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Estimation in Autoregressive Process with
Non-negative Innovations

Kwang Ho Lee { and Jeong Gun Park {

ABSTRACT

In this paper, we obtain the natural estimators of the coefficient parameters
and propose strongly consistent estimators of the parameter in the autoregressive
model of order three with non-negative innovations. It is shown that the natural

"estimators are also strongly consistent for the parameters. We also compare the
proposed estimators with the natural estimators and the least square estimators

via Monte Carlo simulation studies.

1. Introduction

In the time series analysis, the most crucial steps are to identify and to build a
model based on available data. In this step we usually assume that the innovations
are Gaussian random variables with mean zero and finite constant variance. But
in the real situations, it is known that the time series processes commonly have

non-Gaussian innovations (Nelson and Granger(1979)).

In the autoregressive process of order one with the non-negative innovations,
Bell and Smith(1986) studied the moment structure of the process and proposed a
consistent estimator of the coefficient parameter and called it the natural estimator.
they also proved that the natural estimator is the maximum likelihood estimator
of the parameter when the distribution of the innovations follows an one parameter
exponential distribution. Moreover, Andél(1988) derived the distribution of the
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natural estimator. Furthermore Andél(1989) also derived the autoregressive process

of order two with the non-negative innovation.

Here we consider the natural estimators of the coefficient parameters in the
autoregressive model of order three with non-negative innovations, and we find a
properties of these estimators. Also we propose another strongly consistent estima-
tors of the coefficient parameters in the same model, and we compare the proposed
strongly consistent estimators with the natural estimators and the least square esti-

mators in terms of bias and mean square errors via Monte Carlo simulation studies.

In Section 2, we obtain the natural estimators of the coefficient parameters
in the autoregressive process of order three with the non-negative innovations and

prove that these are strongly consistent.

In Section 3, we propose another strongly consistent estimators of the coef-
ficient parameters in the same model used in Section 2. we also show that the
proposed estimators are the maximum likelihood estimators when the innovations

are exponential distribution.

In Section 4, we compare the proposed estimators with the natural estimator
and the least square estimators in terms of bias and mean square errors through

the Monte Carlo simulation method.

2. Natural Estimators and Their Properties

Consider the stationary autoregressive process of order three defined by
Xe=b0Xi1+0,Xe2 + b3 X3 + &4, (1)

where t = 4, 5, ... ,n. It is assumed that the innovations ¢; be positive independent
identically distributed random variables with a distribution function F and have
finite unknown constant variance. We also assume that the coefficient parameters

in the model (1) are non-negative and satisfy the stationary condition.

Let X1, --,Xn be the realizations from the model (1). Then one easily can
obtain the followings
X n bo X2+ b3X-3 + &4
Xia X .

(2)
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Intuitively, if the size of realizations is sufficiently large, then one can expect with
a high probability that at least one t exists such that X;_2, X3, and ¢; are small
and X,_ is very large. That is, one can expect with a high probability that there
exist t such that left hand side of equation (2) approximately equal to b;. In fact,

the last term in the equation (2) can be represented as

AkEt—k

C(/\k, Et—k» st—l) = Z

oo
k=0

(3)

Et—-1

where A\g =1, A\; =0, Ax = bycg—2 + bzcg—y for k > 2 and ¢; is a function of b;’s.
Using the method of proof in Theorem A.1 in Andeél(1989), it is not difficult to
show that minimum of (3) almost surely converges to zero as n approach to infinity.

Thus we obtain the following result.

Theorem 2.1. Let X;, X, ---,X, be a realizations from the stationary

.autoregressive process (1) and define

X
4+ . t
br = 4r.<fltl£n (Xt—l) '

Then b] is a strongly consistent estimator of b;.

Similarly, from (1), we also obtain the followings

X, biXi—1 + b3 X3 + &4

Xt—2 2 .Xt_g ( )
In (4), if X¢— is substituted by by X2 + b2 X3 + b3 X¢—4 + €¢—1, then
X bibo + b3)Xe—3 4+ 0103 Xy g + bree—
t =b2+bf+(12+ 3) t3+X13 t—-4 T 01&¢ 1+£t. (5)
t—2 t—2 .

