ON *-PRIMES AND *-VALUATIONS

Ismail M. Idris

We study the relations between *-primes and *-valuations to deduce a necessary and sufficient condition for extending *-valuations.

1. Introduction

Let (D,*) be a *-field; that is, a skew field with an involution * (an antiautomorphism of order 2). For general valuation theory on skew fields one can refer to [7]. For *-fields we need our valuations to also be compatible with the involution *. Following Holland [4], we define a *-valuation on a *-field (D,*) to be a valuation w onto an additively written ordered group with the additional property that $w(x^*) = w(x)$ for all non-zero $x \in D$. One of the properties any reasonable generalization of the concept of a valuation should have is that valuations allow extensions to larger fields. In [3] and [8] a necessary and sufficient condition is given for extending an abelian valuation from a division ring D to the over division ring E. We will solve here a *-version of this problem were valuations are replaced with *-valuations. This is done by using a characterization of those *-primes giving rise to *-valuations, together with an extension theorem for *-primes. Basic properties of *-primes in a *-ring R are given in section (2).

2. *-primes

Throughout this section R will be an arbitrary *-ring with unit. A couple (P, R') is said to be a *-prime in the *-ring R if the following conditions are satisfied:

- 1) R' is a *-closed subring of R.
- 2) P is a *-closed prime ideal in R'.

Received February 5, 1990.

3) if $xR'y \subset P$ with $x, y \in R$ then $x \in P$ or $y \in P$. If P is a *-closed prime ideal of R, then (P, R) is a *-prime in R.

Let T be a subset of the *-ring R. A subset S of R is an m-system for T iff $0 \notin S$ and for any $s_1, s_2 \in S$ there is an $x \in T$ such that $s_1xs_2 \in S$.

Lemma 1. If (P, R') is a *-prime in R then R - P is an m-system for R'. Conversely, if P is a *-closed additive subgroup of R' which is multiplicatively closed and such that R - P is an m-system for $R^p = \{r \in R | rP \subset P \text{ and } Pr \subset P\}$ then (P, R') is a *-prime in R.

Proof. This is immediate.

Consider $S = \{(P, R')|R' \text{ a *-closed subring of } R, P \text{ a *-closed prime ideal of } R'\}$. Let (P_1, R_1) and (P_2, R_2) be elements of S. Say that (P_1, R_1) dominates (P_2, R_2) (notation : $(P_2, R_2) < (P_1, R_1)$) iff $R_1 \supset R_2$ and $P_1 \cap R_2 = P_2$. If (P, R') is maximal in S with respect to < then call it a dominating pair in R.

Lemma 2. Let (P, R^p) be a dominating pair in R. If R' is a *-closed subring of R, I a *-closed ideal in R' such that $R^p \subset R'$ and $I \cap R^p = P$ then I = P and $R' = R^p$.

Proof. Let $T = \{(I, R') | I \text{ a *-closed ideal in } R^p, R^p \subset R' \text{ and } I \cap R' = P\}$. Since T is not empty it contains (by Zorn's lemma) a maximal element, say (Q, B). One can prove that Q is a *-closed prime ideal in B. This yields that $(Q, B) > (P, R^p)$. But (P, R^p) is a domainating pair, hence $P = Q, B = R^p$ follows, i.e. $T = \{(P, R^p)\}$ which proves the lemma.

By a *-R-ring A we mean a *-ring A where R is assumed to be a subring of A.

Lemma 3. Let $\pi = (P, R')$ be an arbitrary *-prime in R then (K, A^k) is a *-prime in A which restricts to π (i.e. $K \cap R = P$ and $A^k \cap R = R'$) if and only if

- 1) K is a *-closed left and right R'-module.
- 2) $K \cap R = P$.
- 3) A K is an m-system for A^k .

Proof. If (K, A^k) is a *-prime in A which restricts to π , then (1) and (2) are evident, and (3) holds by using Lemma (1). The converse is also true by using Lemma (1).

If S, T are subsets of A then S < T > stands for $\{x \in A | x = \sum s_i t_i,$

 $s_i \in S, t_i \in \overline{T}$ where \overline{T} is the multiplicative closed set generated by T.

