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1. Introduction

Throughout this paper, a near-ring N is an algebraic system (N, 4+, ),
where (N, +) is a group, (N,-) is a semigroup and only one distributive
law is postulated, we will consider the right distributive law. Sometimes,
we will consider N = N, as zero-symmetric near-ring. An N-group M is a
system y M where M is an additive group admitting scalar multiplication
by the element of N with the properties: (a+b)z = ax + bz, (ab)z = a(bz)
for all ¢,bin N and all z in M. An N-module M is an N-group yM with
the property that a(z +y) = az 3 ay for all @ in N and all z,y in M. If
N = Ny, then clearly N is an N-module. The other concepts of near-ring
theory are known in G. Pilz [8].

If f: M — M'isan N-homomorphism, then Imf is an N-subgroup of
M'. If Imf is an N-ideal of M’ then f is call a normal N-homomorphism.
Thus a normal N-homomorphism is an N-homomorphism.

2. Characterizations of Epic and Monic

We now state various characterizations of N-epimorphisms and monomor-
phisms analogous to those for surjections and injections in the category of
sets and functions. For N-homomorphisms we have the advantage of the
O-function, but we no longer can characterize, say, /N-monomorphisms as
we did injections by means of one-sided inverse.

Received April 3, 1992.

337



338 Yong-Uk Cho

Proposition 2.1. Let M and L be N-groups and let f : M — L be a
normal N-homomorphism. then the following statements are equivalent:

(1) f is an N-epimorphism onto L (from time to time, epic);

(2) Imf = L;

(3) For every K and every pair g,h : L — K of N-homomorphisms,
gf = hf implies g = h;

(4) For every yK and every N-homomorphism ¢ : L — K, gf =0
implies g = 0.
Proof. (1) & (2) and (1) = (3) are obvious.

(3)=(4). Let A : L — K be the zero N-homomorphism. Then gf =0
means gf = hf; so assuming (3), we have g = h = 0.

(4) = (2). Let I = Imf. Then = : L — L/I = Cokerf clearly satisfies
wf = 0. So assuming (4) this means that = = 0. But since « is onto L/I,

we have L/I = 0 whence [ = L.
Proposition 2.2. Let M and L be N-groups and f : M — L be an

N-homomorphism. Then the following statements are equivalent:

(1) f is an N-monomorphism (from time to time, monic);

(2) Kerf =0;

(3) For every NK and every pair g,h : K — M of N-homomorphisms,
fg = fh implies g = h;

(4) For every K and every N-homomorphism g : K - M, fg =0
implies g = 0.
Proof. The implication (4) = (2) is the only one that offers any challenge.
But let K = Kerf. Then ¢: K — M is an N-homomorphism and f; = 0.
So assuming (4) we have ¢ = 0. But then K = Imz = 0.

Analogously, in ring and module theory we have the following result:

Remark 2.3. Let M and L be N-groups and let f : M — L be an N-
homomorphism. Then f is an N-isomorphism if and only if there are
functions g, h : L — M such that

fg=1 and hf = 1.

When these last conditions are satisfied, g = h is an N-isomorphism.

When f: M — L is an N-isomorphism, the unique N-homomorphism
g : L — M satisfying the condition of (2.3) is inverse of f and is denoted
by f~!. Note that in (2.1) and (2.2) we did not claim as an equivalent
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condition the existence of one-sided inverses. As we shall see, this omission
was not accidental.

3. The Factor Theorems
An N-homomorphism f : M — L that is the composite of N-homomorphisms

f=gh,

is said to factor through ¢ and h. The following result essentially says that
a homomorphism f factors uniquely through every epimorphism whose
kernel is contained in that of f and through every monomorphism whose
image contains the image of f.

Theorem 3.1 (The factor theorems). Let M, M’ L and L' be N-groups
and let f : M — L be a normal N-homomorphism.

(1) If g : M — M' is an N-epimorphism with Kerg C Kerf, then
there exists a unique homomorphism h : M’ — L such that

f = hg.