The last term in the equation (5) is C(Ak, €t—k, €:—2) With Ag =1, A\; = by, Az =0,
At = (b1 + b3)ck—3 + bibsck—2 for k > 3 and ¢; is a function of ;. Thus it can
be shown that minimum of C(Ag, €¢—k, €:—2) almost surely converges to zero as n

approach to infinity. Thus the following theorem holds.

Theorem 2.2. Under the conditions as those in Theorem 2.1, if we define

X
+ oo t
i - 2.(55)
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Then b] is a strongly consistent estimator of b + b2.
From Theorem 2.1 and Theorem 2.2, the following corollary can be obtained.

Corollary 2.1. Under the same conditions as those in Theorem 2.2, b.j - bf‘z

is a strongly consistent estimator of b;.

Finally, from (1) the following equation holds.

X b X, -
to byt 1 Xe—1 + b X 2+€t'

= 6
Xi-3 Xi-3 (6)

In (6), if X;—; and X;_, are substituted by by X¢—o + b2 Xt—3 + b3 X¢—s + €11 and
by Xe—s + b2 X:—4 + b3 X¢_5 + €4 respectively, then we obtain

Xt (5252 + b1bs + bz)Xt-4
=bs + 2b1by + b3 + 2
X 3 + 26102 + 07 + X, -
+ (b2b3 + bab3) X5 + (bIb2)er—2 + br€e—1 + €4
Xi-3 '

The last term in (7) is also C(Ak, Et—k, Et_3) with )\0 = 1, )\] = 0, Ag = b% + b2,
A = (b2by + bybs + b2 )ck—g + (823 + bad3)cx—3 for k > 4 and c; is a function of b;.

Similary, it can be shown that minimum of C(Ax, €4—k, €1—3) almost surely

converges o zero as n approaches to infinity. Thus the following theorem holds.

Theorem 2.3. Under the same conditions as those in Theorem 2.2, let

X
4+ . t
= min, (25).

Then b7 is a strongly consistent estimator of b3 + 2b;b; + b3.

From Theorem 2.1, Theorem 2.2 and Theorem 2.3, one can easily obtain the

following result.

Corollary 2.2. Under the same conditions as those in Theorem 2.3, b —

267 bF — b;"a is a strongly consistent estimator of b3.
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3. Proposed Estimators

In this section, we propose another strongly consistent estimators for the co-
efficient parameters, respectively, in the non-negative autoregressive process given
in the previous section, which are asymptotic maximum likelihood estimators if the

underlying distribution is exponential one.

In fact, the proposed estimators are the values of the parameters b, b2 and
by in the given model which maximize b, + b, + b3 subject to the conditions X; —
by Xe—q — by Xs_g —b3Xs_3 >0 for t=4, 5, ... ,n. we also show that the proposed
estimators are strongly consistent for the parameters in the model. At first, we show
that those are maximum likelihood setimators of the parameters in the case when
the innovations are independent exponential distributions. Under the assumption
of exponential distributions with single scale parameter A, the likelihood function ,

given X; = 1, X2 = 2, and X3 = z3, is

" ~ bizyoy — bazi—g — b3zy_
[ = \—"t3 _ Tt = 01T¢— 2Zt—2 — 03T¢-3
e:cp< E 3

t=4

for z¢ — biTi—1 — bozi—g —b3ze—_3 >0, t = 4,5,...,n. Thus the maximum likelihood
estimators of the parameters b;, by and b are the values of by, by and b3 which

maximize the followings

n n n
b Z zi-1+ by Z T2 + b3 Z Ti-3 (8)
t=4 t=4 t=4
subject to
Ty — b1xe1 — baTi—2 — b3ze—3 20, (9)
for t=4, 5, ... ,n. In the time series analysis, generally the realization size n is usually

large. Thus the terms Y f., T¢—1, 9 ,¢q Te—2 and Y 4 Ti—3 in (8) probably do not
differ very much. Therefore, the values of by, b, and b3 which maximize b; + b; + b3
under the conditions (9) are the asymptotic maximum likelihood estimators of the

parameters in the given model.