Theorem 4. Let A a *-R-algebra, $\pi = (P, R^p)$ a fixed dominating *-prime in R. Let B be a *-closed subset of A and M a *-closed subset of B satisfy the following properties:

- (i) $BP \subset P < B > and <math>BR^p \subset R^p < B >$.
- (ii) $P < B > \cap R = P$.
- (iii) M is an m-system for B.
- (iv) $R^p P \subset M$.
- (v) $M \cap P < B >= \phi$.

Then there is a *-prime (K, A') in A which restricts to π , such that $BK \subset K$ and $KB \subset K$.

One can adapt the proof of Theorem (2.3) in [8] to prove Theorem (4).

3. *-valuations in *-fields

Let (D, *) be a *-field, and let D^x be the multiplicative group of non-zero elements of D. Following Holland [4], a function w from D^x onto an additively written ordered group Γ is called a *-valuation of D if

- (i) w(xy) = w(x) + w(y), for every $x, y \in D^x$.
- (ii) $w(x + y) \ge \min(w(x), w(y)), x + y \ne 0.$
- (iii) $w(x^*) = w(x)$.

It then follows that Γ is abelian since $w(x) + w(y) = w(xy) = w(y^*x^*) = w(y) + w(x)$.

First, we recall some basic facts about *-valuations in *-fields.

Definition. Let R be a subring of D.

- (1) R is called *total* if for every $x \in D^x$, x or $x^{-1} \in R$.
- (2) R is called *symmetric* if it contains x^*x^{-1} for every $x \in D^x$.
- (3) R is called *-valuation ring if it is total and symmetric.

Remark 5 [4]. If R is a symmetric subring of D then R is *-closed and preserved under conjugation.

Remark 6. If R is a *-closed total subring which is preserved under conjugation then R is symmetric and so it is a *-valuation subring.

Lemma 7[4]. Let w be a *-valuation of a *-field D, then

(1) $V = \{x \in D | w(x) \ge 0\}$ is *-closed subring of D and $P = \{x \in D | w(x) > 0\}$ is a *-closed maximal ideal of V.

- (2) V is total.
- (3) Every ideal in V is two-sided.
- (4) The ideal P is the unique maximal ideal of V, formed by the non-units in V, and V/P is a *-skew-field.
 - (5) V is symmetric (therefore preserved under conjugation).

Proposition 8 [4]. Given a *-valuation subring V of the *-field D, then there exist an ordered abelian group Γ and a *-valuation $w: D^x \to \Gamma$ such that V concides with the *-valuation ring of W.

In a *-field which is finite-dimensional over its centre, *-valuation rings may be defined without demanding symmetry.

Theorem 9. Let D be a *-field finite dimensional over its centre. Then any *-closed total subring V of D is a *-valuation subring.

One can adopt the proof of Theorem (3) in [2] to prove theorem (9).

The following proposition characterises those *-primes in *-fields which yield *-valuation rings.

Proposition 10. A *-prime (P, D^p) such that D^p is preserved under conjugation, yields a *-valuation of D with *-valuation ring D^p and maximal ideal P. Conversely, if V is a *-valuation ring, P its maximal ideal, then (P, V) is a *-prime of D.

Proof. We first claim that D^p is total. Suppose $x^{-1} \not\in D^p$ then, since $xD^px^{-1} \subset D^p$, $PxD^px^{-1} \subset P$ follows, but this yields $Px \subset P$ (using the defining property of *-primes). On the other hand also $xP \subset P$. Hence $x \in D^p$ and D^p is total. Clearly D^p is *-closed. Then, by Remark (6), D^p is a *-valuation ring. Now, if $x \not\in P$ then as before one can show that $x^{-1} \in D^p$, a contradiction, so $x \in P$. This proves that P is maximal ideal in D^p .

For the converse, it is enough to check property (3) in the definition of *-primes: take $x, y \in D$ such that $xy \in P$, if $x \notin P$ then $x^{-1} \in V$ and so $x^{-1}xy = y \in P$.