Moreover, Kerh = g(Kerf) and Imh = Imf, so that h is monic iff
Kerg = Kerf and h is epic iff f is epic.

(2) Ifg: L' = L is an N-monomorphism with Imf C I'mg, then there
erists a unigue homomorphism h: M — L’ such that

f=gh.

Moreover, Kerh = Kerf and Imh = g~'(Imf), so that h is monic iff
f is monic and h is epic iff Img = Imf.

M L L M L
s\, Jhoh N\ /o

M I
(1) (2)

Proof. (1) Since g : M — M’ is epic, for each ' € M’ there is at least
one z € M with g(z) = z'. If also y € M with g(y) = z’, then clearly
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z—y € Kerg. But since Kerg C Kerf, we have that f(z) = f(y). Thus,
there is a well defined function A : M’ — L such that f = hg. To show
that A is an N-homomorphism, let z',y' € M’ and let z,y € M with
g(z) =2', g(y) = y'. Then for each a,b € N,

g(az + by) = az’ + by’

so that
h(aa’ + by') = f(az + by) = af(z) + bf(y) = ah(e') + bh(y)

The uniqueness of h with these properties is assured by (2.1.(3)), since
g is an N-epimorphism. Moreover we show that Kerh = g(Kerf): Let
h(z") = 0 for ' € M'. Then there exists z in M with g(z) = z/. Thus
hg(z) = f(z) = 0, hence z € Kerf, so that 2’ = g(z) € g(Kerf).
Consequently Kerh C g(Kerf). Conversely, let g(z) € g(Kerf). Then
f(z) = 0 that is hg(z) = 0. It follows that g(z) € Kerh. Thus g(Kerf) C
Kerh. Next to prove that Imh = Imf; for all 2’ € M’, h(z') € h(M") iff
there exists z in M with g(z) = 2/, h(z') = hg(z) = f(z) € f(M). The
final assertion is trivial.

(2) For each x € M, f(z) € Imf C Img. So since g is monic, there
is a unique y' € L' such that g(y') = f(z). Therefore we can define a
function h : M — L' by h(z) = y', where g(y') = f(z). Then h is a well
defined function. Indeed, if 2; = 2, by A(z1) = w', h(z2) = y2', then
f(z1) = f(zq2) € Imf C Img, so that g(y;’) = g(y2’). Since g is monic
y1' = yo' that is h(z,) = h(z,). The rest of the proof is also easy.

Let M be an N-group and X C M and A C N. Then any element M

of the form

n
a1Ty + a2y + -+ @, T, = Zaimi
i=1

with zy,-+-,z, in M and a;,---,a, in A is called a linear combination
of X with coeflicients in A, or simply an A-linear combination of X. We
shall denote the set of all such A-linear combination of X by AX.

Lemma 3.2. Let M be an N-space (N-module) and let X be a non-empty
subset of M. Then NX is an N-subspace (N-ideal) of M.

Proof. The N-linear combinations of X are closed under the group oper-
ation of M, and the identity

G(T1I1 mne rnIn) = (arl)x] e o (arn)mn
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for any a € N, riz; + -+ + rp,z, € NX, finishes the job.

To avoid a special case later, we agree
N¢ =0,

that is, 0 is the unique N-linear combination of ¢. The following, which
is an easy exercise, characterizes submodules as those non-empty subsets
“closed” under all N-linear combinations.

Lemma 3.3. Let M be a unital N-space (N-module) and let L be a
non-empty subset of M. Then the following are equivalent:

(1) L is an N-subspace(N-ideal) of M;

(2) NL = L;

(3) For alla,be N and all z,y € L,ax + by € L.

Let N = No. M an N-group. Then the set p(M) of all ideals of M

is a complete modular lattice with respect to C. In this lattice, if A is a
non-empty subset of p(M), then its join and meet are given by

> Aand N A,
respectively. In particular, if K and L are ideals of M, then
K+ Land KNL
are their join and meet, respectively; if H 1s another ideal of M, then
K CHimphes HN(K+L)=K+ (HNL).