However, It is not assumed that the innovations are independent exponentially
distributed ramdom variables. In this paper, we only assume that they are inde-

pendent identical non-negative distributions with finite unknown constant variance.
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But it is interesting that estimators obtained by maximizing b; + b + bs under the
condition (9) and the above assumptions for innovations have good statistical prop-
erties in the sense of bias, mean square error and consistency. we can lead to the

following result.

Theorem 3.1. Let b}, b} and b} be values of coefficient parameters b;, b, and
by respectively, in the given model (1) which maximize by + b, + b3 subject to the
conditions (9). Then b}, b3 and b} are strongly consistent estimators of b1, b2 and

b respectively.

Proof. First, define a parametic space with the condition (9) as follows

M, ={(B1,B2,83): 5120, B2 >0, B3>0,
X:— 1 Xeoy — B2 Xi—g2 — B3 X4—3 20
for t=4,5,...,n}.

It is clear that My D Ms D Mg D ---. We want to find a set M such that M,
converges to M almost surely as n approaches to infinity and to find the values of
Bi, B2 and B3 which maximize B; + B, + B3 in M. We consider a plane Z given by
X, — 81 X1—1 — P2 X1—2 — B3 X1_3 = 0 (See Figure A). If the values of f; and f; are
zero on the plane Z, then the value of 33 is X;/X;—3. also if the values of 8; and
B3 are zero on the plane Z, then the value of 3, is X;/X;_2, and also if the values
of B, and 3. are zero on the plane Z, then the value of 8; is X¢/X:—1.

Step 1 : By Theorem 2.1., since bf converges to b; almost surely as n
approaches to infinity, there exist indices ¢, such that X, /X, 1 converges to
b,. Using (2), we obtain (bsX¢, —2 + b3 X, 3 + €4,)/X:, -1 approaches to zero
as n approach to infinity. Now, X, and ¢, are positive random variables and
b, > 0, b3 > 0. Therefore X, —2/X¢, -1, Xt,-3/Xt,-1 and &, /X, —1 converges to

zero. Since

bIXt,,-—l + b3Xt"._3 + Etn
Xt,—2 ’

X
i
X, 2 +

X:, /X:, -2 diverges to infinity. Also since

X, — b+ b1 X, -1+ bzxt,.—2>+ Et,
th‘-3 3 X‘t"—3 ’

X:, /X, -3 diverges to infinity.
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In this case, Z approaches the plane which passes through the point b; on

Bi-axis and parallels to the f3-axis and to the f3-axis.

Step 2 : By Theorem 2.2., since b;’ converges to by +b? almost surely as n ap-
proaches to infinity, there exist indices s, such that {(bjba+b3)X,, —3+b162X,, _4+
bi€s,—1+¢€s, }/Xs, —2 converge to zero. Since X, and €, are positive random vari-
ables and b; > 0, by >0, b3 > 0, X, ~3/Xs, -2, Xs,—-4/Xs,—2, €s,-1/Xs, -2 and

€s, /X, 2 converge to zero as n approaches to infinity. From the equation (2),

X b by — b7102) X, _
Sn =b] +_2+( 3 1 2) n—3
Xsn—l bl Xs,,—l
+ b7 Ybob3 X5, —4 — b7 1 b2es, -1 + €4,
X.s,,—l )

In fact,

(b3 - bl_lb%)Xsn_;; - bl_lbzb3X3"-4 -— bl—leEs,,—l + €3,
b1 Xs,—2+ b2 X, -3+ 03X, —4 + €51

n

les,,—Z '

<(b3 — b;lb%)Xsn_;; + bl—lb2b3Xsn_4 + bl_lb2€3n_1 + Eg
- les"—Z les,.—Z les,.-—Z

The right hand side of above inequality converges to zero as n approaches to infinizy.
Therefore, X, /X,, -1 converges to b1 +b,/b; as n approaches to infinity. Also from
the equation (6),

X, = bg + byby + (03 +52)X,, 2+ b1bs X, _4 + bres, -1 + 6o,

Xan—3 Xs,,——3

(10)

As the term X, _2/X,, -3 in the equation (10) diverges to infinity, X, /X, _3

diverges to infinity as n approaches to infinity.

