
& \leq\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right) a_{k}\right|+\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right) a_{k}\left(B_{n}-B_{k}\right) / B_{n}\right|
\end{aligned}
$$

$$
\begin{aligned}
M & =\sup _{n}\left(1 / B_{n}\right)\left|\sum_{k=1}^{n} w_{k} X_{k}\right| \\
& \leq \sup _{n}\left(1 / B_{n}\right)\left|\sum_{k=1}^{n} w_{k} d_{k}\right|+\sup _{n}\left(1 / B_{n}\right) \sum_{k=1}^{n} w_{k}\left|Z_{k}-E_{k-1}\left(Z_{k}\right)\right| \\
& \leq \sup _{n}\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right) d_{k}\right|+\sup _{n}\left|\sum\left(w_{k} / B_{k}\right) d_{k}\left(\left(B_{n}-B_{k}\right) / B_{n}\right)\right| \\
& +\sup _{n}\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right)\right| Z_{k}-E_{k-1}\left(Z_{k}\right)| | \\
& +\sup _{n}\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right)\right| Z_{k}-E_{k-1}\left(Z_{k}\right)\left|\left(B_{n}-B_{k}\right) / B_{n}\right| \\
& =I+I I+I I I+I V .
\end{aligned}
$$

By an inequality of B.Davis [2] there is a constant $B<\infty$ such that

$$
\begin{aligned}
E\left(\sup _{n}\left|\sum_{k=1}^{n}\left(w_{k} / B_{k}\right) d_{k}\right|\right) & \leq B E\left(\left(\sum_{k=1}^{\infty}\left(w_{k}^{2} / B_{k}^{2}\right) d_{k}^{2}\right)^{1 / 2}\right) \\
& \leq B\left(E\left(\sum_{k=1}^{\infty}\left(w_{k}^{2} / B_{k}^{2}\right) d_{k}^{2}\right)\right)^{1 / 2} \\
& <\infty,
\end{aligned}
$$

using Lemma 1 for the last step, and hence the expected values of I and $I I$ is finite. And

$$
\begin{aligned}
& E\left(\sup _{n} \sum_{k=1}^{n}\left(w_{k} / B_{k}\right)\left|Z_{k}-E_{k-1}\left(Z_{k}\right)\right|\right) \\
& \leq 2 E \sum_{k=1}^{\infty}\left(w_{k} / B_{k}\right) E\left|Z_{k}\right|<\infty,
\end{aligned}
$$

using Lemma 2 for the last step, and hence the expected values of $I I I$ and $I V$ is finite.

The following theorem is a generalization of Theorem 4 [3] and the proof is immediate from Theorem 3 using the same method as in Theorem 2.

Theorem 4. If $E\left|X_{1}\right| \log ^{+}\left|X_{1}\right|<\infty$ and $\lim \sup N(x) / x<\infty$ as $n \rightarrow \infty$, then $M \in L^{1}$.

Theorem 5. Under the conditions of Theorem 1, we have $E\left(\left|S_{n} / B_{n}\right|\right)$ $\rightarrow 0$ as $n \rightarrow \infty$.
Proof. Write

$$
X_{n}=d_{n}+\left(Z_{n}-E_{n-1}\left(Z_{n}\right)\right)
$$

as in the proof of Theorem 1. Then

$$
\begin{aligned}
E\left(\left|S_{n} / B_{n}\right|\right) \leq & E\left(\left|\left(1 / B_{n}\right) \sum_{k=1}^{n} w_{k} d_{k}\right|\right) \\
& \quad+\left(1 / B_{n}\right) \sum_{k=1}^{n} w_{k} E\left(\left|Z_{k}\right|+\left|E_{k-1}\left(Z_{k}\right)\right|\right) \\
\leq & \left(\left(1 / B_{n}^{2}\right) \sum_{k=1}^{n} w_{k}^{2} E\left(d_{k}^{2}\right)\right)^{1 / 2}+\left(2 / B_{n}\right) \sum_{k=1}^{n} w_{k} E\left|Z_{k}\right| .
\end{aligned}
$$

By Lemma 1 and $2, \sum_{k=1}^{\infty}\left(w_{k}^{2} / B_{k}^{2}\right) E d_{k}^{2}$ and $\sum_{k=1}^{\infty}\left(w_{k} / B_{k}\right) E\left|Z_{k}\right|$ are bounded. Thus by Kronecker's lemma, $E\left(\left|S_{n} / B_{n}\right|\right) \rightarrow 0$.

References

[1] K. L. Chung, A Course in Probability Theory,Academic press, 1974.
[2] B. Davis, On the integrability of the martingale square function, Israel J. math. 8 (1970), 187-190.
[3] J. Elton, A law of large numbers for identically distributed martingale differences, Ann. Prob. 9 (1981), 405-412.
[4] C. C. Heyde, On almost sure convergence for sums of independent random variables, Sankhyā Ser.A, 30 (1968), 353-358.
[5] B. Jamison, S. Orey, and W. Pruitt, Convergence of weighted averages of independent random variables, Z. Wahrsch. und verw. Gebiete. 4 (1965), 40-44.

Department of Statistics, Hyosung Women's University, Kyungsan-Kun, Kyungbuk, 713-702, Korea.

