Kyungpook Mathematical Journal
Volume 32, Number 3, October, 1992.

EXPONENTIAL BEHAVIOR OF SOLUTIONS
FOR PERTURBED LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

Sung Kag Chang, Young Sun Oh and Hyung Jae Lee

Dedicated to Dr. Y.K. Chae for his 60th birthday

1. Introduction

The qualitative properties for linear differential equations with pertur-
bations have been intensively investigated. Among qualitative theorems,
Lyapunov’s stability theorems and Perron’s theorems are most popular in
the literatures[1,2,3,5].

In this paper, we are concerned with generalizations of Perron type
stability theorems. That is, the main concern is that under what condi-
tions for the linear parts and/or the perturbation parts of the differential
equations, the solutions are stable or asymptotically stable in a suitable
sense. In [11], T. Taniguchi gives a partial answer for this question by
generalizing a Perron’s theorem as follows:

Theorem[11]|. Assume that the following conditions hold;

(a) |[f(t,z)|| < F(t,||z|), F(t,0) = 0,and F(t,u)is monotone nonde-
creasing with respect to u for each fizedt > 0,

(b) F(t,u) € C[[0,0) x Bf, R*].

(c) the zero solution of the linear differential equation ; dz/dt = A(t)z
is uniformly stable, that is, there exisis a constant K > 1 such that
UGU(s)]| € K,t > s > 0, where U(t) is the fundamental matriz
solution of dz[dt = A(t)z.
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If the zero solution of the differential equation ; dt/dt = KF(t,y) is
uniformly stable (uniform-asymptotically stable), then the zero solution of
the perturbed equation dz/dt = A(t)z + f(i,z) is also uniformly stable
(uniform-asymptotically stable).

The main purpose of this paper is to generalize in a sense the above
Theorem by the T(m)-stability concepts and also to present some T(m)-
boundedness theorems.

In section 2 we discuss T(m)-stability of the zero solution of the per-
turbed equation, and in section 3 we present some T(m)-boundedness
theorems.

2. T(m)-stability theorems

Let R® and R* be the n-dimensional Euclidean space and the set of
all non-negative real numbers, respectively. C[X, Y] denotes the set of all
continuous mappings from a topological space X into a topological space
Y. Let A(t) be a continuous n X n martrix - valued function defined on

[0.00) and let f(t,z) € C[[0,00) x R", R"].

Consider a linear differential equation:
de/dt = A(t)x (2.1)
and a pertubed differential equation of (2.1):
ds/dt = A(t)z + f(t,z). (2.2)
Let U(t) be the fundamental matrix solution of (2.1). Then the solu-
tion z(t) of (2.2) satisfies the integral equaion:

z(t) = U)U ™ (to)zo + _/tt U)U(s)f(s,z(s))ds,t > to.

Let us introduce some stability concepts. Let g € C[[0,00) x R", R"| be
given. Consider a differential equation of a general form:

dy/dt = ¢(t,y). (2.3)

Let y(t) = y(t : to,yo) denote a solution of (2.3) with an initial value
(to,y0). Assume g(t,0) = 0 for all ¢ > t,.

We give T(m)-stability definitions of solutions of (2.3).
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Definition 1. Let m be a real number. The zero solution of (2.3) is said
to be

(i) (T(m)—S) T(m)-stable if for any € > 0 and any to > 0, there exists
a §(to,€) > 0 such that if ||ly(to)|| < é(to,€), then ||y(t)e ™| < € for all
t 2 to,

(ii) (T(m) —US) T(m)-uniformly stable if the §(to,¢€) in (T(m)—S) is
independent of time 1,

(ii) (T'(m) — QAS) T(m)-quasi-asymptotically stable if for any ¢ > 0
and any to > 0, there exist a T'(fp,€) > 0 and a é(tg,¢) > 0 such that if
llu(ta)]l < é(to,€) then |ly(t)e~™(=%)|| < € for all t > to + T(to,e€),

(iv) (T(m) — QUAS) T(m)-quasi-uniform-asymptotically stable if the
T'(tg,€) and the é(t,,€) in (T'(m) — QAS) are independent of time ¢,

(v) T(m) — AS) T(m)-asymptotically stable if it is T(m)-stable and is
T(m)-quasi-asymptotically stable,

(vi) (T(m) — UAS) T(m)-uniform-asymptotically stable if it is T(m)-

uniformly stable and is T(m)-quasi-uniform-asymptotically stable.

