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1. Introduction 

Throughout this paper, a near-ring N is an algebraic system (N, +, .), 
where (N, +) is a group, (N,.) is a semigroup and only one distributive 
law is postulated , we will consider the right distributive law. Sometimes , 
we will consider N = No as zero-symmetric near• ring. An N-group M is a 
system N M where M is an additive group adrnitting scalar multiplication 
by the element of N with the properties: (a + b)x = ax+bx , (ab)x = a(bx) 
for all a, b in N and all x in M . An N -module M is an κgro때 NAl with 
the property that a(x + y) = ax 누 ay for all a in N and all x , y in M. If 
N = Nd, then clearly N is an N-module. The other concepts of near-ring 
theory are known in G. Pilz [8J. 

If f: M • M' is an N-homomorphism , then 1mf is an N-subgroup of 
M'. If lmf is an N-ideal of M ’ then f is call a normal N-homomorphism. 
Thus a normal N-homomorphism is an N-homomorphism 

2. Characterizations of Epic and Monic 

、、'e now state various characterizations of N-epimorphisms and monomor­
phisms analogous to those for surject ions and injections in the category of 
sets and functions. For N-homomorphisms we have the advantage of the 
O • function , but we no longer can characterize, say, N-monomorphisms as 
we did injections by means of one-s ided inverse 
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Proposition 2. 1. Let M and L be N -groups and let f : M • L be a 
normal N -homom07phism. then the following statements are equivalent: 

(1) f is an N -epimorphism onto L (from time to time, epic); 

(2) Imf = L ; 
(3) For every NK and every pair g , h : L • K of N -homomorphisms, 

gf = hf implies 9 = h; 
(4) For every N K and every N -homomorphism 9 : L • K , gf = 0 

implies 9 = O. 

Proof (1) {o} (2) and (1) =} (3) are obvious. 
(3) =} (4). Let h : L • K be the zero N-homomorphism. Then gf = 0 

means gf = hf; so assuming (3), we bave 9 = h = O. 
(4) =추 (2). Let 1 = Imf. Then π :L • L / 1 = Cokerf clearly satisfies 

πf = O. So assuming (4) tbis means that τ =0 ‘ But since π is onto L/ J, 
we have L/I = 0 whence J = L. 

Proposition 2.2. Let M and L be N -groups and f M • L be an 
N -homomorphism. Then the following statements are equivalent 

( 1)fisaπ N-monomo띠hism (from time to time, monic); 
(2) Kerf = O; 
(3) For eve대 NK a뼈 everν pairg ,h: K • M of N -homomorphisms, 

f 9 = J h implies 9 = h ,. 

(4) For every N J( and every N -homomorphism 9 : K • M , Jg = 0 
implies 9 = O. 

Proof The implication (4) =추 (2) is the only one that offers any challenge. 
But let 1( = Kerf. Then i: K • M is an N -bomomorphism and fi = 0 
So assuming (4) we have i = O. But tben K = 1mi = 0 

Analogously, in ring and module theory we have the following result: 

Remark 2.3. Let M and L be N-groups and let f : M • L be an N­
nomomorphism. Then f is an N-isomorphism if and only if there are 
functions g, h : L • M such that 

fg = 1L and hf = 1M. 

When these last conditions are satisfied , 9 = h is an N -isomorphism. 

When f: M • L is an N-isomorphism, the unique N-homomorphism 
g:L • M satisfying the condition of (2.3) is inverse of f and is denoted 
by f-1. Note that in (2.1) and (2.2) we did not claim as an 여uivalent 
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condition the existence of one-sided inverses. As we shall see, t his omission 
was oot accidental 

3. The Factor Theorems 

An N-homomorphism f : M • L that is the composite of N -homomorphisms 

f = gh , 

is said to factor through 9 and h. The following result essentially says that 
a homomorphism f fadors uniquely through every epimorphism whose 
kernel is cootained in that of f and through every monomorphism whose 
image contains the image of f. 

Theorem 3.1 (The fador theorems). Let M , M' , L and L' be N -groups 
and let f : M • L be a normal N -homomorphism. 

(l) lfg :M • M' is an N -epimorphism with 1( erg C 1( er f , then 
there exists a μnique homomorphism h : Jl.1' • L such that 

f = hg. 

Moreover, 1( erh = g(1( er f) and Imh Imf , so that h is momc 펴 
1( erg = 1( er f and h is epic iff f is epic. 