In this case one can see that the plane Z approaches the plane which passes
through the point b, + b,/b; on the $;-axis and b, + b2 on B,-axis and pa,rallels to
the B;-axis.

Step 3 : By Theorem 2.3., since b;’ converge to by + 2b; by + b3 almost surely
as n approaches to infinity, there exist indices v, such that, when n approaches to
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infinity,
(6362 + byby + b3) Xy, —s + (b33 + byb3) Xu, -5
Xv,.—3
n (b3 4+ b2)ew, —2 + b1€y, —1 +€v,
Xv,,—3

approaches to zero. Since X, _3, X, —4, Xv, -5, €v,» Ev,—1 and €, o are positive
random variables, b, > 0, b, > 0 and b3 > 0, we obtain that X, _4/X,, -3,
Xo, -5/ Xv,. -3, €vn-2/Xv,~3, €v,—1/Xv,-3 and &,,/X,,_3 converge to zero as n

approaches to infinity. Also from the equation (2),

Xow _y b2 b7 (bs — b7 b2) X, ~2 + (BT203 — 267 ' b2b3) X, 4
Xv,.—l ! b] Xv,,—l
N —b ba(bs — b 83) X, -5 — by (bs — by "b3)ev, 2
Xv,.—l

-1
_ b] b2€v,,—1 + €v,
Xv,.—l

Now, we obtain that, when n approaches to infinity, {7 (b3 —b7162)X,, 2}/ X on—1
converge to (b3 — b7102)/(b? + by), and since X, -1 = (b2 + b2) Xy, —3 + (b1ds +
b3) Xy, 4 + b1b3 Xy, —5 + b1y, —2 + €4, -1, We obtain the following result.

(b7 253 — 2b7 " bbs) Xy, 4 — b "ba(bs — b7 '83) X, s
Xv,,—l

_bl—l(bii - bl_lbg)sv"—Z — b1_1b25v,.—1 + €y,

Xv,,—l
(67283 — 267 83b3) Xy g by ba(bs — BT U02)X,, _s
T (63 4 b2) Xy, -3 (63 + b2) Xy, -3
b (bs — b7 b3 )ew, —2 by 1 b2€v, -1 + Ev,
(b} + b2) Xy, -3 (62 +b2)Xo,—3 (b} +02)Xp,—3

The right hand side of above inequality converges to zero as n approaches to infinity.
Thus, X,, /Xy, -1 converges to by + bz/b1 + (b3 - b7162)/(b? + by), as n approaches
to infinity. ' Also, from the equation (4), one can lead to
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Xo, o bs  (bibs — b3 — b7 beb3) Xy, -4
Xvn-2 =2 b+ by * Xo,—2
" —(babs + b7 183) X, -5 — (B2 + b7 b3 )ev,—2
Xv,,—2

blsv"—l + evn

+ Xv,. -2

Now, we obtain the following inequality

(babs — B2 — b7 baby) X o, —s — (babs + B710)X,, s
b1 Xy, -3+ b Xy, —4 + 03Xy, 5 +Ey,—2

—(b2 + bl-lb3)€v,,—2 + blfv,.—l + Ev,

+
b1 Xy,—3 + 02Xy, -4 + 03X, -5 + €y, —2

<(babs = b2 — b7 bybs) Xy, -4 4 (b2by + b7 1b2) X, s

- bIX,,n..a lev,‘-—Ii
(by + b7 b3)ew, —2 | b1y, —1 + o
lev,.—3 bIXv,.—3 bl-Xv,.—3 )

73

It can be also shown that the right hand side of above inequality converges to zero

as n approaches to infinity. Thus X, /X,, -2 approaches to 2b; + b2 +b3/by asn

approaches to infinity.