Theorem 11. Let D, E be *-fields, $D \subset E$, a *-valuation w on D extends to a *-valuation of E if and only if PE^c is a proper ideal in VE^c , where V is the *-valuation subring of w, P its maximal ideal, and E^c is the commutator subgroup of E.

Proof. We first note that $PE^c = E^c P$ and $VE^c = E^c V$ (for, $r(xyx^{-1}y^{-1}) = ((rxy)r(rxy)^{-1}r^{-1})r$). Let $B = VE^c$ and M = V - P. Clearly $M \subset B \subset P$

E. Since both V and E^c are *-closed, it follows that $(VE^c)^* = (E^c)^*V^* = E^cV = VE^c$, that is B is *-closed. Also, from the fact that $w(x^*) = w(x)$, it follows that M is *-closed. By Proposition (10), (P, V) is a *-prime in D. Applying Theorem (4), with $B = VE^c$ and M = V - P which satisfy properties (i)-(v), yields a *-prime (P', V') in E such that $VE^c \subset E^{p'}$ and $P' \cap D = P$. Clearly $(P', E^{p'})$ is a *-prime in E.

To show that $E^{p'}$ is a *-valuation ring in E with maximal ideal P', one must show that $E^{p'}$ is preserved under conjugation (Proposition (10)). Let $x \in E$, and $e \in E^{p'}$, then $xex^{-1}e^{-1} \in E^c \subset E^{p'}$, so that $xex^{-1} \in E^{p'}$. Now, by Proposition (8), $E^{p'}$ defines the desired extension.

To prove the converse, assume that w_1 is an extension of w and PE^c is not a proper ideal in VE^c . Then an equation of the form

$$\sum_{i} a_i c_i = 1, \quad a_i \in P, \quad c_i \in E^c$$

holds. Thus $0 = w_1(1) \ge \min_i \{w(a_i) + w_1(c_i)\}$. Since $a_i \in P, w(a_i) > 0$ follows. Also $w_1(c_i) = 0$ (for, c_i is a product of commutators), so $w(a_i) + w_1(c_i) > 0$ a contradiction. Therefore PE^c is a proper ideal in VE^c .

For examples of a *-field extension where the condition in Theorem (11) does not hold, see [8].

There is a remarkable relation between *-valuations and the notion of ordering of a *-field D. Beginning with a definition of Baer, at least four different notions of orderings have been proposed for D[1,4,5,6]. The connection between orderings and *-valuation is provided by the fact that, to any ordering \geq on D, we can associate a *-valuation ring V (the order subring) consists of elements of D which are bounded by some rational numbers with respect to \geq . This has been done for the c-ording [1], the strong ordering [5], and the Jorden ordering [6]. For the notion of Baer ordering [4], it is shown that V is a total subring, but whether or not V is a *-valuation ring is still on open question. The following corollary of Theorem (9) is a partial answer to that question.

Corollary. If D is a Baer ordered *-field which is finite dimensional over its centre, then the order subring V associated with the ordering is a $*-valuation\ ring$.

References

- M. Chacron, c-orderable division rings with involution, J. of Algebra, Vol.75, No.2 (1982), pp.495-521.
- [2] P.M. Cohn, On extending valuations in division algebras, Studia Scientiarum Mathematicarum Hungarica 16(1981), 65-70.
- [3] P.M. Cohn and M. Mahdavi-Hezavehi, Extension of valuations on skew fields, Lecture notes in Mathematics, 825, Springer-Verlag, Berlin, 1980, 28-41.
- [4] S.S. Holland (Jr.), *-valuations and ordered *-fields, Trans. Amer. Math. Soc. 262, no.1, 1980, p.219-243.
- [5] S.S. Holland (Jr.), Strong ordering of *-field, J. of Algebra 101(1986), p.16.
- I.M. Idris, Jordan ordering of a division ring with involution, Arbian Journal for Science and Engineering, Volume 14, Number 4 (1989), p.527-535.
- [7] O.G.S. Shilling, The theory of valuations, Mathematical Surveys No. 4(1950).
- [8] J. Van Geel, Places and Valuations in non-commutative ring theory, Dekker Lecture Notes Vol.71, 1981.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, AIN-SHAMS UNIVERSITY, CAIRO, EGYPT.