Remark. The T(m)-stability concepts are exactly the same as the usual
definitions of stability when m = 0. Now we present a lemma for integral
inequalities which plays a key role for our theorems.

Lemma 1[9 ,p.315]. Let the following condition (i) or (it) hold for func-
tions f(t),g(t) € C[[to,0) x R*, R*]:

() 1= [ Fls,f)ds <gt) - [ Plsgls)ds.t > to

to

and F(s,u) is strictly increasing in u for each fized s > 0,

i) 50~ [ Fls,f)ds <o(t) - [ Fls,(s)ds,t >t

and F(s,u) is monotone nondecreasing in u for each fired s > 0.
If f(to) < g(to), then f(t) < g(t),t > to.

Throughout this section we assume that f(t,0) = 0.
Thus the equation (2.2) has the zero solution. Now we have a main
result:

Theorem 1. Let the following conditions hold for the differential equation
(2.2):

(1a) ||f(t,z)|| < F(t,]|z|), F(¢.0) = 0 and F(t,u) is monotone nonde-
creasing with respect to u for each fizred t > 0,
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(1b) F(t,u) € C[[0,00) x R, RT],

(Lc) the zero solution of the differential system (2.1) is T(m,) -uniformly
stable for an mqy < 0. that is, there exists a constant K > 1 such that
|U@)U(s)|| < Ke™',t> s> 0.

If the zero solution of the differential equation

dy/dt = KF(t,y) (2.4)

is T'(my)-stable for a real number my, then the zero solution of (2.2) is
T(mq + my)-stable.

Proof. Let z(t) = z(t : to,z0) be a solution of (2.2) with an initial value
(to,zo),to = 0. Then the solution z(t) is of the form

2(t) = U (to)zo + | UQU-Ns)f(s,2(s))ds. (2.5

to

Thus we obtain that from condition (lc)

t
le(Oll < Ke™flaoll + [ Kem1(s,a(s))lds,
0

and from condition (la)

le@lle™ < Kol + [ Kllf(s,2())]ds
< Kl + || KF(s,l2(s))ds
< Klaoll+ [ KF(s, o)™ )ds

Next let y(t) = y(t : to,y0) be the solution of (2.4) passing through
(to,yo) and let K||zo|le™™* < yp. Then we have

t t
le@lle™™* ~ [ KF(s, z(s)lle™*)ds < y(t) = [ KF(s,y(s))ds.
to to
Therefore applying Lemma 1, we obtain
lz(®)lle™™* < y(t),t > to.

Since the zero solution of (2.4) is T(my)-stable, for any € > 0 there exists
a bo(to,€) > 0 such that if |yo| < éo(to,€), then |y(t)e ™! < € for all
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t > ty. Thus set 8(tp, €) = dp(to, €)/Ke ™%, If ||zo]| < é(to,€), then take
a Yo > 0 such that K||zo|le ™" < yo < &o(to,€).

Hence we have
|z (t)e=Cm¥mal|| = ||z (t)e™||e= ™2

<y(t)e ™ < ¢
for all t > ty. This completes the proof.

Corollary 1. Let conditions (1a),(1b), and (1c) hold for the differential
equation (2.2). If the zero solution of the differential equation (2.4) is
T'(mg)-stable for a real number my satisfying my + mq < 0, then the zero
solution of (2.2) is stable.

Corollary 2. Let conditions (1a), (1b) and the following condition hold
for the differential equation (2.2):

(1d) the zero solution of the differential equation (2.1) is uniformly
stable, that is, there exists a constant K > 1 such that |U(H)U(s)]| <
K,t>s>0.

If the zero solution of the differential equation (2.4) is T(m)-uniformly
stable for a real number m, then the zero solution of (2.2) is also T(m)-
uniformly stable.

Furthermore, if the zero solution of (2.4) is T(m)-uniformly stable for
a real number m <0, then the zero solution of (2.2) is uniformly stable.

Example 1. Let the following conditions hold for the differential equation
(2.:2):

(1) 1t )] < a(®lall

(1f) a(s) € C[[0,00), R*] and there exists a positive constant M such

that '
d
suptzow <M.