Given an N-group M and a subset X C M, the set A of all ideals of M
that contain X contains M and so is non-empty. Its intersection NA is
again an ideal of M and it is in fact, the unique smallest N-ideal of M
that contain X. we call it the N-ideal of M spanned by X.

Lemma 3.4. If M s a unitial N-space and if X is a subset of M,
then the subspace of M spanned by X is just NX, the set of all N-linear
combinations of X.

Proof. By (3.2) NX is a subspace of M and since 1z = z for all x € M,
we certainly have X C NX. Finally, by (3.3), any subspace that contains
X must contain the linear combinations N X.
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If (M;)ier are N-ideals of M, then 3 ;c; M; is the ideal spanned by
(Mi)ief- Thus lf
M=) M,
i€l
then we say that the ideals (M;);er span M. If X is a subset of y M such
that
NX =M,

then X is said to span M, and X is called a spanning set for M. An N-
module with a finite spanning set is said to be finitely spanned (or finitely
generated). A unitary N-group with a single element spanning set is a
cyclic N-group (or principal N-group). Thus a cyclic N-group is one of
the form M = N{z} = Nz where z is some element of M; and we write

M = Nz = {nz|n € N}

of course, any near-ring with identity is cyclic. Now it is clear that every
N-module is spanned by the set of its cyclic N-ideals: that is, if X is a
spanning set for y M, then

M=Y N,

reX

An N-group M is called simple in case M has no non-trivial ideals and is
called irreducible in case it has no N-subgroups except Ny and M.

Remark 3.5.. Let N be a zero-symmetric near-ring. Then every irreducible
N-group M is always simple.

Proof. Let L be an N-ideal of M. Then for any z € L and any a € N,
we have that az = a(0 + z) — a0 € L, that is, L is an N-subgroup of M.
Consequently irreduciblity implies simplicity for every N-subgroup.

Let K be an N-ideal of an N-group M. Then it is easy to see that the
set

p(M)/K = {H € p(M)|K < H)
is a sublattice of p(M). Moreover, for each H in this sublattice
x(H) = HIK

is obviously an N-ideal of the factor N-group M /K. Since clearly H < H’
implies w(H) < w(H'), we have that 7 defines an ordering preserving
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function from p(M)/K into p(M/K). On the other hand, if T is an N-
ideal of M /K, then

™ (T)={z € Mlz+ K € T}

is an N-ideal of M, and since o+ K = k+ K € T for all k£ € K, clearly
K < 7 YT). We see at once that 77~!(T) = T and n~'n(H) > H for
all T € p(M/K) and for all H € p(M)/K. But if z € =~ 'x(H), then
z+ K = a+ K for some a € H and so since K < H, we have z € H.
Thus 7 and 7! define inverse bijections. Finally, since 7! is also order-
preserving, we have the following statement:

Theorem 3.6. Let M be an N-group and let K be an N-ideal of M.
Then the lattice of ideals of the factor N-group M/ K is lattice isomorphic
to the lattice of ideals of M that contain K via the inverse maps

m:H|~~— H/K ={z+ K|z € H}

7 T~ 7 (T) = {z € M|z + K € T}.

Since an N-group is simple iff its lattice of ideals is a two element
chain, so we have the following fact.

Corollary 3.7. An N-factor group M|K is simple if and only if K is a
mazimal ideal of M.

As applications of the first part of the factor theorems we have the
very important isomorphism theorems.

Corollary 3.8. Let M and L be N-groups. Then we have the following
facts:

(1) If f : X — L s an epimorphism with Kerf = K, then there is
a unique isomorphism ¢ : M/K — L such that ¢(z + K) = f(z) for all
reM.

(2)IfK<L<M,then M/L = (M/K)(L/K).