(2) If 9 : L' • L is an N -monomorphism ψith Imf C Img, then there 
exists a unique homomorphism h : M • L' such that 

f = gh. 

Moreover, 1( erh = 1( er f and Imh = g-I(lmf) , so that h is monic iff 
f is monic and h is epic iff Img = Imf ‘ 

M ...!...., L M ~→ L 

9 、 /h h \、 / 9 

M’ L' 

n ” ( 
(2) 

Proof (1) Since 9 : M • M ’ I S epκ， for each x’ E M' there is at least 
one x E M with g(x) = x' . If also y E M with g(y) = x', then clearly 
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x- ν E J(erg. But since J(erg C J(erf , we have that f(x) = f(y). Thus, 
there is a well defined function h : M' • L such that f = hg. To show 
that h is an N-homomorphism, let x' , y' E M' and let x , y E M with 
g(x) = x' , g(y) = y' . Then for each a,b E N , 

g(ax + by) = ax' + by' 

so that 

h(ax’ + by') = f(ax + by) = af(x) + bf(y) = ah(x') + bh(y’) . 

The un iqueness of h with these properties is assured by (2.1.(3)), since 
9 is an N -epimorphism. Moreover we show that J( erh = g(J( er 1): Let 
h( x') = 0 for x' E M ’ Then there exis싫 x in M with g(x) = x'. Thus 
hg(x) = f(x) = 0, hence x E J(erf, so that x' = g(x) E g( J(erl) 
Consequently J( erh C g(I( er 1) ‘ Conversely, let g( x) E g( J( er f). Then 
f( x ) = 0 that is hg(x) = O. It follows that g(x) E J( erh. Thus g(J( er f) C 
J( e1.h. Next to prove that lmh = lmf; for all x' E M' , h(x') E h(M') iff 
t here exists x in M with g(x) = x' , h(x') = hg(x) = f(x) E f(M). The 
fìn a l assertion is trivial. 

(2) For each x E M , f(x) E 1mf C 1mg. So since 9 is monic, tbere 
is a unique y' E L' such that g(y') = f(x). Therefore we can defìne a 
function h : M • L' by h(x) = ψ， where g(ψ) = f(x). Then h is a well 
defìned function. lndeed, if Xl = X2 by h(Xl) = Yl', h(X2) ν，'， then 
f(Xl) = f(X2) E lmf C lmg , so that g(Yl') = g(y,'). Since 9 is monic 
m’ = y,' that is h(Xl ) = h(X2)' The rest of the proof is also easy 

Let M be an N-group and X c M and A c N. Then any element M 
of the form 

alxl + a2x2 + ... + anXn = ε a;τ. 
i=l 

wi th x 1, . .. , Xn in M and a1 ,"' , an in A is called a linear combination 
of X with coefficients in A, or simply an A-linear combination of X . We 
shall denote the set of all such A-linear combination of X by AX. 

Lemma 3.2. Let M be an N -space (N -module) and let X be a non-emptν 
subset of M. Then N X is aη N-subspace (N-ideal) ofM. 

Proof. The N- linear combinations of X are closed under the group oper 
ation of M , and the identity 

a(1'lxl + ... + rnxn) = (ardx1 + ... + (arn)xn 



Factor Theorems and Their Applications for N-Groups 

for any a E N , rlxl + ... + rnXn E N X , fin ishes the job 

To avoid a special case later, we agree 

N <þ = 0, 
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that is, 0 is the unique N-linear combination of </>. The following, which 
is an easy exercise, characterizes submodules as those oon-empty subsets 
“closed" uoder all N -linear combinatioDs 

Lemma 3.3. Let M be a unital N -space (N -module) and let L be a 
non-empty subset 0/ M. Then the /ollowing are equivalent: 

(1) L is an N -subspace(N -ideal) 0/ M ; 
(2) N L = L; 
(3) For all a,b E N and all x ,y E L,ax + by E L. 