If the zero solution of the differential equation (2.1) is uniformly stable,

then the zero solution of (2.2) is T(m)-uniformly stable for a real number
m>KM.

Proof. Set F(t,u) = a(t)u, u > 0. First of all, we show that
dy/dt = Ka(t)y (2.4)

is T(m)-uniformly stable for an m > K M.
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Let y(¢) = y(t : to,y0),¢ = to > 0 be a solution of (2.6) passing through
(t0,¥0). Then we obtain
y(2) = oelo ¥ < ypeM,
Set 8(¢) = €/2. If |yo| < é(e), then |y(t)e ™| < |yoe®M ™| < € for
all t > 0, which implies that the zero solution of (2.6) is T(m)-uniformly
stable for m > K M. Therefore, since conditions (la), (1b) and (1d) of

Corollary 2 are satisfied, the zero solution of (2.2) is T(m)-uniformly stable
for a real number m > K M.

Next we discuss T(m)-asymptotic stability properties.

Lemma 2. Let conditions (la), (1b) and (1c) hold for the differential
equation(2.2). If the zero solution of the differential equation (2.4} is
T'(m3)-quasi-asymptotically stable for a real number m, then the zero so-
lution of (2.2) is T(m, + my)-quasi-asymptotically stable.

Proof. From the proof of Theorem 1, we have
lz(t)lle™™* < y(t),t > to.

Let any € > 0 and any t, > 0 be given. By the assumption, there ex-
ist a éo(to,€) > 0 and a T(tp,e) > 0 such that if |yo| < &o(to,€), then
ly(t)e ™2ttt | < ¢, t >ty + T(to,€)-

Set 8(to, €) = bolto, €)/Ke ™. If ||zo]| < 8(to,€), then take a yo > 0
such that K||zo|e ™% < yo < éo(to,€). Therefore we obtain

”:E(t)e_(ml"'""")(t_t‘))” — ||3’.‘(t)6—m”||e_"‘2(t_‘°)emltﬂ

o y(t)e—mg(i—to)em1to <€
for all t > t5 + T'(tg, €). This completes the proof.

Theorem 2. Let conditions (1a),(1b) and (1c) hold for the differential

equation (2.2). If the zero solution of the differential equation (2.4) is

T(m2)—asymptotically stable for a real number m,, then the zero solution

of (2.2) is T(my + my)-asymptotically stable.

Proof. By Theorem 1 and Lemma 2, the zero solution of (2.2) is T'(m, +

my)-stable and is T'(m; + m;)-quasi-asymptotically stable, respectively.

Thus by Definition 1, the zero solution of (2.2) is T'(m,+m;) -asymptotically
stable.
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Corollary 3. Let conditions (la),(1b) and (Ic) hold for the differential
equation (2.2). If the zero solution of the differential equation (2.4) is
T (m,)-asymptotically stable for a real number my satisfying m; +m, <0,
then the zero solution of (2.2) is asymptotically stable.

Corollary 4. Let conditions (1a), (1b) and (1d) hold for the differential
equation (2.2). If the zero solution of the differential equation (2.4) is
T(m)-uniform-asymptotically stable for a real number m, then the zero
solution of (2.2) is also T(m)-uniform-asymptotically stable.

Furthermore, if the zero solution of (2.4) is T(m)-uniform-asymptotically
stable for an m < 0, then the zero solution of (2.2) is uniformly asymp-
totically stable.

3. T(m)-boundedness theorems

In this section we present boundedness theorems of the differential
equation (2.2).

Now we give T(m)-boundedness definitions of solutions of the differ-
ential system (2.3).

Definition 2. Let m be a real number. The solutions of (2.3) are said to
be

(i) (T(m)-EB) T(m)-equibounded if for any p > 0 and any ¢, > 0, there
exists a B(tp, p) > 0 such that if ||yo|| < p, then ||y(t)e™™| < B(to,p) for
all ¢ 2 tﬁ.

(i1) (T(m)-UB) T(m)-uniformly bounded if the S3(to,p) in (T(m)-EB)
is independent of time ;.