In this case, one can see that the plane Z approaches the plane which passes
through the point b + by/b; + (b3 — b7 b3)/(b? + b3) on the P-axis and the point

2by + b2 4 b3 /by on the [;-axis and the point b; + 2b;b; + b3 on the B3-axis.

From the Step 1, Step 2 and Step 3, one can get
M = {(B1,62,53) | 0 < By < 41,0 < B < by + b,
0 < B3 < by + 2byby + 85,
B3 < bs + b3 + 2b1by — (B + b2)B1 — b1 32,

Ba < by + b2 — by .
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7
7 A
/"b3 + 2byby + b}

/ \

//' by + b?

/2bz+b%+_'ii‘__

B

‘Figure A

Moreover, it can be proved that none of the planes for all £ > 4 can pass through
a point located in the interior of M. In the Figure A, the points P, Q and R are

represented as follows.

X1 Xt
P=- + =
Xt X
2X_y + bobsXe—s + bocy_o + €
=b3+b1b2+2t4+23Xt5 2E1—2 t
t-3
> b3 + by b,.
Xi—2 X,
=- +
°=x.7tx
202Xy +b1bs Xy +b1eiq + €
=b3+blbz+lt2+1}t4 1€¢—~1 t
t—3

> b3 + b1bs.
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X X
- +
X" X,
by X_3 + €4
+ —
Xt-2

R =

= b,

> bs.

Therefore, the points P, Q and R are not located in the interior of M.

Finally, It needs to find the values of 1, 8, and 83 which maximize 81 + 82 + 3

in the space M. Since

Br+ Bz + B3 = Br + P+ (b3 + b7 + 2b1bz) — (B + b2)B1 — bu 2
= by + b3 + 2byby + b + [1 — (b1 + b2)) 1,

the maximum value of 3; in the space M maximizes 8; + B2 + $3. Hence 1, 52
and S; should approach to the points b;, b, and bz, respectively as n approaches to
infinity.

Remark. The estimators b}, b} and b} are easily computed by the simplex or

dual simplex method.

4. Monte Carlo Simulation

In this section, we investigate the performances of the natural estimators, the
proposed estimators and the least square estimators via Monte Carlo simulation
in terms of the bias and mean square error(MSE). We denote the least square

estimators(LSE) of b;, by and b3 by 5%, b and b3, respectively.

In the simulation study, the true values of the parameters in the model (1) are
considered as b; = 0.5, by = 0.3 and b3 = 0.1, and three distributions of the white
noise ¢; are investigated. We generate pseudorandom samples of size 30, 50, 70 and
100 (We use GGUBS(uniform), GGEXN(exponential) and GGNLG(lognormal) in
the IMSL), and we evaluate the biases and MSE’s for the natural estimators, the

proposed estimators and the least square estimators of the parameters.

Table 1 shows that the biases and MSE’s for the estimators when the innova-

tions ¢; are exponential distribution withthe scale parameter one.
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Table 2 show that when the innovations ¢; are uniform distribution with pa-
rameters zero and one, that is, ¢; ~ UNIF(0,1). Finally the biases and MSE’s for
the estimators when the innovations ¢; are lognormal distribution with parameters

zero and one are given in Table 3.
In the case ¢; ~ EXP(1), from the Table 1 one can see the following facts.

(1) For n = 30, the estimators b}, b} and b have very large biases and MSE’s.
The bias is not negligible even for extremely large n. That is, for n = 50, 70, 100,

the bias for the estimators b, bf and b are larger than other estimators.

(2) The estimators b}, b3 and b5 have smaller biases than those of the LSE’s.
In terms of bias, the estimators b}, b3 and b3 are better than other estimators. In
terms of MSE, the estimators b3, b3 and b3 have larger than the LSE for the size
n = 30, 50 and 70. But for n = 100, b7, b7 and b} have smaller than the LSE.

In the case ¢; ~ UNIF(0,1), from the Table 2 one can see the following facts.