Let N = No. M an N-group. Then the set p(M) of all ideals of M 
is a complete modular lattice with respect to C. 1n this lattice, if A is a 
DOD-empty subset of p(M) , theD its jOiD and meet are giveD by 

εA and n A 

respect ively. 1n particu lar, if J( and L are ideals of M , t hen 

J( + L and [{ n L 

are their join and meet, respectively; if H is another ideal of M , then 

J( c H implies H n (f( +L) = [{ + (H n L) 

GiveD aD N-group M aDd a subset X c M , the set A of all ideals of M 
that contaiD X contains M and so is non -empty. Its intersection nA is 
again an ideal of M and it is in fact , the unique smallest N-ideal of M 
t hat contain X. we call it the N-ideal of M spanned by X 

Lemma 3 .4. [/ M is a unitial N -space and i/ X is a subset 0/ M , 
then the subspace 0/ M spanned by X is just N X , the set 0/ all N -linem 
combinations 0/ X 

Proof By (3.2) N X is a subspace of M and since lx = x for a ll x E M , 
we certainly have X c N X. Finally, by (3.3) , any subspace that contains 
X must cODtain the linear combiDations N X. 
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If (Mi)iEI are N-ideals of M , then εiEI Mi is the ideal spanned by 
(M,‘)‘EI. Thus if 

M= εMi' 
’EI 

then we say that the ideals (M‘ )iE! span M. If X is a subset of NM such 
that 

NX=M, 

then X is said to span M , and X is called a spanning set for M. An N ­
module with a finite spanning set is said to be finitely spanned (or finitely 
generated). A unitary N-group with a single element spanning set is a 
cyclic N-group (or principal N-group). Thus a cyclic N-group is one of 
the form M = N{x} 三 Nx where x is some element of M; and we write 

M=Nx={nxlnEN} 

of course, any near-ring with identity is cyclic. Now it is clear that every 
N-module is spanned by the set of its cyclic N-ideals: that is, if X is a 
spanning set for N M , then 

M= ε Nx 
xEX 

An N-group M is called simple in case M has no non-trivial ideals and is 
called irreducible in case it has no N-subgroups except No and M 

Remark 3.5.. Let N be a zero-symmetric near-ring. Then every irreducible 
N-group NM is always simple. 

Proof Let L be an N-ideal of M. Then for any x E L and any a E N , 
we have that ax = a(O + x) - aO E L, that is, L is an N -subgroup of M 
Consequently irreduciblity implies simplicity for every N-subgroup. 

Let K be an N-ideal of an N-group M. Then it is easy to see that the 
set 

p(M)jK = {H E p(M)IK::; H} 
is a sublattice of p(M). Moreover, for each H in this sublattice 

π(H) = HjK 

is obviously an N-ideal of the factor N -group M j K. Since clearly H ::; H' 
implies 7r( H) ::; π(H') ， we have that π defines an ordering preserving 
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function from p(M)JK into p(MJK). On the other hand, if T is an N­
ideal of M J K , then 

π-1(T) = {x E Mlx + K E T} 

is an N-ideal of M , and since 0 + K = k + K E T for all k E K , clearly 
K ::; π-1 (T). We see at once that ππ-1(T) = T and π-1π(H) 즈 H for 
all T E p(MJK) and for all H E p(M)J I<ι But if x E π ' 7r (H ), then 
x + K = a + K for some a E H and so since K ::; H , we have x E H. 
Thus π and π-1 define inverse bijections. Finally, since π- 1 is also order 
preserving, we have the following statement: 

Theorem 3.6. Let M be an N -group and let K be an N -ideal oJ M 
Then the lattice oJ ideals oJ the Jactor N -gmup M J K is lattice isomorphic 
10 the lattice oJ ideals oJ M thal conlain K via the inverse maps 

π :HI~~→ HJK = {x + K lx E H } 

π-1: T I ~~→ π- I (T) = {x E Mlx + K E T} . 

Since an N-group is simple ilf its lattice of ideals is a two element 
chai n, so we have the following fact. 

Corollary 3.7. An N -Jactor group MJK is simple ν and only υ K is a 
maximal ideal oJ M. 

As app lications of the first part of the factor theorems 、，ve have the 
very important isomorphism theorems 

Corollary 3.8 , Let M aηd L be N -gmups. Th en we have the Jollowing 
Jacts: 

(1) !J J : X • L is an epimorphism wilh K er J = K , then there is 
a unique isomorphism 4> : M J K • L such that 4>(x + K ) = J(x) Jor all 
x E M. 