(ii1) (T(m)-EUB) T'(m)-equiultimately bounded if there exists a 3 > 0,
and for any p > 0 and any #, > 0, there exists a T'({o, p) > 0 such that if
llvoll < p, then |[y(t)e~™(=%)|| < B for all t > to + T(to, p),

(iv) (T(m)-UUB) T(m)-uniform-ultimately bounded if the T'(o,p) in
(T(m)-EUB) is independent of time .

Remark. The T(m)-boundedness concepts are the usual definitions of
boundedness when m = 0. We prove boundedness properties of the dif-
ferential equation (2.2).

Theorem 3. Let conditions (1a),(1b) and (1c) hold except that F(t,0) =0
for the differential equation (2.2).

If the solutions of the differential equation (2.4) are T(my)-equibounded
for a real number mq, then the solutions of (2.2) are T'(m;+m;)-equibounded.
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Proof. Let z(t) = z(t : ty, o) be the solution of (2.2) and let y(¢) = y(¢:
to,to) be the solution of (2.4). Let K||zo|le”™™® < yo. Then we obtain
that in the same way as in the proof of Theorem 1

lz(t)e™™"|| < y(t),t > to.

Since the solutions of (2.4) are T'(m2)-equibounded, for any p > 0 and any
to > 0, there exists a By(to, p) > 0 such that if |yo| < p, then |y(t)e ™| <
Bo(to, p) for all t > ty. Thus set B(to, p) = Bolte, Ke ™ p. If |lzo] < p,
then take a yo > 0 such that Ke ™"||zo|| < yo < Ke ™% p. Hence it
follows that

ll:l’:(t)e—(m1+m2)t“ - ”I(t)e—mlt“e_mi’t
< y(t)e ™
< ﬁ(t(h ,0)

for all t > tgq. This completes the proof.

Corollary 5. Let conditions (1a),(1b) and (1c) hold ezcept that F(t,0) =
0 for the differential equation (2.2).

If the solutions of the differential equation (2.4) are T(rm3)-equibounded
for my satisfying my+m, < 0, then the solutions of (2.2) are equibounded.
Corollary 6. Let conditions (1a), (1b) and (1d) hold except that F(t,0) =
0 for the differential equation (2.2).

If the solutions of the differential equation (2.4) are T(m)-uniformly
bounded for a real number m, then the solutions of (2.2) are also T(m)-
uniformly bounded.

Furthermore, if the sloutions of (2.4) are T(m)-uniformly bounded for
m < 0, then the solutions of (2.2) are uniformly bounded.

Theorem 4. Let (1a),(1b) and (1c) hold ezcept that F(t,0) =0 for (2.2).
If the solutions of the differential equation (2.4) are T(m;)-equinltimately
bounded for a real number my, then the solutions of (2.2) are T(m1+m3)-
equinltimately bounded.

Proof. From the proof of theorem 1, we have
lz@®)lle™™* < y(t),t = to.

Since the solutions of (2.4) are T(m;,) equiultimately bounded, there exist
a > 0, and for any po > 0 and any ¢y > 0 there exists a Ty(to,p) > 0
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such that if |yo| < po, then |y(t)e~™2("%)| < B for all t > to + To(te, p).
Thus set T(to,p) = To(to,e ™% p). If ||zo|| < p, then take a yo > 0 such
that Ke ™% ||zo| < yo < Ke ™% p. Therefore it follows that

”_q;(t)e-(m1+m2)(t-to)” = ||$(t)6-m]t||e_m2(t_t0)emltﬂ

S y(t)em 0 < g
for all t > {5 + T'(to, p). This completes the proof.

Corollary 7. Let conditions (1a), (1b) and (1¢) hold except that F(t,0) =
0 for the differential equation(2.2).

If the solutions of the differential equation (2.4) are T'(my)-equinltimately
bounded for mq satisfying m; + mq < 0, then the solutions of (2.2) are
equivltimately bounded.

Corollary 8. Let conditions (1a), (1b) and (1d) hold ezcept that F(t,0) =
0 for the differential equation (2.2). If the solutions of the differential
equation (2.4) are T(m)-uniform-ultimately bounded for a real number m,
then the salutions of (2.2) are also T(m)-uniform-ultimately bounded.

Furthermore, if the solutions of (2.4) are T(m)-uniform-ultimately
bounded for m < 0, then the solutions of (2.2) are uniform-ultimately
bounded.
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