(1) For n = 30, 50, 70 and 100, the estimators bi", b and b'; have large biases
and MSE’s. From Table 1, the bias in not negligible even for extremely large n.

Also, the MSE is larger than other estimators for large n.

(2) For n = 30, 50, 70 and 100. The estimators b7, b% and b} have smaller biases
than the LSE’s. Thus, in terms of bias, the estimators b7, b3 and b3 are better than
other estimators. In terms of MSE, the estimator b} have larger MSE than the LSE
for the size n = 30 and 50. But for the size n = 70 and 100, the estimator b] have
smaller than the LSE. Also the estimators b3 and b} have larger than the LSE for
the size n = 30, 50 and 70, but for the size n = 100, the estimators b; and b} have
smaller than the LSE.

For the case loge; ~ N(0,1), we also obtain the analogous results as those of
ei ~ EXP(1) or ¢; ~ UNIF(0,1) from the Table 3.
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Table 1. Comparisons of the Bias and MSE for the Natual Estimators,
the Proposed Estimators and the Least Square Estimators when ¢; ~ EXP(1)

Natural Proposed LS
n Bias MSE Bias MSE Bias MSE

by  .3325 1118 .0092 .0120 .0494 .0025
30 b, -.1635 .0291 .0035 .0093 .0451 .0015
by -.1569 .0285 .0231 .0077 .0467 .0023

b, .3183 .1024 .0082 .0040 .0459 .0017
50 b, -.1525 .0252 .0029 .0035 .0362 .0014
b  .1501 .0257 -.0044 .0021 .0339 .0012

by  .3134 .0992 .0058 .0020 .0409 .0016
70 b, -.1482 .0235 .0020 .0019 .0281 .0009
bs -.1452 .0242 .0009 .0016 .0321 .0011

by  .3059 .0945 .0044 .0009 .0399 .0014
100 b, -.1435 .0223 .0002 .0009 .0292 .0009
by -.1388 .0220 -.0005 .0007 .0298 .0009

Table 2. Comparisons of the Bias and MSE for the Natual Estimators,
the Proposed Estimators and the Least Square Estimators when ¢, ~ UNIF(0,1)

Natural Proposed LS
n Bias MSE Bias MSE Bias MSE

by .3979  .1584 .0647 .0216 .0676 .0023
30 b, -.2323 .0545 .0158 .0249 -.0378 .0023
bs -.0995 .0097 .0513 .0198 .0548 .0033

by .3887 .1513 .0333 .0127 .0617 .0046
50 by -.2218 .0497 .0057 .0159 -.0055 .0021
bs -.0981 .0103 .0273 .0085 .0343 .0025

by .3835 .1472 .0256 .0039 .0444 .0040
70 by -2182 .0481 -.0049 .0091 -.0034 .0017
b3 -.0978 .0102 .0163 .0049 .0220 .0020

by .3752 1409 .0005 .0028 .0296 .0029
100 b, -2113 .0450 .0026 .0015 .0028 .0015
b3 -.0973 .0105 .0131 .0018 .0214 .0019
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Table 3. Comparisons of the Bias and MSE for the Natual Estimators,
the Proposed Estimators and the Least Square Estimators when loge; ~ N(0,1)

Natural Proposed LS
n Bias MSE Bias MSE Bias MSE

by .3098 .0991 .0106 .0101 .0568 .0033
30 b, -.1379 .0226 .0031 .0091 .0478 .0019
b; -.0894 .0096 .0311 .0089 .0398 .0017

b .2922 .0880 .0104 .0040 .0516 .0028
50 b, -.1258 .0189 .0020 .0040 .0394 .0019
b; -.0871 .0091 .0043 .0029 .0251 .0007

b 2761 .0791 .0085 .0023 .0447 .0021
70 b -.1149 .0162 .0018 .0022 .0379 .0016
b; -.0827 .0083 -.0034¢ .0018 .0195 .0008

by  .2629 .0718 .0004 .0012 .0398 .0016
100 5 -.1062 .0138 .0014 .0012 .0360 .0013
b -.0818 .0079 -.0018 .0011 .0143 .0007
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