(2) IJ K::; L ::; M , then MJL ~ (MJ K )(LJK) 
(3) IJ H ::; M and K ::; M , then (H + K )J K 르 HJ(H n K ) 

Proof (1) Let J: M • L be an epic and K er J = K. Put M’ = MJK 
and 9 is the natural epic 9 = π :M • M J K. By the factor theorem 
(3 .1.1), we have the following commutative diagram: 
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M ~→ L 

9'\. /φ 

M/K 

so there exists a unique N-homomorphism q,: M/]< • L such that q,g = 
f. Moreover since K er f = K erg , q, is monic and since f is epic, q, is epic. 
Thus we are done. 

To prove (2) and (3) apply (1) to the epirnorphism l' : M / K • M / L 
via f' (x + K) = x + L and to the epimorphism 1" : H • (H +K)/K via 
1"( h) = h + K respectively 

Corollary 3.9. Let M and N be N -groups and let f : M • L be an 
N-epimorphism with Kern el K. Then 

HJ ~~→ f(H) = {J (x)Jx E H} 

PJ ~~→ f-' (P) = {x E M Jf (x) E P} 

are inverse latlice isom07-phisms between the latlice p(M)/ K and the lat­
tice p(L) of all ideals of L. 

Proof By the (3.8.1) we have an isomorphism q,: M/K • L such that 

M f 
--• L 

π \ /φ 

M/K 

commutes. Clearly, q, induces a lattice isomorphism between p(M / K ) and 
p(L) . But by theorem (3.6) π induces one between p(M)/ K and p(M / K) 

A minimal N -ideal of a near-ring N is an N-ideal which is minimal in 
the set of all non-zero N-ideals 

Theorem 3.10. Let N be a near-ring with identitν such that N is a finite 
diπct sum of m inimal N -ideals. Then every N -ideal A in N is of the form 
eN whe7、e e is an idempotent in N. 

Proof By hypothesis N = M , 명 M 2 EÐ ... EÐ M k where M i are minimal 
ideals in N and assume that A 잊 o and A 잊 N. Since A n M i C M i and 
Mi are also minimal ideals, either A n Mi = 0 or A n M‘ Mi . Since 
A " N , there exists, say, M,‘ (after renumbering if necessary) such that 
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M1 C A. But then M 1 n A O. So Al = A + M j is a direct sum. If 
Al ￥ N , then there exists some M 1 , say M 2 such that 

Al n M2 = 0 and A C A2 = Al Ell M2 = A Ell M1 Ell M2. 

By continuing this process, we must come to an ideal, say A" which 
contains all M ‘ and therefore coincides with N . Thus there exists an ideal 
B such that 

N=A Ell B 
Since 1 E N , write 1 = e + f where e E A and f E B. It follows that 

e = e2 + f e that is - e2 + e = f e E A n B = 0 

Thus 
e = e2 and fe = O. Similarly f = f2 ,ef = 0 

If a E A then a = ea + fa. This gives -ea + a = fa E A n B = O. Hence 
a = ea and so A C eN and since e E A , eN C A. This shows that A = eN 
as desired. Moreover B = f N = (-e + l)N is ea.sily obtained. 

Note that the corresponding statement of theorem 3.10 hold for “ right 
ideals" instead of “ideals" . As a final application here of the factor theo 
rems, we glve 

Corollary 3.11. Let M and I< be N-groups and let j : I< • M be an 
N-monomorphism with Imj = I. Then there is a unique isomorphism 
1þ :I • I< such that jψ = i where i : J • M is the in c/usion map. 

Proof Let J = M , M = L , I< = L' and i = f , and j = 9 in (3. 1.2) 

Remark 3.12. An exact seq l1ence of the form 

0-• I<~→ M-'!...→L-→ 0 

is called a short exact sequence. In this sequence f is monic and 9 is epic 
Th l1s by (3.8 .1) and (3.11) there exist l1niql1e isomorphisms ψ and <þ such 
that 

o -• I< ~→ 
,p.\ 

M 

/선 

g 
--• 

Jmf M/ I<erf 

L • 0 

/φ 

commutes where i is the incl l1sion map and π is the natural epimorphism 
But by exactness Imf = I< erg , so 1þ and rþ are N-isomorphisms such that 
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0 --• K f • M ~ L --• 0 

ψ 1M r 

0 1m! • M * M/1m 0 -+ --’ -+ --’ 
commutes . That is, every short exact sequence is “ isomorphic" in th is 

la tter sense to one of the form 

0 • M’」→ M....!!....;M/M' • O 

where i is an inclusion map of an N-ideal M' of M and π is the natural 

N -epimo rphism. 
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