3)IfH<M and K <M, then (H+ K)/K =2 H/(HNK).
Proof. (1) Let f : M — L be an epic and Kerf = K. Put M' = M/K
and ¢ is the natural epic ¢ = # : M — M/K. By the factor theorem
(3.1.1), we have the following commutative diagram:
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M L L
[N ya:
M/K

so there exists a unique N-homomorphism ¢ : M/K — L such that ¢g =
f. Moreover since Kerf = Kerg, ¢ is monic and since f is epic, ¢ is epic.
Thus we are done.

To prove (2) and (3) apply (1) to the epimorphism f': M/K — M/L
via f'(z + K) = z + L and to the epimorphism f”: H — (H + K)/K via
f(h) = h + K respectively.

Corollary 3.9. Let M and N be N-groups and let f : M — L be an
N-epimorphism with Kernel K. Then

H| ~~— f(H) = {f(z)|z € H}
P| ~~— f71(P) = {z € M|f(z) € P}

are inverse lattice isomorphisms between the lattice p(M)/K and the lat-
tice p(L) of all ideals of L.
Proof. By the (3.8.1) we have an isomorphism ¢ : M/K — L such that
M L oL
N\ /e
M/K

commutes. Clearly, ¢ induces a lattice isomorphism between p(M/K) and
p(L). But by theorem (3.6) 7 induces one between p(M)/K and p(M/K).

A minimal N-ideal of a near-ring N is an N-ideal which is minimal in
the set of all non-zero N-ideals.

Theorem 3.10. Let N be a near-ring with identity such that N s a finite
direct sum of minimal N-ideals. Then every N-ideal A in N is of the form
eN where e is an idempotent in N.

Proof. By hypothesis N = M; & M, & --- & M, where M; are minimal
ideals in N and assume that A4 # 0 and A # N. Since AN M; C M; and
M; are also minimal ideals, either AN M; = 0 or AN M; = M;. Since
A # N, there exists, say, M; (after renumbering if necessary) such that
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M; C A. But then M\{\N A =10. So Ay = A+ M, is a direct sum. If
A; # N, then there exists some M,, say M, such that

AlﬂMg=0andACA2:A163M2=AEEM169M2.

By continuing this process, we must come to an ideal, say A,, which
contains all M; and therefore coincides with N. Thus there exists an ideal
B such that

N=A&B.

Since 1 € N, write 1 = e+ f where e € A and f € B. It follows that
e=e’+ fethatis —e’+e=feec ANB=0.
Thus
e =e® and fe =0. Similarly f = f2,ef =0.

If a € A then a = ea + fa. This gives —ea+a = fa € AN B = 0. Hence
a=cqaandso A C eN andsince e € A, eN C A. This shows that A = eN
as desired. Moreover B = fN = (—e + 1)N is easily obtained.

Note that the corresponding statement of theorem 3.10 hold for “right
ideals” instead of “ideals”. As a final application here of the factor theo-
rems, we give

Corollary 3.11. Let M and K be N-groups and let j : K — M be an
N-monomorphism with Imj = I. Then there is a unique isomorphism
1 I — K such that jo =1 where i : I — M is the inclusion map.

Proof. Let I=M, M =L, K=L"andi= f,and j = g in (3.1.2)
Remark 3.12. An exact sequence of the form
0—s K-4sM-24L — 0

is called a short exact sequence. In this sequence f is monic and g is epic.
Thus by (3.8.1) and (3.11) there exist unique isomorphisms 1 and ¢ such
that

0 — K L M _, L — 0
N SN S ¢
Imf M/Kerf

commutes where ¢ is the inclusion map and 7 is the natural epimorphism.
But by exactness Imf = Kerg, so i and ¢ are N-isomorphisms such that



346

Yong-Uk Cho
0 — XK LM L L — 0

0 — Imf 5 M = M/Imf — 0

commutes. That is, every short exact sequence is “isomorphic” in this
latter sense to one of the form

0— MM M/M' — 0

where ¢ is an inclusion map of an N-ideal M’ of M and 7 is the natural
N-epimorphism.
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